

Telematics 10

Chapter 10 Network Security

Telematics 1 (SS 2023): 10 - Network Security

Network Security: Overview

- □ Introduction:
 - Threats in Communication Networks
 - Security Goals & Requirements
 - Safeguards
- □ Fundamentals of Security Technology:
 - Symmetric & asymmetric cryptography
 - Detection of message modifications
 - □ Cryptographic protocols
- □ Network Security Examples:
 - □ Integration of Security Services into Network Architectures
 - □ IPSec
 - □ Firewalls

What is a Threat in a Communication Network?

- Abstract Definition:
 - A threat in a communication network is any possible event or sequence of actions that might lead to a violation of one or more security goals
 - □ The actual realization of a threat is called an *attack*
- □ Examples:
 - A hacker breaking into a corporate computer
 - Disclosure of emails in transit
 - Someone changing financial accounting data
 - A hacker temporarily shutting down a website
 - Someone using services or ordering goods in the name of others
- □ What are security goals?
 - Security goals can be defined:
 - depending on the application environment, or
 - in a more general, technical way

Telematics 1 (SS 2023): 10 - Network Security

Security goals depending on the application environment 1

- □ Banking:
 - Protect against fraudulent or accidental modification of transactions
 - Identify retail transaction customers
 - Protect PINs from disclosure
 - Ensure customers privacy
- □ Electronic trading:
 - Assure source and integrity of transactions
 - Protect corporate privacy
 - Provide legally binding electronic signatures on transactions
- Government:
 - Protect against disclosure of sensitive information
 - □ Provide electronic signatures on government documents

4

- □ Public Telecommunication Providers:
 - Restrict access to administrative functions to authorized personnel
 - Protect against service interruptions
 - Protect subscribers privacy
- □ Corporate / Private Networks:
 - Protect corporate / individual privacy
 - Ensure message authenticity
- □ All Networks:
 - Prevent outside penetrations (who wants hackers?)
- □ Sometimes security goals are also called *security objectives*

Telematics 1 (SS 2023): 10 - Network Security

Security Goals Technically Defined

- Confidentiality:
 - Data transmitted or stored should only be revealed to an intended audience
 - □ Confidentiality of entities is also referred to as *anonymity*

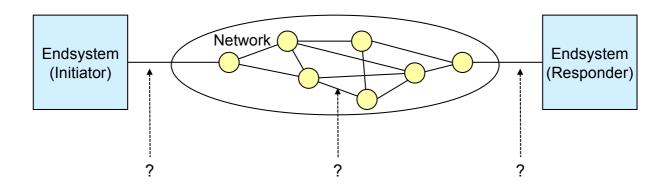
Data Integrity:

- It should be possible to detect any modification of data
- □ This requires to be able to identify the creator of some data
- □ Accountability:
 - It should be possible to identify the entity responsible for any communication event
- □ Availability:
 - Services should be available and function correctly
- Controlled Access:
 - Only authorized entities should be able to access certain services or information

Threats Technically Defined

- - Any action that aims to reduce the availability and / or correct functioning of services or systems

Telematics 1 (SS 2023): 10 - Network Security



	General Threats							
Technical Security Goals	Masquer- ade	Eaves- dropping	Authori- sation Violation	Loss or Mo- dification of (transmitted) information	Denial of Communi- cation acts	Forgery of Infor- mation	Sabotage (e.g. by overload)	
Confidentiality	х	х	х					
Data Integrity	х		х	х		х		
Accountability	х		х		x	х		
Availability	Х		х	х			x	
Controlled Access	х		х			х		

These threats are often combined in order to perform an attack!

Dimension 1: At which interface does the attack take place?

Security Analysis of Layered Protocol Architectures 2

? —→ Layer 5		Applicati	on Layer		Layer 5
? ──→ Layer 4		Transpo	rt Layer		Layer 4
? → Layer 3	Network Layer	Layer 3	Layer 3	Network Layer	Layer 3
? → Layer 2	Data Link Layer	Layer 2	Layer 2	Data Link Layer	Layer 2
? Layer 1	Physical Layer	Layer 1	Layer 1	Physical Layer	Layer 1

Dimension 2: In which layer does the attack take place?

Recommendations on the Message Level

- Passive attacks:
 - Eavesdropping
- Active attacks:
 - Delay of PDUs (Protocol Data Units)
 - Replay of PDUs
 - □ Deletion of PDUs
 - Modification of PDUs
 - Insertion of PDUs
- □ Successful launch of one of the above attacks requires:
 - There are no detectable side effects to other communications (connections / connectionless transmissions)
 - There are no side effects to other PDUs of the same connection / connectionless data transmission between the same entities
- A security analysis of a protocol architecture has to analyse these attacks according to the architecture's layers

Telematics 1 (SS 2023): 10 - Network Security

11

Recommended Reguards Against Information Security Threats 1

- Physical Security:
 - Locks or other physical access control
 - □ Tamper-proofing of sensitive equipment
 - Environmental controls
- □ Personnel Security:
 - Identification of position sensitivity
 - Employee screening processes
 - Security training and awareness
- Administrative Security:
 - Controlling import of foreign software
 - Procedures for investigating security breaches
 - Reviewing audit trails
 - Reviewing accountability controls
- □ Emanations Security:
 - Radio Frequency and other electromagnetic emanations controls

Safeguards Against Information Security Threats 2

- Dedia Security:
 - □ Safeguarding storage of information
 - Controlling marking, reproduction and destruction of information
 - Ensuring that media containing information are destroyed securely
 - Scanning media for viruses
- Lifecycle Controls:
 - Trusted system design, implementation, evaluation and endorsement
 - Programming standards and controls
 - Documentation controls
- Computer Security:
 - □ Protection of information while stored / processed in a computer system
 - Protection of the computing devices itself
- Communications Security: (the main subject of this lecture)
 - Protection of information during transport from one system to another
 - Protection of the communication infrastructure itself

Telematics 1 (SS 2023): 10 - Network Security

Communications Security: Some Terminology

- □ Security Service:
 - □ An abstract service that seeks to ensure a specific security property
 - A security service can be realised with the help of cryptographic algorithms and protocols as well as with conventional means:
 - One can keep an electronic document on a floppy disk confidential by storing it on the disk in an encrypted format as well as locking away the disk in a safe
 - Usually a combination of cryptographic and other means is most effective
- **Cryptographic Algorithm:**
 - A mathematical transformation of input data (e.g. data, key) to output data
 - □ Cryptographic algorithms are used in cryptographic protocols
- Cryptographic Protocol:
 - A series of steps and message exchanges between multiple entities in order to achieve a specific security objective

- Authentication
 - The most fundamental security service which ensures, that an entity has in fact the identity it claims to have

□ Integrity

- In some kind, the "small brother" of the authentication service, as it ensures, that data created by specific entities may not be modified without detection
- □ Confidentiality
 - □ The most popular security service, ensuring secrecy of protected data
- □ Access Control
 - Controls that each identity accesses only those services and information it is entitled to
- □ Non Repudiation
 - Protects against that entities participating in a communication exchange can later falsely deny that the exchange occurred

Telematics 1 (SS 2023): 10 - Network Security

Cryptology – Definition and Terminology

□ Cryptology:

- Science concerned with communications in secure and usually secret form
- □ The term is derived from the Greek *kryptós* (hidden) and *lógos* (word)
- Cryptology encompasses:
 - Cryptography (gráphein = to write): the study of the principles and techniques by which information can be concealed in *ciphertext* and later revealed by legitimate users employing a secret key
 - Cryptanalysis (analýein = to loosen, to untie): the science (and art) of recovering information from ciphers without knowledge of the key

□ Cipher:

- □ Method of transforming a message (plaintext) to conceal its meaning
- □ Also used as synonym for the concealed *ciphertext*
- Ciphers are one class of cryptographic algorithms
- □ The transformation usually takes the message and a (secret) key as input

(Source: Encyclopaedia Britannica)

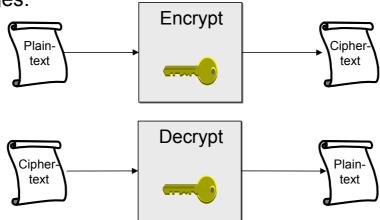
- For network security two main applications of cryptographic algorithms are of principal interest:
 - Encryption of data: transforms plaintext data into ciphertext in order to conceal its' meaning
 - Signing of data: computes a check value or digital signature to a given plain- or ciphertext, that can be verified by some or all entities being able to access the signed data
 - Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- □ Principal categories of cryptographic algorithms:
 - Symmetric cryptography using 1 key for en-/decryption or signing/checking
 - Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
 - Cryptographic hash functions using 0 keys (the "key" is not a separate input but "appended" to or "mixed" with the data).

Telematics 1 (SS 2023): 10 - Network Security

17

Important Properties of Encryption Algorithms

Consider, a sender is encrypting plaintext messages P_1 , P_2 , ... to ciphertext messages C_1 , C_2 , ...


Then the following properties of the encryption algorithm are of special interest:

- Error propagation characterizes the effects of bit-errors during transmission of ciphertext to reconstructed plaintext P₁', P₂', ...
 - Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit
- Synchronization characterizes the effects of lost ciphertext data units to the reconstructed plaintext
 - Some encryption algorithms can not recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages
 - Other algorithms do automatically re-synchronize after 0 to n (n depending on the algorithm) ciphertext bits

- □ General description:
 - □ The same key $K_{A,B}$ is used for enciphering and deciphering of messages:


□ Notation:

- □ If *P* denotes the plaintext message $E(K_{A,B}, P)$ denotes the ciphertext and it holds $D(K_{A,B}, E(K_{A,B}, P)) = P$
- □ Alternatively we sometimes write $\{P\}_{K_{A,B}}$ for $E(K_{A,B}, P)$
- □ Examples: DES, 3DES, IDEA, AES, RC4, ...

Telematics 1 (SS 2023): 10 - Network Security

Asymmetric Cryptography (1)

- General idea:
 - \Box Use two different keys -K and +K for encryption and decryption
 - □ Given a random ciphertext *c* = *E*(+*K*, *m*) and +*K* it should be infeasible to compute *m* = *D*(-*K*, *c*) = *D*(-*K*, *E*(+*K*, *m*))
 - This implies that it should be infeasible to compute -*K* when given +*K*
 - \Box The key -*K* is only known to one entity A and is called A's *private key* -*K*_A
 - □ The key +K can be publicly announced and is called A's *public key* + K_A

Asymmetric Cryptography (2)

- □ Applications:
 - □ Encryption:
 - If B encrypts a message with A's public key +K_A, he can be sure that only A can decrypt it using -K_A
 - Signing:
 - If A encrypts a message with his own private key -K_A, everyone can verify this signature by decrypting it with A's public key +K_A
 - □ Attention:
 - It is crucial, that everyone can verify that he really knows A's public key and not the key of an adversary!
- Practical considerations:
 - Asymmetric cryptographic operations are about magnitudes slower than symmetric ones
 - □ Therefore, they are often not used for encrypting / signing bulk data
 - Symmetric techniques are used to encrypt / compute a cryptographic hash value and asymmetric cryptography is just used to encrypt a key / hash value

Telematics 1 (SS 2023): 10 - Network Security

Detection of Message Modifications

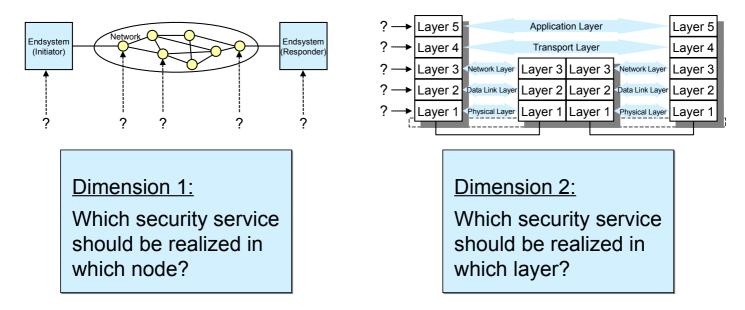
Motivation:

- An error detection code over a message enables the receiver to check if a message was altered during transmission
 - Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)
- This leads to the wish of having a similar value called *modification check* value that allows to check, if a message has been modified during transmission
- Realization of modification check values:
 - Cryptographic Hash Functions:
 - These are either combined with asymmetric cryptography to obtain a signed modification detection code (MDC) or already include a shared secret mixed with the message
 - Message Authentication Codes:
 - Common message authentication codes (MAC) are constructed from a symmetric block cipher

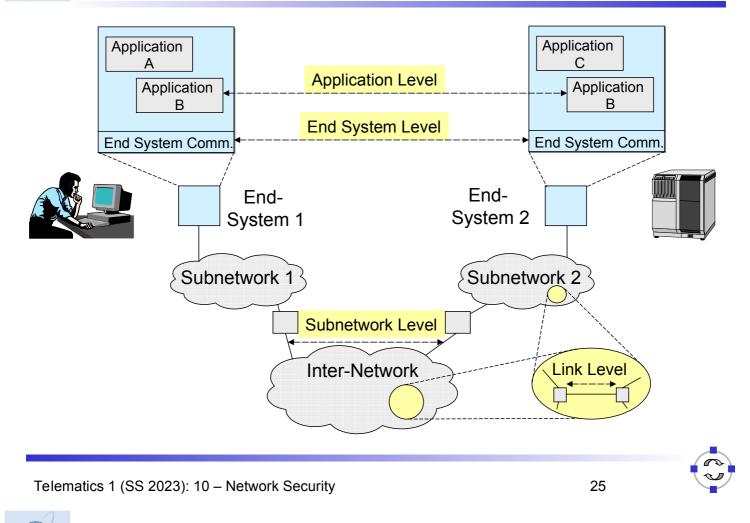
Definition:

A *cryptographic protocol* is defined as a series of steps and message exchanges between multiple entities in order to achieve a specific security objective

- □ Applications of cryptographic protocols:
 - □ Key exchange
 - □ Authentication
 - Data origin authentication: the security service, that enables a receiver to verify by whom a message was created and that it has not been modified
 - Entity authentication: the security service, that enables communication partners to verify the identity of their peer entities
 - □ Combined authentication and key exchange


Telematics 1 (SS 2023): 10 - Network Security

Security in Networks: What to do where?


Analogous to the methodology of security analysis, there are two dimensions guiding the integration of security services into communications architectures:

A Pragmatic Model for Secured & Networked Computing (1)

A Pragmatic Model for Secured & Networked Computing (2)

- □ Application:
 - A piece of software that accomplishes some specific task, e.g. electronic email, web service, word processing, data storage, etc.

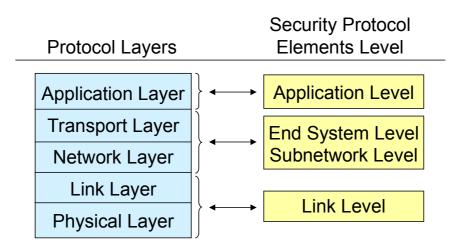
□ End System:

- One piece of equipment, anywhere in the range from personal computer to server to mainframe computer
- □ For security purposes one end system usually has one policy authority

□ Subnetwork:

- A collection of communication facilities being under the control of one administrative organization, e.g. a LAN, campus network, WAN, etc.
- □ For security purposes one subnetwork usually has one policy authority
- □ Inter-Network:
 - A collection of inter-connected subnetworks
 - In general, the subnets connected in an inter-network have different policy authorities

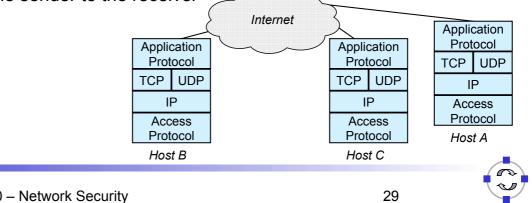
A Pragmatic Model for Secured & Networked Computing (3)


- There are four levels at which distinct requirements for security protocol elements arise:
 - □ Application level:

TELEMATIK Rechnernetze

- Security protocol elements that are application dependent
- □ End system level:
 - Provision of protection on an end system to end system basis
- Subnetwork level:
 - Provision of protection over a subnetwork or an inter-network which is considered less secure than other parts of the network environment
- Link level:
 - Provision of protection internal to a subnetwork, e.g. over a link which is considered less trusted than other parts of the subnetwork environment

Telematics 1 (SS 2023): 10 - Network Security



- The relations between protocol layers and the protocol element security requirements levels are not one-to-one:
 - Security mechanisms for fulfilling both the end system and the subnetwork level requirements can be either realized in the transport and / or the network layer
 - □ Link level requirements can be met by integrating security mechanisms or using "special functions" of the either the link layer and / or the physical layer

Security Problems of the Internet Protocol

- □ When an entity receives an IP packet, it has no assurance of:
 - Data origin authentication / data integrity:
 - The packet has actually been send by the entity which is referenced by the source address of the packet
 - The packet contains the original content the sender placed into it, so that it has not been modified during transport
 - The receiving entity is in fact the entity to which the sender wanted to send the packet
 - Confidentiality:
 - The original data was not inspected by a third party while the packet was sent from the sender to the receiver

Telematics 1 (SS 2023): 10 - Network Security

Security Objectives of IPSec

- □ IPSec aims to ensure the following security objectives:
 - Data origin authentication / connectionless data integrity:
 - It is not possible to send an IP datagram with neither a masqueraded IP source nor destination address without the receiver being able to detect this
 - It is not possible to modify an IP datagram in transit, without the receiver being able to detect the modification
 - Replay protection: it is not possible to later replay a recorded IP packet without the receiver being able to detect this
 - Confidentiality:
 - It is not possible to eavesdrop on the content of IP datagrams
 - Limited traffic flow confidentiality
- □ Security policy:
 - Sender, receiver and intermediate nodes can determine the required protection for an IP packet according to a local security policy
 - Intermediate nodes and the receiver will drop IP packets that do not meet these requirements

Rectinementer IPSec: Security Association

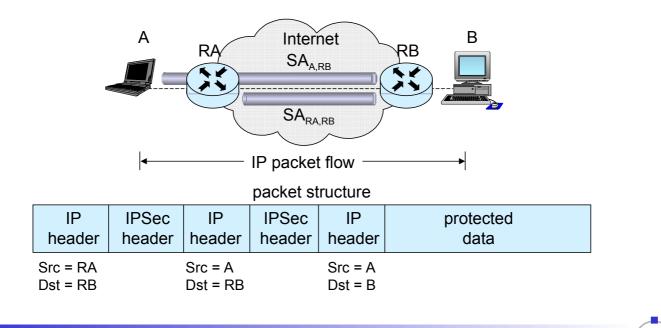
- A security association (SA) is a simplex "connection" that provides security services to the traffic carried by it
 - Security services are provided to one SA by the use of either AH or ESP, but not both
 - For bi-directional communication two security associations are needed
 - An SA is uniquely identified by a triple consisting of a security parameter index (SPI), an IP destination address, and a security protocol identifier (AH / ESP)
 - □ An SA can be set up between the following peers:
 - Host \leftrightarrow Host
 - Host ↔ Gateway (or vice versa)
 - Gateway ↔ Gateway
 - □ There are two conceptual databases associated with SAs:
 - The security policy database (SPD) specifies, what security services are to be provided to which IP packets and in what fashion
 - The security association database (SADB)

Telematics 1 (SS 2023): 10 - Network Security

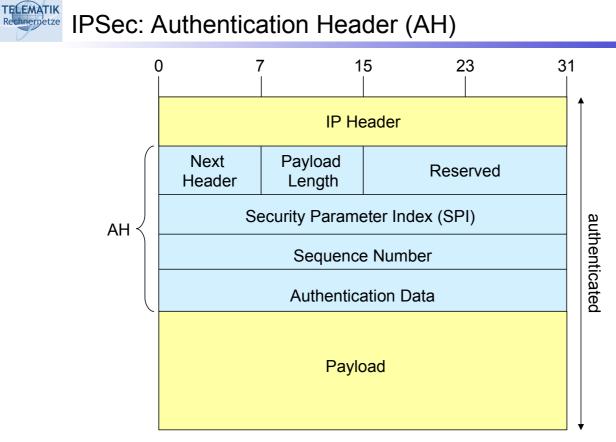
IPSec: Protocol Modes

- □ Protocol modes An SA is always of one of the following types:
 - □ *Transport mode* can only be used between end-points of a communication:
 - host ↔ host, or
 - host ↔ gateway, if the gateway is a communication end-point
 - □ *Tunnel mode* can be used with arbitrary peers
- □ The difference between the two modes is, that:
 - □ Transport mode just adds a security specific header (+ potential trailer):

IP	IPSec	protected
header	header	data

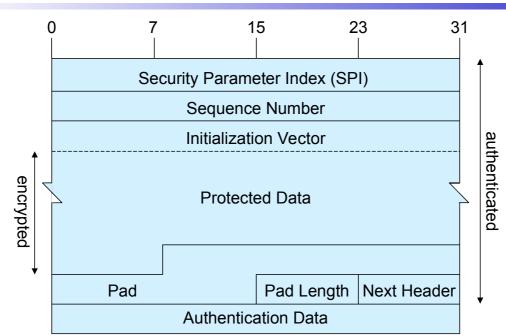

Tunnel mode encapsulates IP packets:

IP	IPSec	IP	protected
header	header	header	data


Encapsulation of IP packets allows for a gateway protecting traffic on behalf of other entities (e.g. hosts of a subnetwork, etc.)

- Security associations may be nested:
 - Example: Host A and gateway RB perform data origin authentication and gateways RA and RB perform subnetwork-to-subnetwork confidentiality

Telematics 1 (SS 2023): 10 - Network Security


In tunnel mode the payload constitutes a complete IP packet

IPSec: Encapsulating Security Payload (ESP)

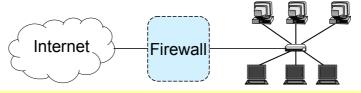
TELEMATIK

hnernetze

- □ The ESP header immediately follows an IP header or an AH header
- □ The next-header field of the preceding header indicates "50" for ESP

Telematics 1 (SS 2023): 10 - Network Security 35 TELEMATIK **IPSec: Establishment of Security Associations**

- Prior to any packet being protected by IPSec, an SA has to be established between the two "cryptographic endpoints" providing the protection
- □ SA establishment can be realized:
 - □ Manually, by proprietary methods of systems management
 - Dynamically, by a standardized authentication & key management protocol
 - Manual establishment is supposed to be used only in very restricted configurations (e.g. between two encrypting firewalls of a VPN) and during a transition phase
- □ IPSec defines a standardized method for SA establishment:
 - □ Internet Security Association and Key Management Protocol (ISAKMP)
 - Defines protocol formats and procedures for security negotiation
 - Internet Key Exchange (IKE)
 - Defines IPSec's standard authentication and key exchange protocol



Internet Firewalls

TELEMATIK

Rechnernetze

- In building construction, a firewall is designed to keep a fire from spreading from one part of the building to another
- A network firewall, however, can be better compared to a moat of a medieval castle:
 - □ It restricts people to entering at one carefully controlled point
 - □ It prevents attackers from getting close to other defenses
 - □ It restricts people to leaving at one carefully controlled point
- Usually, a network firewall is installed at a point where the protected subnetwork is connected to a less trusted network:
 - □ Example: Connection of a corporate local area network to the Internet

□ Basically firewalls realize access control on the subnetwork level

- Girewall:
 - A component or a set of components that restricts access between a protected network and the Internet or between other sets of networks
- Decket Filtering:
 - The action a device takes to selectively control the flow of data to and from a network
 - Packet filtering is an important technique to implement access control on the subnetwork-level for packet oriented networks, e.g. the Internet
 - □ A synonym for packet filtering is *screening*

Bastion Host:

- A computer that must be highly secured because it is more vulnerable to attacks than other hosts on a subnetwork
- A bastion host in a firewall is usually the main point of contact for user processes of hosts of internal networks with processes of external hosts

Dual homed host:

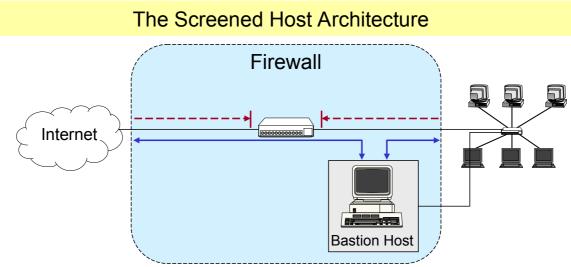
□ A general purpose computer with at least two network interfaces

Firewalls: Terminology (2)

□ Proxy:

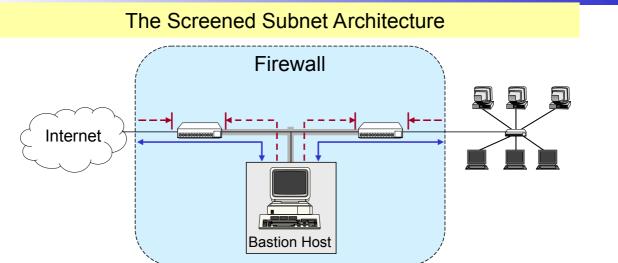
- □ A program that deals with external servers on behalf of internal clients
- Proxies relay approved client requests to real servers and also relay the servers answers back to the clients
- If a proxy interprets and understands the commands of an application protocol it is called an *application level proxy*, if it just passes the PDUs between the client and the server it is called a *circuit level proxy*
- □ Network Address Translation (NAT):
 - A procedure by which a router changes data in packets to modify the network addresses
 - This allows to conceal the internal network addresses (even though NAT is not actually a security technique)
- Perimeter Network:
 - A subnetwork added between an external and an internal network, in order to provide an additional layer of security
 - □ A synonym for perimeter network is *de-militarized zone (DMZ)*

Telematics 1 (SS 2023): 10 - Network Security



Firewalls: Architectures (1)

- □ The most simple architecture just consists of a packet filtering router
- □ It can be either realized with:
 - A standard workstation (e.g. Linux PC) with at least two network interfaces plus routing and filtering software
 - □ A dedicated router device, which usually also offers filtering capabilities



- □ The packet filter:
 - □ Allows permitted IP traffic between the screened host and the Internet
 - Blocks all direct traffic between other internal hosts and the Internet
- □ The screened host provides proxy services:
 - Despite partial protection by the packet filter the screened host acts as a bastion host

Telematics 1 (SS 2023): 10 - Network Security

- □ A perimeter network is created between two packet filters
- The inner packet filter serves for additional protection in case the bastion host is ever compromised:
 - For example, this avoids a compromised bastion host to eavesdrop on internal traffic
- The perimeter network is also a good place to host a publicly accessible information server, e.g. a www-server

Firewalls: Packet Filtering

□ What can be done with packet filtering?

- Theoretically speaking everything, as all information exchanged in a communication relation is transported via packets
- □ In practice, however, the following observations serve as a guide:
 - Operations that require quite detailed knowledge of higher layer protocols or prolonged tracking of past events are easier to realize in proxy systems
 - Operations that are simple but need to be done fast and on individual packets are easier to do in packet filtering systems
- Basic packet filtering enables to control data transfer based on:
 - Source IP Address
 - Destination IP Address
 - Transport protocol
 - Source and destination application port
 - □ Potentially, specific protocol flags (e.g. TCP's ACK- and SYN-flag)
 - □ The network interface a packet has been received on

Telematics 1 (SS 2023): 10 - Network Security

TELEMATIK

Rechnernetze

Firewalls: An Example Packet Filtering Ruleset

Rule	Direction	Src. Addr.	Dest. Addr.	Protocol	Src. Port	Dest. Port	ACK	Action
А	Inbound	External	Bastion	ТСР	>1023	25	Any	Permit
В	Outbound	Bastion	External	ТСР	25	>1023	Yes	Permit
С	Outbound	Bastion	External	ТСР	>1023	25	Any	Permit
D	Inbound	External	Bastion	ТСР	25	>1023	Yes	Permit
Е	Either	Any	Any	Any	Any	Any	Any	Deny

- This ruleset specifies, that incoming and outgoing email is the only allowed traffic into and out of a protected network:
 - Email is relayed between two servers by transferring it to an SMTPdaemon on the target server (server port 25, client port > 1023)
 - Rule A allows incoming email to flow to the bastion host and rule B allows the bastion hosts acknowledgements to exit the network
 - Rules C and D are analogous for outgoing email
 - □ Rule E denies all other traffic

Recommendative If you would like some more...

- □ There is a whole course on network security during the fall term:
 - 1. Introduction & Terminology
 - 2. Basics of cryptography
 - 3. Symmetric cryptography
 - 4. Asymmetric cryptography
 - 5. Modification check values
 - 6. Random number generation
 - 7. Cryptographic protocols
 - 8. Secure Group Communications
 - 9. Access control
 - 10. Integrating security services into communication architectures

- 11. Security protocols of the data link layer
- 12. The IPSec architecture for the Internet Protocol
- 13. Security protocols of the transport layer
- 14. Security aspects of mobile communications
- 15. Security of wireless local area networks
- 16. Security of GSM and UMTS networks

45

http://www.tu-ilmenau.de/fakia/networksecurity.html

Telematics 1 (SS 2023): 10 - Network Security

Network Security Bibliography

[Amo94]	E. G. Amorosi. <i>Fundamentals of Computer Security Technology.</i> Prentice Hall. 1994.
[Cha95]	Brent Chapman and Elizabeth Zwicky. <i>Building Internet Firewalls.</i> O'Reilly, 1995.
[For94b]	Warwick Ford. Computer Communications Security - Principles, Standard Protocols and Techniques. Prentice Hall. 1994.
[Gar96]	Simson Garfinkel and Gene Spafford. <i>Practical Internet & Unix Security.</i> O'Reilly, 1996.
[Men97a]	A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone. <i>Handbook of Applied Cryptography.</i> CRC Press Series on Discrete Mathematics and Its Applications, Hardcover, 816 pages, CRC Press, 1997.
[Sch96]	B. Schneier. <i>Applied Cryptography Second Edition: Protocols, Algorithms and Source Code in C.</i> John Wiley & Sons, 1996.
[Sch03]	G. Schäfer, M. Roßberg. Netzsicherheit. 2. aktualisierte und erweiterte Auflage, dpunkt.verlag, 646 Seiten, 49.90 Euro, 2014.
[Sta98a]	W. Stallings. <i>Cryptography and Network Security: Principles and Practice.</i> Hardcover, 569 pages, Prentice Hall, 2nd ed, 1998.
[Sti95a]	D. R. Stinson. <i>Cryptography: Theory and Practice (Discrete Mathematics and Its Applications)</i> . Hardcover, 448 pages, CRC Press, 1995.

