
1Telematics I (SS 2023): 04 – Data Link Layer

Telematics I

Chapter 4
Data Link Layer

 Link layer service and basic functions
 Framing
 Error control

2Telematics I (SS 2023): 04 – Data Link Layer

Goals

 Understand the main service provided by the link layer
 Communication between two directly connected nodes
 Framing of a physical bit stream into a structure of frames/packets
 Error control: Detection and correction
 Connection setup and release
 Acknowledgement-based protocols
 Flow control

 Some ideas about how to use extended finite state machines to
specify communication protocols

3Telematics I (SS 2023): 04 – Data Link Layer

The Link Layer’s Service

 Link layer sits on top of the physical layer
 Can thus use a bit stream transmission service
 But: this service might have incorrect bits

 Expectations of the higher layer (networking layer)
 Wants to use either a packet service or, sometimes, a bit stream

service (rather unusual)
 Does not really want to be bothered by errors
 Does not really want to care about issues at the other end

Physical layer

Network layer Network layer

Link layer Link layer
Bits

Packets

4Telematics I (SS 2023): 04 – Data Link Layer

Options for Link Layer Service

 Reliable (dependable) service – yes/no
 Reliability has many facets

 A delivered packet should have the same content as the
transmitted packet

 All packets have to be delivered eventually
 Packets have to be delivered in order

 Error control may be required
 Forward error correction, or backward error correction with

acknowledgements and retransmissions
 Connection-oriented – yes/no

 Should a context be setup to/with the peer entity?
 Packet or bitstream abstraction

 Usually in computer networks: packets
 What about a maximal packet length?

5Telematics I (SS 2023): 04 – Data Link Layer

Distinguish: Service Versus Implementation

 Note the difference between service and implementation

 One example:
 Connection-less & reliable service required by the network layer
 Link layer decides to use connections internally as a means to

help with error control

 What about other combinations?

6Telematics I (SS 2023): 04 – Data Link Layer

Basic Link Layer Functions – Framing

 How to turn a physical layer’s bit stream abstraction into individual,
well demarcated frames
 Usually necessary to provide error control – not obvious how to do

that over a bit stream abstraction
 Frames and packets are really the same thing, only a convention

to talk about “frames” in the link layer context
 In addition: Fragmentation & reassembly if network layer packets are

longer than link layer packets

Physical layer

Network layer Network layer

Link layer

Bits

Packets

Framing

Link layer

Framing
Frames

7Telematics I (SS 2023): 04 – Data Link Layer

Basic Link Layer Functions – Error Control

 If desired by the network layer – usually is
 Usually build on top of frames
 Error detection – are there incorrect bits?
 Error correction – repair any mistakes that have happened?

 Forward error correction – invest effort before error happened;
try to hide it from higher layers

 Backward error correction – invest effort after error happened;
try to repair it

Error control

Error detection Error correction

Forward error
correction

Backward error
correction

8Telematics I (SS 2023): 04 – Data Link Layer

Basic Link Layer Functions – Connection Setup

 Connections useful for many purposes
 Application context
 Error control – several error control schemes rely on a common

context between sender and receiver
 Question: how to set up and terminate a connection? What state

information is required?
 Especially: if used on top of frames / packets?
 A “virtual” connection, really, since there is no end-to-end line

switched
 Example for a connection-oriented service on top of packet

switching

 Problem reappears later in the transport layer again, with some
additional complications – treated there!

9Telematics I (SS 2023): 04 – Data Link Layer

Basic Link Layer Functions – Flow Control

 What happens with a fast sender and a slow receiver?
 Sender will overrun buffers faster than the receiver can process

the packets in that buffer
 Lots of transmission effort is wasted in this case

 Necessary to control the amount of frames a link layer sends per unit
time, adapt to receiver’s capabilities

Thirsty?
Drink!

10Telematics I (SS 2023): 04 – Data Link Layer

Content

 Link layer service and basic functions
 Framing
 Error control

11Telematics I (SS 2023): 04 – Data Link Layer

Framing

 How to turn a bit stream into a sequence of frames?
 More precisely: how does a receiver know when a frame starts and

when it finishes?

0110010101110101110010100010101010101010101100010
Delivered

by physical
layer

Start of frame End of frame

 Note: Physical layer might try to detect and deliver bits when the
sender is not actually transmitting anything
 Receiver still tries to get any information from the physical medium

12Telematics I (SS 2023): 04 – Data Link Layer

Framing by Character Counting

 Idea: Announce the number of bits (bytes, characters) in a frame to
the receiver
 Put this information into the frame
 Has to be at the beginning of a frame – a frame header

 Problem: What happens if the count information itself is damaged
during transmission?
 Receiver will loose frame synchronization and produce different sequence

of frames than original one

13Telematics I (SS 2023): 04 – Data Link Layer

Basic Technique: Put Control Data into a Header

 Albeit “character count” is not a good framing technique, it illustrates
an important technique: headers
 If sender has to communicate administrative or control data to receiver, it

can be added to the payload, the actual packet content
 Usually at the start of the packet; sometimes at the end (a trailer)
 Receiver uses headers to learn about sender’s intention
 Same thing works for packet headers as well

14Telematics I (SS 2023): 04 – Data Link Layer

Framing by Flag Bytes/Byte stuffing

 Use dedicated flag bytes to demarcate start/stop of a frame

 What happens when the flag byte appears in the payload?
 Escape it with a special control character – byte stuffing
 If that appears, escape it as well

15Telematics I (SS 2023): 04 – Data Link Layer

Framing by Flag Bit Patterns / Bit Stuffing

 Byte stuffing is closely tied to characters/bytes as fundamental unit –
often not appropriate

 Use same idea, but stick with the bit stream abstraction of the physical
layer
 Use a bit pattern instead of a flag byte – often, 01111110

 Actually, it IS a flag byte
 Use bit stuffing

 Whenever sender sends five 1’s in a row, it automatically adds a zero
into the bit stream – except in the flag pattern

 Receiver throws away (“destuffs”) any 0 after five 1’s

Original payload

After bit stuffing

After de-stuffing

16Telematics I (SS 2023): 04 – Data Link Layer

Framing by Coding Violations

 Suppose the physical layer’s encoding rules “bits ! signals” still
provide some options to play with
 Not all possible combinations that the physical layer can express

are used to express bit patterns
 Example: Manchester encoding – only low/high and high/low is

used
 When “violating” these encoding rules, data can be transmitted – e.g.,

the start and end of a frame
 Example: Manchester – use high/high or low/low

 This drops the self-clocking feature of Manchester, but clock
synchronization is sufficiently good to hold for a short while

 Powerful and simple scheme – used e.g. by Ethernet networks
 But raises questions regarding bandwidth efficiency

17Telematics I (SS 2023): 04 – Data Link Layer

Content

 Link layer service and basic functions
 Framing
 Error control

 Redundancy
 Hamming distance & error correction
 Error detection – CRC
 Backward error correction – Acknowledgement

18Telematics I (SS 2023): 04 – Data Link Layer

Error Control

 Two basic aspects:
 Detect the presence of errors (incorrectly received bits) in a frame
 Correct errors in frames

 Either one is possible without the other one
 Detect, but do not correct: Simply drop a frame; pretend that it never

has arrived at the receiver
 Higher layers can take corrective measures, if they so desire

 Correct, but do not detect: Try to correct as many errors as possible
but do not care if there are some remaining errors present
 Only feasible if application is not (too much) bothered by errors
 Example: voice applications can tolerate some degree of bits errors

without loosing too much voice quality
 Justifiable, since even with detection the residual error probability is

always > 0

19Telematics I (SS 2023): 04 – Data Link Layer

Error Detection

EDC = Error Detection and Correction bits (redundancy)
D = Data protected by error checking, may include header fields
 Error detection is not 100% reliable:

 Protocol may miss some errors, but rarely
 Larger EDC field yields better detection and correction

20Telematics I (SS 2023): 04 – Data Link Layer

Error Control – Redundancy

 Any form of error control requires redundancy in the frames
 Without redundancy

 A frame of length m can represent 2m different frames
 All of them are legal!

 How could a receiver possibly decide that one legal frame is not the
one that had originally been transmitted?
 Not possible!

000….000
000….001

111….110
111….111

Set of all
frames

Set of all
legal frames

21Telematics I (SS 2023): 04 – Data Link Layer

Error Control – Redundancy

 Core idea: Declare some of the possible messages illegal!
 Still need to be able to express 2m legal frames
 ! More than 2m possible frames are required
 ! More than m bits are required in a frame
 Use frames with n > m total length
 r = m - n are the redundant bits (typically, as header or trailer)

 Having more possible than legal frames allows receiver to detect
illegal frames

000….000000
000….001010

111….110110
111….111011

Set of all
possible
frames

Set of all legal
frames

111….111101

111….111111000….000010

000….000011

22Telematics I (SS 2023): 04 – Data Link Layer

How Do Illegal Messages Help With Detecting Bit Errors?

 Transmitter only sends legal frame
 Physical medium/receiver might corrupt some bits
 Hope: A legal frame is only corrupted into an illegal message

 But one legal frame is never turned into another legal frame

 Necessary to realize this hope:
 Physical medium only alters up to a certain number of bits (by assumption)

– say, k bits per frame
 This is only an assumption!
 How does it relate to the BER or the SNR?

 Legal messages are sufficiently different so that it is not possible to
change one legal frame into another by altering at most k bits

23Telematics I (SS 2023): 04 – Data Link Layer

Altering Frames by Changing Bits

 Suppose the following frames are the only legal bit patterns: 0000,
0011, 1100, 1111

0000 0011

1100 1111

1000 0100

0010

0001

10110111

1110

1101

uvxy – legal frame abcd – illegal frame

Lines connect frames
that only differ in a single
bit = that can be
converted into each
other by flipping one bit

Here: No single bit error
can convert one legal

frame into another one!

0101, 0110,
1001, 1010

24Telematics I (SS 2023): 04 – Data Link Layer

Simple Redundancy Examples: Parity (1)

 A simple rule to construct 1 redundant bit (i.e., n = m + 1): Parity
 Odd parity: Add one bit, choose its value such that the number of 1’s in the

entire message is odd
 Even parity: Add one bit, choose its value such that the number of 1’s in

the entire message is even

 Example:
 Original message without redundancy: 01101011001
 Odd parity: 011010110011
 Even parity: 011010110010

25Telematics I (SS 2023): 04 – Data Link Layer

 Parity bit examples:

 Send 1 0 1 1 0 0 0 in even parity
 There are three 1’s in this
 To make this even parity a 1 is added to the end ( total four 1’s)
 1 0 1 1 0 0 0 1 is transmitted by the sending computer

 Send 1 0 1 1 0 1 0 in even parity
 There are four 1’s in this
 To keep this even parity a 0 is added to the end
 1 0 1 1 0 1 0 0 is transmitted by the sending computer

 The destination computer always expects an even number of 1’s:
 If there is there is not an even number of 1’s arriving, then the

frame has been corrupted

Simple Redundancy Examples: Parity (2)

26Telematics I (SS 2023): 04 – Data Link Layer

 Parity bit problems:
 Even and odd parity works well to detect single bit errors
 However, it cannot detect all possible errors
 For example, consider when transmission errors cause two bits to be

changed:
 If 1 0 0 1 1 0 1 0 is sent but two bits get changed during

transmission
 The destination computer receives 0 1 0 1 1 0 1 0 and does not

realise that there were errors during transmission.

 To detect more errors (i.e. even number of bit errors), a checksum
or a cyclic redundancy check is needed

Simple Redundancy Examples: Parity (3)

27Telematics I (SS 2023): 04 – Data Link Layer

 Checksums:
 To compute a checksum, the sending computer treats the data as a

sequence of binary integers and computes their sum.
 Note that the Data Link Layer treats the data as a sequence of integers

for the purposes of computing a checksum.
 For example, to compute a checksum on the message “Hello World.”
 Two characters are grouped together as a 16 bit number and added

together to produce the checksum (adding potential carry-over at the
end again like in computation of one-complement)

48 65 6C 6C 6F 20 77 6F 72 6C 64 2E

 H e l l o W o r l d .

 4865 + 6C6C + 6F20 + 776F + 726C + 642E = 71FC
 “Hello World.” is sent followed by 71FC

Simple Redundancy Examples: Checksums (1)

28Telematics I (SS 2023): 04 – Data Link Layer

 Checksums:
 Checksums are easy to calculate since they use simple addition and this

can be done quickly by implementing it in hardware.
 The disadvantage with checksums is that they cannot detect all common

errors

Binary Checksum value Binary Checksum value

 0001 1 0011 3

 0010 2 0000 0

 0011 3 0001 1

 0001 1 0011 3

Totals 7 7

Simple Redundancy Examples: Checksums (2)

29Telematics I (SS 2023): 04 – Data Link Layer

Content

 Link layer service and basic functions
 Framing
 Error control

 Redundancy
 Hamming distance & error correction
 Error detection – CRC
 Backward error correction – Acknowledgement

30Telematics I (SS 2023): 04 – Data Link Layer

Distance Between Frames

 In previous example: Two bit changes necessary to go from one
legal frame to another

 Formally: Hamming distance
 Let x = x1,…, xn and y = y1,…, yn be frames
 d(x,y) = number of 1 bits in x XOR y
 Intuitively: the number of bit positions where x and y are different

x=0011010111
y=0110100101

x XOR y=0101110010

d(x,y) = 5

Example:

31Telematics I (SS 2023): 04 – Data Link Layer

Hamming Distance of a Set of Frames

 The Hamming distance of a set of frames S:

 The smallest distance between any two frames in the set

0000 0011

1100 1111

All distances are 2

Examples:
001011 011101

101011

3

1 4

One distance is 1!

32Telematics I (SS 2023): 04 – Data Link Layer

Hamming Distance and Error Detection/Correction

 What happens if d(S) = 0?
 This is nonsense, by definition

 What happens if d(S) = 1?
 There exist x,y  S such that d(x,y) = 1; no other pair is closer

 A single bit error converts from one legal frame x to another legal frame y
 Cannot detect or correct anything

x y
1 bit difference

33Telematics I (SS 2023): 04 – Data Link Layer

Hamming Distance and Detection/Correction

 What happens if d(S) = 2?
 There exist x,y  S such that d(x,y) = 2; no other pair is closer
 In particular: any u with d(x,u) = 1 is illegal,

 As is any u with d(y,u)=1

 I.e., errors which modify a single bit always lead to an illegal frame

! Can be detected!
 Generalizes to all legal frames, because Hamming distance describes the

“critical cases”
 But not corrected – upon receiving u, no way to decide whether x or y had

been sent (symmetry!)

x u
1 bit difference 1 bit difference

y

34Telematics I (SS 2023): 04 – Data Link Layer

Hamming Distance and Detection/Correction

 What happens if d(S) = 3?
 There exist x, y  S such that d(x,y) = 3; no other pair is closer
 Every s with d(x,s) = 1 is illegal AND d(y,s) > 1!

 Hence: the receipt of s could have the following causes:
 Originally, x had been sent, but 1 bit error occurred
 Originally, y had been sent, but 2 bit errors occurred
 (Originally, some other frame had been sent, but at least 2 bit errors

occurred)
 Assuming that fewer errors have happened, a received frame s can be

mapped to a frame x!
 Hence, the error has been “corrected” – hopefully, correctly!

x s
1 bit difference 1 bit difference

u
1 bit difference

y

35Telematics I (SS 2023): 04 – Data Link Layer

Generalization – Required Hamming Distances

 The examples above can be generalized

 To detect d bit errors, a Hamming distance of d+1 in the set of legal
frames is required
 So that it is not possible to re-write a legal frame into another one using at

most d bits

 To correct d bit errors, a Hamming distance of 2d+1 in the set of legal
frames is required
 So that all frames that are at most d bits away from a legal frame are

illegal and are more than d bits away from any other legal frame

36Telematics I (SS 2023): 04 – Data Link Layer

Frame Sets – Code Books, Codes

 A terminology aspect:
 The set of legal frames S  {0,1}n is also called a code book or simply a

code
 The rate R of a code S is defined as:

 Rate characterizes the efficiency

 The distance  of a code S is defined as:
 Distance characterizes error

correction/detection capabilities

 A good code should have large distance and large rate – but arbitrary
combinations are not possible
 For details: Information theory, Claude Shannon

37Telematics I (SS 2023): 04 – Data Link Layer

How to Construct Error Correcting Codes

 Constructing good codes (e.g., highest rate at given error correction
needs) is difficult

 Simple example: use several parity bits
 Distribute the parity bits over the entire codeword to protect against burst

errors

38Telematics I (SS 2023): 04 – Data Link Layer

Content

 Link layer service and basic functions
 Framing
 Error control

 Redundancy
 Hamming distance & error correction
 Error detection – CRC
 Backward error correction – Acknowledgement

39Telematics I (SS 2023): 04 – Data Link Layer

How to Construct Error Detecting Codes – CRC

 Efficient error detection: Cyclic Redundancy Check (CRC)
 Gives rules how to compute redundancy bits and how to decide whether

a received bit pattern is correct
 Very high detection probability with few redundancy bits
 Can be efficiently implemented in hardware

 Basic operation based on polynomial arithmetic
 Bit string is interpreted as representing a polynomial
 Coefficients 0 and 1 are possible, interpreted modulo 2

40Telematics I (SS 2023): 04 – Data Link Layer

Modulo 2 Arithmetic

 With 0 and 1 as the only possible numbers (bits!), normal arithmetic is not
applicable

 Instead: look at modulo 2 arithmetic
 Rules:

 Addition modulo 2 Subtraction modulo 2 Multiplication modulo 2

 Example: 0110111011

 + 1101010110 = 1011101101

011

101

110

000

A + BBA

011

101

110

000

A - BBA

111

001

010

000

A  BBA

41Telematics I (SS 2023): 04 – Data Link Layer

Modulo 2 Division

 Division of two numbers is done just like normal division:
 Subtract the denominator (the bottom number) from the leading parts of the

enumerator (the top number)
 Proceed along the enumerator until its end is reached
 Remember that we are using modulo 2 subtraction.

 1101010110 / 1001 = 1100110
1001

 1000

 1001

 001101

 1001

 1001

 1001

 0

42Telematics I (SS 2023): 04 – Data Link Layer

Modulo 2 Division With Remainder

 After division, a remainder may result

 1101010101 / 1001 = 1100110 remainder 11
1001

 1000

 1001

 001101

 1001

 1000

 1001

 0011

43Telematics I (SS 2023): 04 – Data Link Layer

Polynomials Over Modulo 2 Arithmetic

 Define polynomials over modulo 2 arithmetic
 p(x) = an xn + … + a1 x1 + a0

 Coefficients ai and x  {0,1}
 Multiplication and addition is defined modulo 2

 Addition, subtraction, multiplication and division of polynomials is
defined in the usual way!

44Telematics I (SS 2023): 04 – Data Link Layer

Bit Strings and Polynomials Modulo 2

 Idea: Conceive of a string of bits as a representation of the coefficients
of a polynomial

 Bit string: bnbn-1…b1b0

Polynomial: bnxn + … + b1x1 + b0

 A bit string of (n+1) bits corresponds to a polynomial of degree n

 Operations on bit strings correspond to operations on polynomials and
vice versa
 Example: “Append k zeros”  “multiply by xk”

 This isomorphism allows us to divide bit strings!

45Telematics I (SS 2023): 04 – Data Link Layer

Use Polynomials to Compute Redundancy Bits – CRC

 Define a generator polynomial G(x) of degree g
 Known to both sender and receiver
 We will use g redundancy bits in the end

 Given: message/frame M, represented by polynomial M(x)
 Transmitter

 Compute remainder r(x) of division xgM(x) / G(x)
 Note: Remainder after division is of degree < g, fitting into g bits!

 Transmit T(x) = xgM(x) – r(x)
 Note: xgM(x) – r(x) is divisible without remainder by G(x)

 Receiver
 Receive m(x)
 Compute remainder of division of m(x) by G(x)

46Telematics I (SS 2023): 04 – Data Link Layer

CRC Transmission and Reception

 What happens in the channel after transmitting T(x)?
 No errors: T(x) arrives correctly at the receiver
 Bit errors occur: T(x) is modified by flipping some bits

 Equivalent to modifying some coefficients of the polynomial
 Equivalent to adding an error polynomial E(x)
 At the receiver, T(x) + E(x) arrives

 At the receiver
 Receive m(x)
 Compute remainder of division of m(x) by G(x)
 No errors: m(x) = T(x). Remainder is zero!
 Bit errors: m(x)/G(x) = (T(x) + E(x)) / G(x) = T(x)/G(x) + E(x)/G(x)

no remainder remainder
usually

not zero!

47Telematics I (SS 2023): 04 – Data Link Layer

CRC – Overview

Original frame M(x) Generator polynomial G(X)

Remainder r(x) of x
g
M(x) / G(x)

Transmit T(x) = x
g
M(x) - r(x)

Transmitter

Channel

Receiver

Add error polynomial E(x)

Receive m(x) = T(x) + E(x)

Compute remainder (T(x) + E(x))/G(x)

If remainder zero: No error If remainder  zero: error!

No error:
E(x) = 0

48Telematics I (SS 2023): 04 – Data Link Layer

Choice of G(x) Determines CRC Properties

 When is remainder of E(x) / G(x)  0?
 If G(x) divides E(x) without remainder, an error slips through!

 Single bit error: E(x) = xi for error at position i
 G(x) needs two or more terms to ensure that E(x) is not a multiple

of it

Two bit error: E(x) = xi + xj = xj (xi-j +1) for some i>j
 x must not divide G(x)
 G(x) must not divide (xk + 1) for all k up to, e.g., maximum frame

length

 Odd number of errors: E(x) has an odd number of terms
 E(x) will NOT have (x+1) as a factor
 Make (x+1) a factor of G(x) so that it cannot divide E(x)

 Using r check bits, all burst errors of length < r can be detected
(as well as “most” burst errors of length  r)

49Telematics I (SS 2023): 04 – Data Link Layer

 In practice, residual errors after CRC check are ignored
 But they may still happen!
 In particular, when bit errors are not independent, but bursty

CRC

CRC-8

CRC-10

CRC-12

CRC-16

CRC-
CCITT
CRC-32

G(x)

x8+x2+x1+1

x10+x9+x5+x4+x1+1

x12+x11+x3+x2+x1+1

x16+x15+x2+1

x16+x12+x5+1

x32+x26+x23+x22+x16+x12+x11+x10+
x8+x7+x5+x4+x2+x+1

Commonly Used CRC Generator Polynomials

50Telematics I (SS 2023): 04 – Data Link Layer

Content

 Link layer service and basic functions
 Framing
 Error control

 Redundancy
 Hamming distance & error correction
 Error detection – CRC
 Backward error correction – Acknowledgement

51Telematics I (SS 2023): 04 – Data Link Layer

How to Handle Detected Errors?

 Suppose the receiver detects an error
 Clearly, the received frame cannot be delivered to higher

layers/application

 ! Have to repair the error somehow
 Two principle approaches:

 Forward: sender sends redundant information so that receiver can correct
“a couple of” errors (requires advanced coding techniques not covered in
this course)

 Backward: sender sends redundant information so that receiver can detect
errors with high probability and upon detection of an error, packets are
retransmitted

 Backward correction protocols are generally known under the name
Automatic Repeat Request (ARQ), denoting three main variants:
 Send and wait
 Go-Back-N
 Selective reject (selective retransmission)

52Telematics I (SS 2023): 04 – Data Link Layer

A Simple, Simplex, Acknowledgement-Based Protocol

 Acknowledge to sender the receipt of a packet
 Sender waits for acknowledgement for a certain time
 If not received in time, packet is retransmitted

 First solution attempt:
 Sender Receiver

from_upper (p);
set_timer, to_lower(p)

timeout;
to_lower (p)

from_lower (ack);
cancel_timer

from_lower (p);
to_upper(p), to_lower(ack)

Note: to_lower, from_lower take
care of CRC (FEC, if desired)

53Telematics I (SS 2023): 04 – Data Link Layer

Protocol Analysis

 This protocol is nice and simple, but flawed in multiple ways
 What happens when the higher layer sends packets faster than the

acknowledgements come in (and when one is missing?)
 What happens if acknowledgements are lost?

 Need some repairs here…

54Telematics I (SS 2023): 04 – Data Link Layer

Acknowledgement-Based Protocol, Second Trial

 Cure one problem: Concentrate on one packet, only accept the next
packet from higher layer when previous one has been fully processed

 First solution attempt:

 Sender Receiver

from_lower (p);
to_upper(p),
to_lower (ack)

from_higher(p);
to_lower(p),

set_timer

timeout;
to_lower (p)

from_lower(ack);
Cancel_timer

from_higher(p);
to_higher (busy)

timeout;
error

55Telematics I (SS 2023): 04 – Data Link Layer

Does Second Version Work Correctly?

 It holds back the transmitter until packets are processed
 It implements flow control!

 Does it ensure that all packets arrive, in correct order?

Sender Receiver

Fr_hg
Packet

Ack
To_hg

Sender Receiver

Fr_hg
Packet

Ack
To_hg

Packet

56Telematics I (SS 2023): 04 – Data Link Layer

Does Second Version Work Correctly?

 Simple cases seem ok
 What if an acknowledgement is lost?

Sender Receiver

Fr_hg Packet

Ack
To_hg

Packet

Ack

To_hg
Same packet
is delivered
twice to the
receiver’s

higher layer!

57Telematics I (SS 2023): 04 – Data Link Layer

Summary of Second Version: Send and Wait

 Sender transmits one single packet:
 Sender sets a timeout
 Sender waits for acknowledgement (ACK)
 If no ACK is received within timeout, the sender retransmits the packet

 If a received packet is damaged, the receiver simply discards it

 Often, this scheme is also referred to as “Stop-and-Wait” as the
sender stops transmitting after each packet

 If the ACK packet is damaged,the sender will not recognize it:
 Sender will also retransmit the packet
 Receiver gets two copies of packet

58Telematics I (SS 2023): 04 – Data Link Layer

Overcoming the Problem of Send and Wait

 Sender cannot distinguish between a lost packet and a lost
acknowledgement
! Has to re-send the packet

 Receiver cannot distinguish between a new packet and a redundant
copy of an old packet

 ! Additional information is needed
 Put a sequence number in each packet, telling the receiver which

packet it is
 Sequence numbers as header information in each packet
 Simplest sequence number: a 0 or 1 !

 Needed in packet & acknowledgement
 In Ack, convention: send the sequence number of the last correctly

received packet back
 Also possible: send sequence number of next expected packet

59Telematics I (SS 2023): 04 – Data Link Layer

Acknowledgements & Sequence Numbers – 3rd Version

From_lower (0,p);
To_upper(p),

To_lower (ack0)

From_higher(p);
To_lower(0,p),

set_timer

timeout;
to_lower (0,p)

From_lower(ack0);
Cancel_timer

From_higher(p);
to_higher (busy)

Timeout;
error

Sender Receiver

From_higher(p);
To_lower(1,p),

set_timer

Timeout;
error

From_
higher(p);
to_higher

(busy)

F
ro

m
_l

ow
er

(a
ck

1)
;

C
an

ce
l_

tim
er

From_lower
(ack0); -

From_lower
(ack1); -

From_lower (1,p);
To_upper(p),

To_lower (ack1)

F
ro

m
_l

ow
er

 (
1,

p)
;

T
o

_l
ow

er
 (

ac
k1

)

F
rom

_low
e r (0,p);

To
_low

er (a ck0)

60Telematics I (SS 2023): 04 – Data Link Layer

Assessment of 3rd Version – Alternating Bit Protocol

 This 3rd version is a correct implementation of a reliable protocol over
a noisy channel
 Name: Alternating bit protocol
 Class of protocols where sender waits for a positive confirmation:

Automatic Repeat reQuest (ARQ) protocols
 It also implements a simple form of flow control

 Note the dual task of the acknowledgement packet
 It confirms to the sender that the receiver has obtained a certain

packet
 It is also the permit to send the next packet, stating that the

receiver has the capacity to handle it
 These two functions can be and are separate in other protocols!

61Telematics I (SS 2023): 04 – Data Link Layer

Tack

Alternating Bit Protocol – Efficiency

 Efficiency : depends on circumstances
 Defined as the ratio of time during which

the sender sends new information
(assuming an error-free channel in the
simplest case; error-considerations
make efficiency discussions difficult)

  = Tpacket / (Tpacket + d + Tack + d)

 Efficiency of simple alternating bit
protocol is low when delay is large
compared to data rate
 Recall bandwidth-delay product
 This will be further discussed in a

performance comparison later on...

Tim
e

d

Tpacket

d

62Telematics I (SS 2023): 04 – Data Link Layer

Tim
e

Improving Efficiency – Have More “Outstanding” Packets

 Inefficiency of alternating bit in large
bandwidth-delay situations is owing to
not exploiting “space” between packet
and acknowledgement

 Always sending packets results in high
efficiency
 More packets are “outstanding” = sent,

but not yet acknowledged
 “pipelining” of packets

 But not feasible with a single bit as
sequence number

 ! Need larger sequence number space!
 It also needs – ideally – some full-

duplex support
 How to live without full-duplex?

Sender is
always busy,

efficiency
is high

63Telematics I (SS 2023): 04 – Data Link Layer

Sliding Windows to Handle Multiple Outstanding Packets

 Introduce a larger sequence number space

 Say, n bits or 2n sequence numbers

 Not all of them may be allowed to be used simultaneously
 Recall alternating bit case: 2 sequence numbers, but only 1 may be “in

transit”

 Use sliding windows at both sender and receiver to handle these
numbers
 Sender: sending window – set of sequence numbers it is allowed to

send at given time
 Receiver: receiving window – set of sequence numbers it is allowed to

accept at given time
 May be fixed in size or adapt dynamically over time
 Window size corresponds to flow control

64Telematics I (SS 2023): 04 – Data Link Layer

Sliding Window – Simple Example

 A simple sliding window example for n=3, window size fixed to 1
 Sender here represents the currently unacknowledged sequence

numbers
 If maximum number of unacknowledged frames is known, this is

equivalent to sending window as defined on previous slide

a. Initially, before any
frame is sent

b. After first frame is
sent with seq. num
0

c. After first frame has
been received

d. After first
acknowledgement
has arrived

65Telematics I (SS 2023): 04 – Data Link Layer

Transmission Errors and Receiver Window Size

 Assumption:
 Link layer should deliver all frames correctly and in sequence
 Sender is pipelining packets to increase efficiency

 What happens if packets are lost (discarded by CRC)?
 With receiver window size 1, all following packets are discarded as

well!

66Telematics I (SS 2023): 04 – Data Link Layer

Go-Back-N

 With receiver window size 1, all frames following a lost frame cannot
be handled by receiver
 They are out of sequence
 They cannot be acknowledged, only ACKs for the last correctly

received packet can be sent

 Sender will timeout eventually
 Since all frames sent in the meantime, they have to be repeated

 ! Go-back N (frames)!
 Also called Sliding Window ARQ

 Assessment
 Quite wasteful of transmission resources
 But saves overhead at the receiver

67Telematics I (SS 2023): 04 – Data Link Layer

Selective Reject (Selective Repeat)

 Suppose we invest a bit into a receiver that can buffer packets
intermittently if some packets are missing
 Corresponds to receiver window larger than 1

 Resulting behavior:

 Receiver explicitly informs sender about missing packets using
Negative Acknowledgements

 Sender selectively repeats the missing frames
 Once missing frames arrive, they are all passed to the network

layer

68Telematics I (SS 2023): 04 – Data Link Layer

Duplex Operation and Piggybacking

 So far, simplex operation at the (upper) service interface was
assumed
 The receiver only sent back acknowledgements, possibly using

duplex operation of the lower layer service

 What happens when the upper service interface should support full-
duplex operation?
 One option: Use two separate channels for each direction –

wasteful
 Better: Interleave acknowledgement and data frames in a given

direction
 Best (and usual): Put the acknowledgement information for

direction A! B into the data frames for B ! A
 As part of B’s header – piggyback it

69Telematics I (SS 2023): 04 – Data Link Layer

Performance: Error-Free Send and Wait (1)

 In order to assess the performance differences of the different
protocols, let us compute the time for sending one packet and
receiving and processing the respective acknowledgement:
 T = Tframe + Tprop + Tproc + Tack + Tprop + Tproc

 Tframe = time to transmit frame

 Tprop = propagation time

 Tproc = processing time at station

 Tack = time to transmit ack

 Assume Tproc and Tack relatively small:

 T ≈ Tframe + 2Tprop

(Acknowledgement: figures in performance discussion according to a prior edition of [Sta04])

70Telematics I (SS 2023): 04 – Data Link Layer

Send and Wait Link Utilization

71Telematics I (SS 2023): 04 – Data Link Layer

Throughput = 1/T = 1/(Tframe + 2Tprop) frames/sec

Normalize by link data rate: 1/ Tframe frames/sec

S = 1/(Tframe + 2Tprop) = Tframe = 1

 1/ Tframe Tframe + 2Tprop 1 + 2a

 where a = Tprop / Tframe

Performance: Error-Free Send and Wait (2)

72Telematics I (SS 2023): 04 – Data Link Layer

Performance: Send-and-Wait ARQ with Errors

P = probability a single frame is in error

Nx = 1

 1 - P

 = average number of times each frame must be transmitted
due to errors

S = 1 = 1 - P

 Nx (1 + 2a) (1 + 2a)

73Telematics I (SS 2023): 04 – Data Link Layer

The Parameter a

a = propagation time = d/V = Rd

 transmission time L/R VL

where:
 d = distance between stations
 V = velocity of signal propagation
 L = length of frame in bits
 R = data rate on link in bits per sec

74Telematics I (SS 2023): 04 – Data Link Layer

Figure 11.8

75Telematics I (SS 2023): 04 – Data Link Layer

Some Values of a

76Telematics I (SS 2023): 04 – Data Link Layer

Performance of Send and Wait

77Telematics I (SS 2023): 04 – Data Link Layer

Performance: Error-Free Sliding Window ARQ (1)

 Let W be the number of frames that the sender can send, before he
has to wait for an acknowledgement
 It will be explained in a later lecture, why it is necessary to restrict the

sender from sending arbitrary number of packets

 Case 1: W ≥ 2a + 1
 Ack for frame 1 reaches A before A has exhausted its window

 Case 2: W < 2a +1
 A exhausts its window at t = W and cannot send additional frames until

t = 2a + 1

 Normalized
Throughput:

S =

 1 W ≥ 2a + 1

 W W < 2a +1
 2a + 1

78Telematics I (SS 2023): 04 – Data Link Layer

Figure 11.10

79Telematics I (SS 2023): 04 – Data Link Layer

Performance: Sliding Window Utilization as Function of a

80Telematics I (SS 2023): 04 – Data Link Layer

Performance: Normalized Throughput in Case of Errors

S =

 1 -P W ≥ 2a + 1

 W (1 - P) W < 2a +1
 2a + 1

 Selective Reject:

 Go-Back-N:

S =

 1 -P W ≥ 2a + 1
 1 + 2aP

 W (1 - P) W < 2a +1
 (2a + 1)(1 - P + WP)

81Telematics I (SS 2023): 04 – Data Link Layer

Performance: ARQ Utilization as Function of a

82Telematics I (SS 2023): 04 – Data Link Layer

Performance: ARQ Utilization as Function of W

83Telematics I (SS 2023): 04 – Data Link Layer

Conclusions

 Most problems in the link layer are due to errors
 Errors in synchronization require non-trivial framing functions
 Errors in transmission require mechanisms to correct them so as

to hide from higher layers
 Or to detect them and repair them afterwards

 Flow control is often tightly integrated with error control (and
sometimes also congestion control) in practical protocols
 But it is a separate function and can be realized separately as well

 Choice of error control scheme (and its parameters) has implications
on achievable performance

 Connection setup/teardown still has to be treated
 Necessary to initialize a joint context for sender and receiver (e.g.

initial sequence numbers, window size)

84Telematics I (SS 2023): 04 – Data Link Layer

Additional References

[Sta04] W. Stallings. Data and Computer Communications. 7th edition, Prentice Hall, 2004.

[Tan02] A. S. Tanenbaum. Computer Networks. 4th edition, Prentice Hall, 2002.

