
1Telematics I (SS 2024): 04 – Data Link Layer

Telematics I

Chapter 4
Data Link Layer

 Link layer service and basic functions
 Framing
 Error control

2Telematics I (SS 2024): 04 – Data Link Layer

Goals

 Understand the main service provided by the link layer
 Communication between two directly connected nodes
 Framing of a physical bit stream into a structure of frames/packets
 Error control: Detection and correction
 Connection setup and release
 Acknowledgement-based protocols
 Flow control

 Some ideas about how to use extended finite state machines to
specify communication protocols

3Telematics I (SS 2024): 04 – Data Link Layer

The Link Layer’s Service

 Link layer sits on top of the physical layer
 Can thus use a bit stream transmission service
 But: this service might have incorrect bits

 Expectations of the higher layer (networking layer)
 Wants to use either a packet service or, sometimes, a bit stream

service (rather unusual)
 Does not really want to be bothered by errors
 Does not really want to care about issues at the other end

Physical layer

Network layer Network layer

Link layer Link layer
Bits

Packets

4Telematics I (SS 2024): 04 – Data Link Layer

Options for Link Layer Service

 Reliable (dependable) service – yes/no
 Reliability has many facets

 A delivered packet should have the same content as the
transmitted packet

 All packets have to be delivered eventually
 Packets have to be delivered in order

 Error control may be required
 Forward error correction, or backward error correction with

acknowledgements and retransmissions
 Connection-oriented – yes/no

 Should a context be setup to/with the peer entity?
 Packet or bitstream abstraction

 Usually in computer networks: packets
 What about a maximal packet length?

5Telematics I (SS 2024): 04 – Data Link Layer

Distinguish: Service Versus Implementation

 Note the difference between service and implementation

 One example:
 Connection-less & reliable service required by the network layer
 Link layer decides to use connections internally as a means to

help with error control

 What about other combinations?

6Telematics I (SS 2024): 04 – Data Link Layer

Basic Link Layer Functions – Framing

 How to turn a physical layer’s bit stream abstraction into individual,
well demarcated frames
 Usually necessary to provide error control – not obvious how to do

that over a bit stream abstraction
 Frames and packets are really the same thing, only a convention

to talk about “frames” in the link layer context
 In addition: Fragmentation & reassembly if network layer packets are

longer than link layer packets

Physical layer

Network layer Network layer

Link layer

Bits

Packets

Framing

Link layer

Framing
Frames

7Telematics I (SS 2024): 04 – Data Link Layer

Basic Link Layer Functions – Error Control

 If desired by the network layer – usually is
 Usually build on top of frames
 Error detection – are there incorrect bits?
 Error correction – repair any mistakes that have happened?

 Forward error correction – invest effort before error happened;
try to hide it from higher layers

 Backward error correction – invest effort after error happened;
try to repair it

Error control

Error detection Error correction

Forward error
correction

Backward error
correction

8Telematics I (SS 2024): 04 – Data Link Layer

Basic Link Layer Functions – Connection Setup

 Connections (= common context) useful for many purposes
 Connections = common context, e.g. application context
 Error control – several error control schemes rely on a common

context between sender and receiver
 Don’t mix up connections with circuits = (switched) common medium

 Question: how to set up and terminate a connection? What state
information is required?
 Especially: if used on top of frames / packets?
 A “virtual” connection, really, since there may be no end-to-end circuit

switched
 Example for a connection-oriented service on top of packet switching

 Problem reappears later in the transport layer again, with some
additional complications – treated there!

9Telematics I (SS 2024): 04 – Data Link Layer

Basic Link Layer Functions – Flow Control

 What happens with a fast sender and a slow receiver?
 Sender will overrun buffers faster than the receiver can process

the packets in that buffer
 Lots of transmission effort is wasted in this case

 Necessary to control the amount of frames a link layer sends per unit
time, adapt to receiver’s capabilities

Thirsty?
Drink!

10Telematics I (SS 2024): 04 – Data Link Layer

Content

 Link layer service and basic functions
 Framing
 Error control

11Telematics I (SS 2024): 04 – Data Link Layer

Framing

 How to turn a bit stream into a sequence of frames?
 More precisely: how does a receiver know when a frame starts and

when it finishes?

0110010101110101110010100010101010101010101100010
Delivered

by physical
layer

Start of frame End of frame

 Note: Physical layer might try to detect and deliver bits when the
sender is not actually transmitting anything
 Receiver still tries to get any information from the physical medium

12Telematics I (SS 2024): 04 – Data Link Layer

Framing by Character Counting

 Idea: Announce the number of bits (bytes, characters) in a frame to
the receiver
 Put this information into the frame
 Has to be at the beginning of a frame – a frame header

 Problem: What happens if the count information itself is damaged
during transmission?
 Receiver will loose frame synchronization and produce different sequence

of frames than original one

13Telematics I (SS 2024): 04 – Data Link Layer

Basic Technique: Put Control Data into a Header

 Albeit “character count” is not a good framing technique, it illustrates
an important technique: headers
 If sender has to communicate administrative or control data to receiver, it

can be added to the payload, the actual packet content
 Usually at the start of the packet; sometimes at the end (a trailer)
 Receiver uses headers to learn about sender’s intention
 Same thing works for packet headers as well

14Telematics I (SS 2024): 04 – Data Link Layer

Framing by Flag Bytes/Byte stuffing

 Use dedicated flag bytes to demarcate start/stop of a frame

 What happens when the flag byte appears in the payload?
 Escape it with a special control character – byte stuffing
 If that appears, escape it as well

15Telematics I (SS 2024): 04 – Data Link Layer

Framing by Flag Bit Patterns / Bit Stuffing

 Byte stuffing is closely tied to characters/bytes as fundamental unit – often
not appropriate

 Use same idea, but stick with the bit stream abstraction of the physical
layer
 Use a bit pattern instead of a flag byte – often, 01111110

 Actually, it IS a flag byte
 Use bit stuffing

 Whenever sender sends five 1’s in a row, it automatically adds a zero
into the bit stream – except in the flag pattern

 Receiver throws away (“destuffs”) any 0 after five 1’s

Original payload

After bit stuffing

After de-stuffing

16Telematics I (SS 2024): 04 – Data Link Layer

Framing by Coding Violations

 Suppose the physical layer’s encoding rules “bits ! signals” still provide
some options to play with
 Not all possible combinations that the physical layer can express

are used to express bit patterns
 Example: Manchester encoding – only low/high and high/low is

used
 When “violating” these encoding rules, data can be transmitted – e.g.,

the start and end of a frame
 Example: Manchester – use high/high or low/low

 This drops the self-clocking feature of Manchester, but clock
synchronization is sufficiently good to hold for a short while

 Powerful and simple scheme – used e.g. by Ethernet networks
 But raises questions regarding bandwidth efficiency

17Telematics I (SS 2024): 04 – Data Link Layer

Content

 Link layer service and basic functions
 Framing
 Error control

 Redundancy
 Hamming distance & error correction
 Error detection – CRC
 Backward error correction – Acknowledgement

18Telematics I (SS 2024): 04 – Data Link Layer

Error Control

 Two basic aspects:
 Detect the presence of errors (incorrectly received bits) in a frame
 Correct errors in frames

 Either one is possible without the other one
 Detect, but do not correct: Simply drop a frame; pretend that it never

has arrived at the receiver
 Higher layers can take corrective measures, if they so desire

 Correct, but do not detect: Try to correct as many errors as possible
but do not care if there are some remaining errors present
 Only feasible if application is not (too much) bothered by errors
 Example: voice applications can tolerate some degree of bits errors

without loosing too much voice quality
 Justifiable, since even with detection the residual error probability is

always > 0

19Telematics I (SS 2024): 04 – Data Link Layer

Error Detection

EDC = Error Detection and Correction bits (redundancy)
D = Data protected by error checking, may include header fields
 Error detection is not 100% reliable:

 Protocol may miss some errors, but rarely
 Larger EDC field yields better detection and correction

20Telematics I (SS 2024): 04 – Data Link Layer

Error Control – Redundancy

 Any form of error control requires redundancy in the frames
 Without redundancy

 A frame of length m can represent 2
m
 different frames

 All of them are legal!
 How could a receiver possibly decide that one legal frame is not the

one that had originally been transmitted?
 Not possible!

000….000
000….001

111….110
111….111

Set of all
frames

Set of all
legal frames

21Telematics I (SS 2024): 04 – Data Link Layer

Error Control – Redundancy

 Core idea: Declare some of the possible messages illegal!
 Still need to be able to express 2

m
 legal frames

 ! More than 2m possible frames are required
 ! More than m bits are required in a frame
 Use frames with n > m total length
 r = m - n are the redundant bits (typically, as header or trailer)

 Having more possible than legal frames allows receiver to detect
illegal frames

000….000000
000….001010

111….110110
111….111011

Set of all
possible
frames

Set of all legal
frames

111….111101

111….111111000….000010

000….000011

22Telematics I (SS 2024): 04 – Data Link Layer

How Do Illegal Messages Help With Detecting Bit Errors?

 Transmitter only sends legal frame
 Physical medium/receiver might corrupt some bits
 Hope: A legal frame is only corrupted into an illegal message

 But one legal frame is never turned into another legal frame
 Necessary to realize this hope:

 Physical medium only alters up to a certain number of bits (by assumption)
– say, k bits per frame

 This is only an assumption!
 How does it relate to the BER or the SNR?

 Legal messages are sufficiently different so that it is not possible to
change one legal frame into another by altering at most k bits

23Telematics I (SS 2024): 04 – Data Link Layer

Altering Frames by Changing Bits

 Suppose the following frames are the only legal bit patterns: 0000,
0011, 1100, 1111

0000 0011

1100 1111

1000 0100

0010

0001

10110111

1110

1101

uvxy – legal frame abcd – illegal frame

Lines connect frames
that only differ in a single
bit = that can be
converted into each
other by flipping one bit

Here: No single bit error
can convert one legal

frame into another one!

0101, 0110,
1001, 1010

24Telematics I (SS 2024): 04 – Data Link Layer

Simple Redundancy Examples: Parity (1)

 A simple rule to construct 1 redundant bit (i.e., n = m + 1): Parity
 Odd parity: Add one bit, choose its value such that the number of 1’s in the

entire message is odd
 Even parity: Add one bit, choose its value such that the number of 1’s in

the entire message is even

 Example:
 Original message without redundancy: 01101011001
 Odd parity: 011010110011
 Even parity: 011010110010

25Telematics I (SS 2024): 04 – Data Link Layer

 Parity bit examples:
 Send 1 0 1 1 0 0 0 in even parity

 There are three 1’s in this
 To make this even parity a 1 is added to the end (total four 1’s)
 1 0 1 1 0 0 0 1 is transmitted by the sending computer

 Send 1 0 1 1 0 1 0 in even parity
 There are four 1’s in this
 To keep this even parity a 0 is added to the end
 1 0 1 1 0 1 0 0 is transmitted by the sending computer

 The destination computer always expects an even number of 1’s:
 If there is there is not an even number of 1’s arriving, then the

frame has been corrupted

Simple Redundancy Examples: Parity (2)

26Telematics I (SS 2024): 04 – Data Link Layer

 Parity bit problems:
 Even and odd parity works well to detect single bit errors
 However, it cannot detect all possible errors
 For example, consider when transmission errors cause two bits to be

changed:
 If 1 0 0 1 1 0 1 0 is sent but two bits get changed during

transmission
 The destination computer receives 0 1 0 1 1 0 1 0 and does not

realise that there were errors during transmission.

 To detect more errors (i.e. even number of bit errors), a checksum
or a cyclic redundancy check is needed

Simple Redundancy Examples: Parity (3)

27Telematics I (SS 2024): 04 – Data Link Layer

 Checksums:
 To compute a checksum, the sending computer treats the data as a

sequence of binary integers and computes their sum.
 Note that the Data Link Layer treats the data as a sequence of integers

for the purposes of computing a checksum.
 For example, to compute a checksum on the message “Hello World.”
 Two characters are grouped together as a 16 bit number and added

together to produce the checksum (adding potential carry-over at the
end again like in computation of one-complement)

48 65 6C 6C 6F 20 77 6F 72 6C 64 2E

 H e l l o W o r l d .

 4865 + 6C6C + 6F20 + 776F + 726C + 642E = 71FC
 “Hello World.” is sent followed by 71FC

Simple Redundancy Examples: Checksums (1)

28Telematics I (SS 2024): 04 – Data Link Layer

 Checksums:
 Checksums are easy to calculate since they use simple addition and

this can be done quickly by implementing it in hardware.
 The disadvantage with checksums is that they cannot detect all

common errors

Binary Checksum value Binary Checksum value

 0001 1 0011 3

 0010 2 0000 0

 0011 3 0001 1

 0001 1 0011 3

Totals 7 7

Simple Redundancy Examples: Checksums (2)

29Telematics I (SS 2024): 04 – Data Link Layer

Content

 Link layer service and basic functions
 Framing
 Error control

 Redundancy
 Hamming distance & error correction
 Error detection – CRC
 Backward error correction – Acknowledgement

30Telematics I (SS 2024): 04 – Data Link Layer

Distance Between Frames

 In previous example: Two bit changes necessary to go from one
legal frame to another

 Formally: Hamming distance
 Let x = x1,…, xn and y = y1,…, yn be frames

 d(x,y) = number of 1 bits in x XOR y
 Intuitively: the number of bit positions where x and y are different

x=0011010111
y=0110100101

x XOR y=0101110010

d(x,y) = 5

Example:

31Telematics I (SS 2024): 04 – Data Link Layer

Hamming Distance of a Set of Frames

 The Hamming distance of a set of frames S:

 The smallest distance between any two frames in the set

0000 0011

1100 1111

All distances are 2

Examples:
001011 011101

101011

3

1 4

One distance is 1!

32Telematics I (SS 2024): 04 – Data Link Layer

Hamming Distance and Error Detection/Correction

 What happens if d(S) = 0?
 This is nonsense, by definition

 What happens if d(S) = 1?
 There exist x,y S such that d(x,y) = 1; no other pair is closer

 A single bit error converts from one legal frame x to another legal frame y
 Cannot detect or correct anything

x y
1 bit difference

33Telematics I (SS 2024): 04 – Data Link Layer

Hamming Distance and Detection/Correction

 What happens if d(S) = 2?
 There exist x,y S such that d(x,y) = 2; no other pair is closer
 In particular: any u with d(x,u) = 1 is illegal,

 As is any u with d(y,u)=1

 I.e., errors which modify a single bit always lead to an illegal frame

! Can be detected!
 Generalizes to all legal frames, because Hamming distance describes the

“critical cases”
 But not corrected – upon receiving u, no way to decide whether x or y had

been sent (symmetry!)

x u
1 bit difference 1 bit difference

y

34Telematics I (SS 2024): 04 – Data Link Layer

Hamming Distance and Detection/Correction

 What happens if d(S) = 3?
 There exist x, y S such that d(x,y) = 3; no other pair is closer
 Every s with d(x,s) = 1 is illegal AND d(y,s) > 1!

 Hence: the receipt of s could have the following causes:
 Originally, x had been sent, but 1 bit error occurred
 Originally, y had been sent, but 2 bit errors occurred
 (Originally, some other frame had been sent, but at least 2 bit errors

occurred)
 Assuming that fewer errors have happened, a received frame s can be

mapped to a frame x!
 Hence, the error has been “corrected” – hopefully, correctly!

x s
1 bit difference 1 bit difference

u
1 bit difference

y

35Telematics I (SS 2024): 04 – Data Link Layer

Generalization – Required Hamming Distances

 The examples above can be generalized

 To detect d bit errors, a Hamming distance of d+1 in the set of legal
frames is required
 So that it is not possible to re-write a legal frame into another one using at

most d bits

 To correct d bit errors, a Hamming distance of 2d+1 in the set of legal
frames is required
 So that all frames that are at most d bits away from a legal frame are

illegal and are more than d bits away from any other legal frame

36Telematics I (SS 2024): 04 – Data Link Layer

Frame Sets – Code Books, Codes

 A terminology aspect:
 The set of legal frames S {0,1}n is also called a code book or simply a

code
 The rate R of a code S is defined as:

 Rate characterizes the efficiency

 The distance of a code S is defined as:
 Distance characterizes error

correction/detection capabilities

 A good code should have large distance and large rate – but arbitrary
combinations are not possible
 For details: Information theory, Claude Shannon

37Telematics I (SS 2024): 04 – Data Link Layer

How to Construct Error Correcting Codes

 Constructing good codes (e.g., highest rate at given error correction
needs) is difficult

 Simple example: use several parity bits
 Distribute the parity bits over the entire codeword to protect against burst

errors

38Telematics I (SS 2024): 04 – Data Link Layer

Content

 Link layer service and basic functions
 Framing
 Error control

 Redundancy
 Hamming distance & error correction
 Error detection – CRC
 Backward error correction – Acknowledgement

39Telematics I (SS 2024): 04 – Data Link Layer

How to Construct Error Detecting Codes – CRC

 Efficient error detection: Cyclic Redundancy Check (CRC)
 Gives rules how to compute redundancy bits and how to decide whether

a received bit pattern is correct
 Very high detection probability with few redundancy bits
 Can be efficiently implemented in hardware

 Basic operation based on polynomial arithmetic
 Bit string is interpreted as representing a polynomial
 Coefficients 0 and 1 are possible, interpreted modulo 2

40Telematics I (SS 2024): 04 – Data Link Layer

Modulo 2 Arithmetic

 With 0 and 1 as the only possible numbers (bits!), normal arithmetic is not
applicable

 Instead: look at modulo 2 arithmetic
 Rules:

 Addition modulo 2 Subtraction modulo 2 Multiplication modulo 2

 Example: 0110111011

 + 1101010110 = 1011101101

011

101

110

000

A + BBA

011

101

110

000

A - BBA

111

001

010

000

A BBA

41Telematics I (SS 2024): 04 – Data Link Layer

Modulo 2 Division

 Division of two numbers is done just like normal division:
 Subtract the denominator (the bottom number) from the leading parts of

the enumerator (the top number)
 Proceed along the enumerator until its end is reached
 Remember that we are using modulo 2 subtraction.

 1101010110 / 1001 = 1100110
1001

 1000

 1001

 001101

 1001

 1001

 1001

 0

42Telematics I (SS 2024): 04 – Data Link Layer

Modulo 2 Division With Remainder

 After division, a remainder may result

 1101010101 / 1001 = 1100110 remainder 11
1001

 1000

 1001

 001101

 1001

 1000

 1001

 0011

43Telematics I (SS 2024): 04 – Data Link Layer

Polynomials Over Modulo 2 Arithmetic

 Define polynomials over modulo 2 arithmetic
 p(x) = an x

n
 + … + a1 x

1
 + a0

 Coefficients ai and x {0,1}

 Multiplication and addition is defined modulo 2

 Addition, subtraction, multiplication and division of polynomials is
defined in the usual way!

44Telematics I (SS 2024): 04 – Data Link Layer

Bit Strings and Polynomials Modulo 2

 Idea: Conceive of a string of bits as a representation of the coefficients
of a polynomial

 Bit string: bnbn-1…b1b0

Polynomial: bnx
n
 + … + b1x

1
 + b0

 A bit string of (n+1) bits corresponds to a polynomial of degree n

 Operations on bit strings correspond to operations on polynomials and
vice versa
 Example: “Append k zeros” “multiply by x

k
”

 This isomorphism allows us to divide bit strings!

45Telematics I (SS 2024): 04 – Data Link Layer

Use Polynomials to Compute Redundancy Bits – CRC

 Define a generator polynomial G(x) of degree g
 Known to both sender and receiver
 We will use g redundancy bits in the end

 Given: message/frame M, represented by polynomial M(x)
 Transmitter

 Compute remainder r(x) of division x
g
M(x) / G(x)

 Note: Remainder after division is of degree < g, fitting into g bits!
 Transmit T(x) = x

g
M(x) – r(x)

 Note: x
g
M(x) – r(x) is divisible without remainder by G(x)

 Receiver
 Receive m(x)
 Compute remainder of division of m(x) by G(x)

46Telematics I (SS 2024): 04 – Data Link Layer

CRC Transmission and Reception

 What happens in the channel after transmitting T(x)?
 No errors: T(x) arrives correctly at the receiver
 Bit errors occur: T(x) is modified by flipping some bits

 Equivalent to modifying some coefficients of the polynomial
 Equivalent to adding an error polynomial E(x)
 At the receiver, T(x) + E(x) arrives

 At the receiver
 Receive m(x)
 Compute remainder of division of m(x) by G(x)
 No errors: m(x) = T(x). Remainder is zero!
 Bit errors: m(x)/G(x) = (T(x) + E(x)) / G(x) = T(x)/G(x) + E(x)/G(x)

no remainder remainder
usually

not zero!

47Telematics I (SS 2024): 04 – Data Link Layer

CRC – Overview

Original frame M(x) Generator polynomial G(X)

Remainder r(x) of x
g
M(x) / G(x)

Transmit T(x) = x
g
M(x) - r(x)

Transmitter

Channel

Receiver

Add error polynomial E(x)

Receive m(x) = T(x) + E(x)

Compute remainder (T(x) + E(x))/G(x)

If remainder zero: No error If remainder zero: error!

No error:
E(x) = 0

48Telematics I (SS 2024): 04 – Data Link Layer

Choice of G(x) Determines CRC Properties

 When is remainder of E(x) / G(x) 0?
 If G(x) divides E(x) without remainder, an error slips through!

 Single bit error: E(x) = x
i
 for error at position i

 G(x) needs two or more terms to ensure that E(x) is not a multiple
of it

Two bit error: E(x) = x
i
 + x

j
 = x

j
 (x

i-j
 +1) for some i>j

 x must not divide G(x)
 G(x) must not divide (x

k
 + 1) for all k up to, e.g., maximum frame

length
 Odd number of errors: E(x) has an odd number of terms

 E(x) will NOT have (x+1) as a factor
 Make (x+1) a factor of G(x) so that it cannot divide E(x)

 Using r check bits, all burst errors of length < r can be detected
(as well as “most” burst errors of length r)

49Telematics I (SS 2024): 04 – Data Link Layer

 In practice, residual errors after CRC check are ignored
 But they may still happen!
 In particular, when bit errors are not independent, but bursty

CRC

CRC-8

CRC-10

CRC-12

CRC-16

CRC-
CCITT
CRC-32

G(x)

x8+x2+x1+1

x10+x9+x5+x4+x1+1

x12+x11+x3+x2+x1+1

x16+x15+x2+1

x16+x12+x5+1

x32+x26+x23+x22+x16+x12+x11+x10+
x8+x7+x5+x4+x2+x+1

Commonly Used CRC Generator Polynomials

50Telematics I (SS 2024): 04 – Data Link Layer

Content

 Link layer service and basic functions
 Framing
 Error control

 Redundancy
 Hamming distance & error correction
 Error detection – CRC
 Backward error correction – Acknowledgement

51Telematics I (SS 2024): 04 – Data Link Layer

How to Handle Detected Errors?

 Suppose the receiver detects an error
 Clearly, the received frame cannot be delivered to higher

layers/application

 ! Have to repair the error somehow
 Two principle approaches:

 Forward: sender sends redundant information so that receiver can correct
“a couple of” errors (requires advanced coding techniques not covered in
this course)

 Backward: sender sends redundant information so that receiver can
detect errors with high probability and upon detection of an error, packets
are retransmitted

 Backward correction protocols are generally known under the name
Automatic Repeat Request (ARQ), denoting three main variants:
 Send and wait
 Go-Back-N
 Selective reject (selective retransmission)

52Telematics I (SS 2024): 04 – Data Link Layer

A Simple, Simplex, Acknowledgement-Based Protocol

 Acknowledge to sender the receipt of a packet
 Sender waits for acknowledgement for a certain time
 If not received in time, packet is retransmitted

 First solution attempt:
 Sender Receiver

from_upper (p);
set_timer, to_lower(p)

timeout;
to_lower (p)

from_lower (ack);
cancel_timer

from_lower (p);
to_upper(p), to_lower(ack)

Note: to_lower, from_lower take
care of CRC (FEC, if desired)

53Telematics I (SS 2024): 04 – Data Link Layer

Protocol Analysis

 This protocol is nice and simple, but flawed in multiple ways
 What happens when the higher layer sends packets faster than the

acknowledgements come in (and when one is missing?)
 What happens if acknowledgements are lost?

 Need some repairs here…

54Telematics I (SS 2024): 04 – Data Link Layer

Acknowledgement-Based Protocol, Second Trial

 Cure one problem: Concentrate on one packet, only accept the next
packet from higher layer when previous one has been fully processed

 First solution attempt:

 Sender Receiver

from_lower (p);
to_upper(p),
to_lower (ack)

from_higher(p);
to_lower(p),

set_timer

timeout;
to_lower (p)

from_lower(ack);
Cancel_timer

from_higher(p);
to_higher (busy)

timeout;
error

55Telematics I (SS 2024): 04 – Data Link Layer

Does Second Version Work Correctly?

 It holds back the transmitter until packets are processed
 It implements flow control!

 Does it ensure that all packets arrive, in correct order?

Sender Receiver

Fr_hg
Packet

Ack
To_hg

Sender Receiver

Fr_hg
Packet

Ack
To_hg

Packet

56Telematics I (SS 2024): 04 – Data Link Layer

Does Second Version Work Correctly?

 Simple cases seem ok
 What if an acknowledgement is lost?

Sender Receiver

Fr_hg Packet

Ack
To_hg

Packet

Ack

To_hg
Same packet
is delivered
twice to the
receiver’s

higher layer!

57Telematics I (SS 2024): 04 – Data Link Layer

Summary of Second Version: Send and Wait

 Sender transmits one single packet:
 Sender sets a timeout
 Sender waits for acknowledgement (ACK)
 If no ACK is received within timeout, the sender retransmits the packet

 If a received packet is damaged, the receiver simply discards it

 Often, this scheme is also referred to as “Stop-and-Wait” as the
sender stops transmitting after each packet

 If the ACK packet is damaged,the sender will not recognize it:
 Sender will also retransmit the packet
 Receiver gets two copies of packet

58Telematics I (SS 2024): 04 – Data Link Layer

Overcoming the Problem of Send and Wait

 Sender cannot distinguish between a lost packet and a lost
acknowledgement
! Has to re-send the packet

 Receiver cannot distinguish between a new packet and a redundant
copy of an old packet

 ! Additional information is needed
 Put a sequence number in each packet, telling the receiver which

packet it is
 Sequence numbers as header information in each packet
 Simplest sequence number: a 0 or 1 !

 Needed in packet & acknowledgement
 In Ack, convention: send the sequence number of the last correctly

received packet back
 Also possible: send sequence number of next expected packet

59Telematics I (SS 2024): 04 – Data Link Layer

Acknowledgements & Sequence Numbers – 3rd Version

From_lower (0,p);
To_upper(p),

To_lower (ack0)

From_higher(p);
To_lower(0,p),

set_timer

timeout;
to_lower (0,p)

From_lower(ack0);
Cancel_timer

From_higher(p);
to_higher (busy)

Timeout;
error

Sender Receiver

From_higher(p);
To_lower(1,p),

set_timer

Timeout;
error

From_
higher(p);
to_higher

(busy)

F
ro

m
_l

ow
er

(a
ck

1)
;

C
an

ce
l_

tim
er

From_lower
(ack0); -

From_lower
(ack1); -

From_lower (1,p);
To_upper(p),

To_lower (ack1)

F
ro

m
_l

ow
er

 (
1,

p)
;

To
_l

ow
er

 (
ac

k1
)

F
rom

_low
er (0,p);

To
_low

er (ack0)

timeout;
to_lower

(1, p)

60Telematics I (SS 2024): 04 – Data Link Layer

Assessment of 3rd Version – Alternating Bit Protocol

 This 3rd version is a correct implementation of a reliable protocol over
a noisy channel
 Name: Alternating bit protocol
 Class of protocols where sender waits for a positive confirmation:

Automatic Repeat reQuest (ARQ) protocols
 It also implements a simple form of flow control

 Note the dual task of the acknowledgement packet
 It confirms to the sender that the receiver has obtained a certain

packet
 It is also the permit to send the next packet, stating that the

receiver has the capacity to handle it
 These two functions can be and are separate in other protocols!

61Telematics I (SS 2024): 04 – Data Link Layer

Tack

Alternating Bit Protocol – Efficiency

 Efficiency : depends on circumstances
 Defined as the ratio of time during which

the sender sends new information
(assuming an error-free channel in the
simplest case; error-considerations
make efficiency discussions difficult)

 = Tpacket / (Tpacket + d + Tack + d)

 Efficiency of simple alternating bit
protocol is low when delay is large
compared to data rate
 Recall bandwidth-delay product
 This will be further discussed in a

performance comparison later on...

Tim
e

d

Tpacket

d

62Telematics I (SS 2024): 04 – Data Link Layer

Tim
e

Improving Efficiency – Have More “Outstanding” Packets

 Inefficiency of alternating bit in large
bandwidth-delay situations is owing to
not exploiting “space” between packet
and acknowledgement

 Always sending packets results in high
efficiency
 More packets are “outstanding” = sent,

but not yet acknowledged
 “pipelining” of packets

 But not feasible with a single bit as
sequence number

 ! Need larger sequence number space!
 It also needs – ideally – some full-

duplex support
 How to live without full-duplex?

Sender is
always busy,

efficiency
is high

63Telematics I (SS 2024): 04 – Data Link Layer

Sliding Windows to Handle Multiple Outstanding Packets

 Introduce a larger sequence number space
 Say, n bits or 2

n
 sequence numbers

 Not all of them may be allowed to be used simultaneously
 Recall alternating bit case: 2 sequence numbers, but only 1 may be “in

transit”
 Use sliding windows at both sender and receiver to handle these

numbers
 Sender: sending window – set of sequence numbers it is allowed to

send at given time
 Receiver: receiving window – set of sequence numbers it is allowed to

accept at given time
 May be fixed in size or adapt dynamically over time
 Window size corresponds to flow control

64Telematics I (SS 2024): 04 – Data Link Layer

Sliding Window – Simple Example

 A simple sliding window example for n=3, window size fixed to 1
 Sender here represents the currently unacknowledged sequence

numbers
 If maximum number of unacknowledged frames is known, this is

equivalent to sending window as defined on previous slide

a. Initially, before any
frame is sent

b. After first frame is
sent with seq. num
0

c. After first frame has
been received

d. After first
acknowledgement
has arrived

65Telematics I (SS 2024): 04 – Data Link Layer

Transmission Errors and Receiver Window Size

 Assumption:
 Link layer should deliver all frames correctly and in sequence
 Sender is pipelining packets to increase efficiency

 What happens if packets are lost (discarded by CRC)?
 With receiver window size 1, all following packets are discarded as

well!

66Telematics I (SS 2024): 04 – Data Link Layer

Go-Back-N

 With receiver window size 1, all frames following a lost frame cannot
be handled by receiver
 They are out of sequence
 They cannot be acknowledged, only ACKs for the last correctly

received packet can be sent

 Sender will timeout eventually
 Since all frames sent in the meantime, they have to be repeated

 ! Go-back N (frames)!
 Also called Sliding Window ARQ

 Assessment
 Quite wasteful of transmission resources
 But saves overhead at the receiver

67Telematics I (SS 2024): 04 – Data Link Layer

Selective Reject (Selective Repeat)

 Suppose we invest a bit into a receiver that can buffer packets
intermittently if some packets are missing
 Corresponds to receiver window larger than 1

 Resulting behavior:

 Receiver explicitly informs sender about missing packets using
Negative Acknowledgements

 Sender selectively repeats the missing frames
 Once missing frames arrive, they are all passed to the network

layer

68Telematics I (SS 2024): 04 – Data Link Layer

Duplex Operation and Piggybacking

 So far, simplex operation at the (upper) service interface was
assumed
 The receiver only sent back acknowledgements, possibly using

duplex operation of the lower layer service

 What happens when the upper service interface should support full-
duplex operation?
 One option: Use two separate channels for each direction –

wasteful
 Better: Interleave acknowledgement and data frames in a given

direction
 Best (and usual): Put the acknowledgement information for

direction A! B into the data frames for B ! A
 As part of B’s header – piggyback it

69Telematics I (SS 2024): 04 – Data Link Layer

Performance: Error-Free Send and Wait (1)

 In order to assess the performance differences of the different
protocols, let us compute the time for sending one packet and
receiving and processing the respective acknowledgement:
 T = Tframe + Tprop + Tproc + Tack + Tprop + Tproc

 Tframe = time to transmit frame

 Tprop = propagation time

 Tproc = processing time at station

 Tack = time to transmit ack

 Assume Tproc and Tack relatively small:

 T ≈ Tframe + 2Tprop

(Acknowledgement: figures in performance discussion according to a prior edition of [Sta04])

70Telematics I (SS 2024): 04 – Data Link Layer

Send and Wait Link Utilization

71Telematics I (SS 2024): 04 – Data Link Layer

Throughput = 1/T = 1/(Tframe + 2Tprop) frames/sec

Normalize by link data rate: 1/ Tframe frames/sec

S = 1/(Tframe + 2Tprop) = Tframe = 1

 1/ Tframe Tframe + 2Tprop 1 + 2a

 where a = Tprop / Tframe

Performance: Error-Free Send and Wait (2)

72Telematics I (SS 2024): 04 – Data Link Layer

Performance: Send-and-Wait ARQ with Errors

P = probability a single frame is in error

Nx = 1

 1 - P

 = average number of times each frame must be transmitted
due to errors

S = 1 = 1 - P

 Nx (1 + 2a) (1 + 2a)

73Telematics I (SS 2024): 04 – Data Link Layer

The Parameter a

a = propagation time = d/V = Rd

 transmission time L/R VL

where:
 d = distance between stations
 V = velocity of signal propagation
 L = length of frame in bits
 R = data rate on link in bits per sec

74Telematics I (SS 2024): 04 – Data Link Layer

Figure 11.8

75Telematics I (SS 2024): 04 – Data Link Layer

Some Values of a

76Telematics I (SS 2024): 04 – Data Link Layer

Performance of Send and Wait

77Telematics I (SS 2024): 04 – Data Link Layer

Performance: Error-Free Sliding Window ARQ (1)

 Let W be the number of frames that the sender can send, before he
has to wait for an acknowledgement
 It will be explained in a later lecture, why it is necessary to restrict the

sender from sending arbitrary number of packets
 Case 1: W ≥ 2a + 1

 Ack for frame 1 reaches A before A has exhausted its window
 Case 2: W < 2a +1

 A exhausts its window at t = W and cannot send additional frames until
t = 2a + 1

 Normalized
Throughput:

S =

 1 W ≥ 2a + 1

 W W < 2a +1
 2a + 1

78Telematics I (SS 2024): 04 – Data Link Layer

Figure 11.10

79Telematics I (SS 2024): 04 – Data Link Layer

Performance: Sliding Window Utilization as Function of a

80Telematics I (SS 2024): 04 – Data Link Layer

Performance: Normalized Throughput in Case of Errors

S =

 1 -P W ≥ 2a + 1

 W (1 - P) W < 2a +1
 2a + 1

 Selective Reject:

 Go-Back-N:

S =

 1 -P W ≥ 2a + 1
 1 + 2aP

 W (1 - P) W < 2a +1
 (2a + 1)(1 - P + WP)

81Telematics I (SS 2024): 04 – Data Link Layer

Performance: ARQ Utilization as Function of a

82Telematics I (SS 2024): 04 – Data Link Layer

Performance: ARQ Utilization as Function of W

83Telematics I (SS 2024): 04 – Data Link Layer

Conclusions

 Most problems in the link layer are due to errors
 Errors in synchronization require non-trivial framing functions
 Errors in transmission require mechanisms to correct them so as

to hide from higher layers
 Or to detect them and repair them afterwards

 Flow control is often tightly integrated with error control (and
sometimes also congestion control) in practical protocols
 But it is a separate function and can be realized separately as well

 Choice of error control scheme (and its parameters) has implications
on achievable performance

 Connection setup/teardown still has to be treated
 Necessary to initialize a joint context for sender and receiver (e.g.

initial sequence numbers, window size)

84Telematics I (SS 2024): 04 – Data Link Layer

Additional References

[Sta04] W. Stallings. Data and Computer Communications. 7
th
 edition, Prentice Hall, 2004.

[Tan02] A. S. Tanenbaum. Computer Networks. 4
th
 edition, Prentice Hall, 2002.

