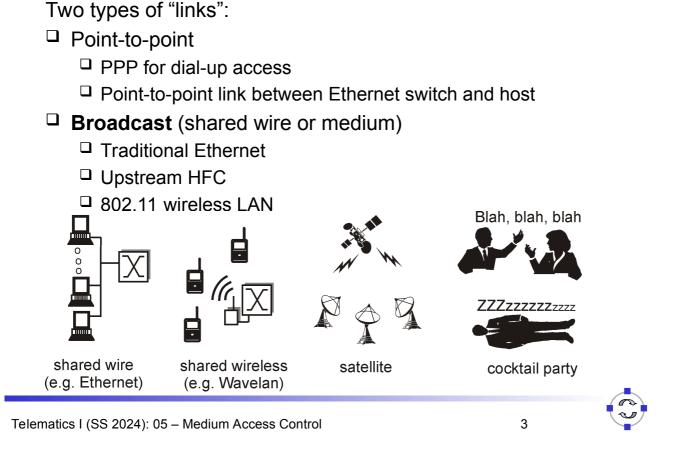


Telematics I

Chapter 5 Medium Access Control

Telematics I (SS 2024): 05 - Medium Access Control



Goals of this Chapter

- □ Learn how to share one medium among multiple entities
- Understand performance problems of fixed multiplexing schemes
- □ Important performance metrics
- Options for MAC protocols: sending, receiving, listening, synchronizing; environment in which they work
- Classification & examples of MAC protocols, performance aspects
 - □ An important example: Ethernet

Intro: Multiple Access Links and Protocols

Intro: Multiple Access Protocols

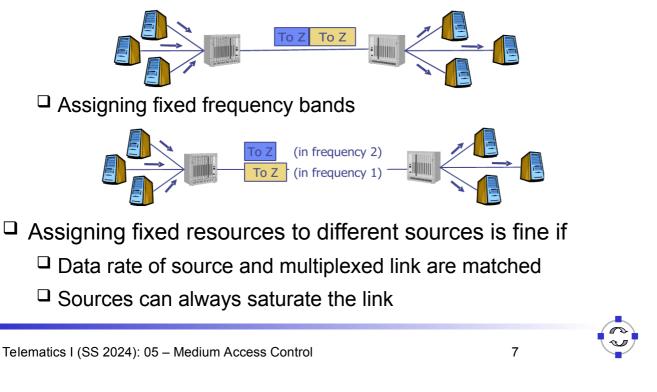
- □ Single shared broadcast channel
- Two or more simultaneous transmissions by nodes: interference
 - Collision if node receives two or more signals at the same time

Multiple access protocol

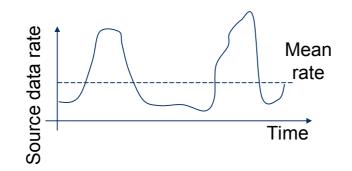
- Distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- Often: Communication about channel sharing must use channel itself!
 - □ No out-of-band channel for coordination

Broadcast channel of rate R bps

- 1. When one node wants to transmit, it can send at rate R.
- 2. When M nodes want to transmit, each can send at average rate R/M
- 3. Fully decentralized:
 - No special node to coordinate transmissions
 - □ No synchronization of clocks, slots
- 4. Simple

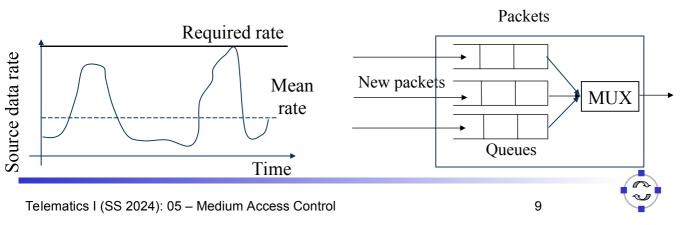

Telematics I (SS 2024): 05 - Medium Access Cor	ntrol
--	-------

□ Static multiplexing (revisited)


- Dynamic channel allocation
- Collision-based protocols
- Contention-free protocols
- □ Limited contention protocols
- □ Case study: Ethernet

- □ Given a single resource, it can be statically multiplexed
 - □ Assigning fixed time slots to multiple communication pairs

- □ What happens if sources have *bursty* traffic?
 - Definition: Large difference between peak and average rate
 - In computer networks: Peak : average = 1000 : 1 quite common

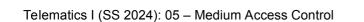

□ Statically multiplexed resources must either:

 Be large enough to cope with the peak data rate immediately

TELEMATIK

! Big waste, since *on average* the link/channel will not be utilized Be dimensioned for average rate, but then need a *buffer*

! What is the *delay* until a packet is transmitted?



Statically Multiplexed Bursty Traffic – Delay

- Compare the delay resulting from static multiplexing
- $\hfill\square$ Base case: No multiplexing, a single traffic source with average rate ρ (bits/s), link capacity C bits/s
 - Delay is T (In case you really want to know: T = $1/(\mu C - \lambda)$, $\rho = \lambda/\mu$)
- Multiplexed case: Split the single source in N sources with same total rate, statically multiplex over the same link (e.g., FDM)
 - □ Delay T_{FDM} = NT
 - □ Irrespective of FDM, TDM, ...
- Hence: multiplexing increases N-fold the delay of a packet
 Intuition: Because some of channels are idle sometimes

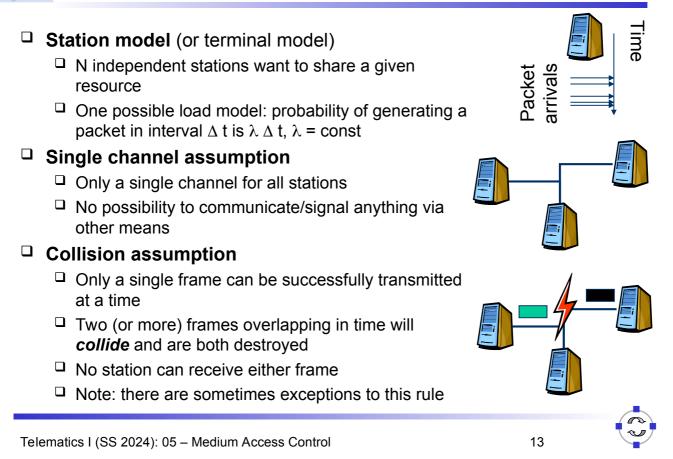
- □ Static multiplexing
- Dynamic channel allocation
- Collision-based protocols
- Contention-free protocols
- Limited contention protocols
- □ Case study: Ethernet

Dynamic Channel Allocation – MAC

Because of the bad delay properties – caused by idle subchannels – static multiplexing is not appropriate for bursty traffic sources

□ Telephony is not bursty, computer networks are bursty

Alternative: Assign channel/link/resource to that source that currently has data to send

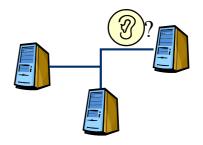

Dynamic channel allocation

□ Instead of fixed assignments of parts of a shared resource

Terminology: Access to the transmission has to be organized
 – a *medium access control protocol (MAC)* is required

Assumptions for Dynamic Channel Allocation (1)

Time model


TELEMATIK

- Continuous time: Transmissions can begin at any time; no central clock
- Slotted time: Time is divided in slots; transmissions can only start at a slot boundary. Slot can be idle, a successful transmission, or a collision

Time

- Stations can/cannot detect whether the channel is currently used by some other station
- There might be imperfections involved in this detection (e.g., incorrectly missing an ongoing transmission)
- Usually, a station will not transmit when the channel is sensed as busy

Figures of Merit

How to judge the efficiency of a dynamic channel allocation system?

□ Intuition: transmit as many packets as quickly as possible

- At high load (many transmission attempts per unit time):
 Throughput is crucial ensure that many packets get through
- At low load (few attempts per time):
 Delay is crucial ensure that a packet does not have to wait for a long time
- □ *Fairness:* Is every station treated equally?

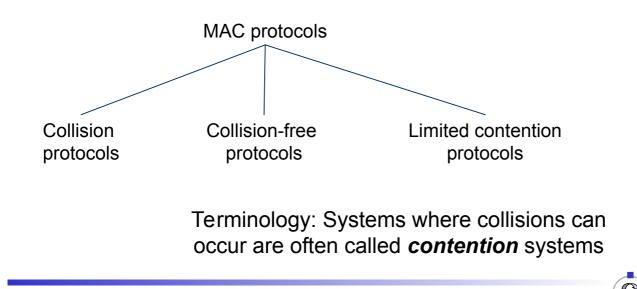
TELEMATIK

Throughput and Offered Load

Offered load G: The number of packets per unit packet time that the protocol is asked to handle

□ More than one packet per packet time equals overload

- □ Ideal protocol:
 - Throughput S equals offered load G as long as G<1</p>
 - Throughput S = 1 as soon as G>1



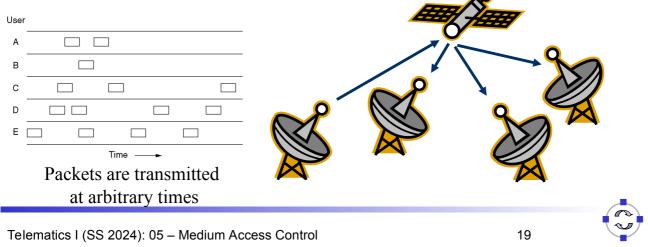
□ And:

- □ have constant small delay,
- □ for an arbitrary number of terminals
- □ Not very realistic hope!

Main distinction: Does the protocol allow collisions to occur?
 As a deliberately taken risk, not as an effect of an error
 Always, for every packet, or in some restricted form?

Telematics I (SS 2024): 05 - Medium Access Control

- □ Static multiplexing
- Dynamic channel allocation
- Collision-based protocols
- Contention-free protocols
- □ Limited contention protocols
- □ Case study: Ethernet



Rechnerpetze ALOHA

□ The simplest possible medium access protocol:

Just talk when you feel like it

- Formally: Whenever a packet should be transmitted, it is transmitted immediately
- □ Introduced in 1970 by Abrahmson et al., University of Hawaii
- □ Goal: Support of satellite networks

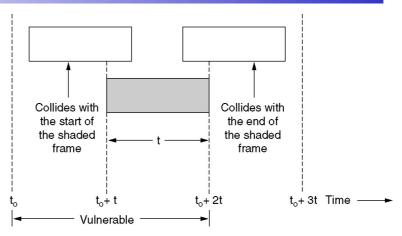
- ALOHA advantages
 - □ Trivially simple
 - □ No coordination between participants necessary
- ALOHA disadvantages
 - Collisions can and will occur sender does not check channel state
 - Sender has no (immediate) means of learning about the success of its transmission – link layer mechanisms (ACKs) are needed
 - ACKs can collide as well ☺

ALOHA – Performance

TELEMATIK

- Assume a Poisson arrival process to describe packet transmissions
 - □ Infinite number of stations, all behave identically, independently
 - Let G be the mean number of transmission attempts per packet length
 - All packets are of unit time length
 Then:

$$\frac{1}{2}P(k \text{ attempts in time } t) = \frac{(Gt)^k}{k!}e^{-Gt}$$

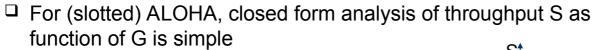

(Ok, this may be a bit hard to understand here, but for the moment let us just accept it.)

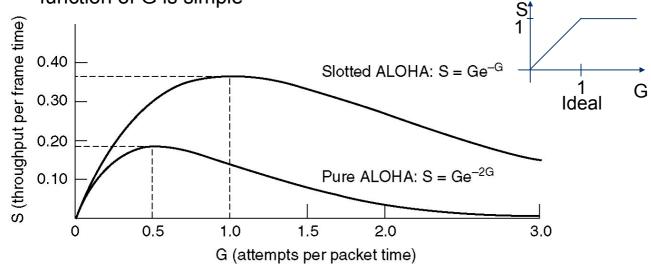
- For a packet transmission to be successful, it must not collide with any other packet
- □ How likely is such a collision?
 - Question: How long is a packet "vulnerable" by other transmissions?

Telematics I (SS 2024): 05 - Medium Access Control

- A packet X is destroyed by a packet either
 - Starting up to one packet time *before* X
 - Starting up to immediately before the end of X

- Hence: Packet is successful if there is no additional transmission in two packet times
 - □ Probability: $P_0 = P$ (1 transmission in two packet times) = $2Ge^{-2G}$
 - ^{\Box} Maximal throughput S (G) = 1 Packet / 2 time units * Probability = Ge^{-2G}
 - $\hfill\square$ Optimal for G = 0.5 \Rightarrow S = 1/(2e) \approx 0.184
 - \Rightarrow Mean achievable throughput is less than 20%!




A Slight Improvement: Slotted ALOHA

- □ ALOHA's problem: Long vulnerability period of a packet
- Reduce it by introducing time slots transmissions may only start at the start of a slot
 - □ Slot synchronization is assumed to be "somehow" available
- □ Result: Vulnerability period is halved, throughput is doubled
 - \Box S(G) = Ge^{-G}
 - □ Optimal at G=1, S=1/e

Performance Dependence on Offered Load

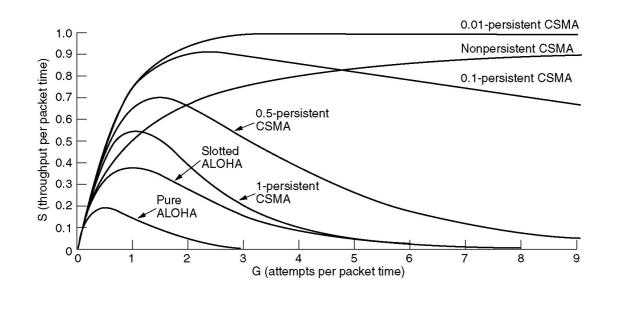
! Anything but a high-performance protocol
 In particular: throughput collapses as load increases!

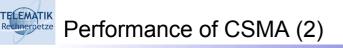
Recharge Carrier Sensing

- □ (Slotted) ALOHA are simple, but not satisfactory
- □ Be a bit more polite: *Listen before talk*
 - Sense the carrier to check whether it is idle before transmitting
 - □ Carrier Sense Multiple Access (CSMA)
 - Abstain from transmitting if carrier not idle (some other sender is currently transmitting)
- Crucial question: How to behave in detail when carrier is busy?
 In particular: WHEN to retry a transmission?

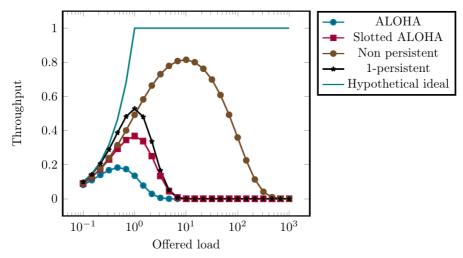
- □ When carrier is busy, wait until it is idle
- □ Then, immediately transmit
 - "Persistent" waiting
- Obvious problem: if more than one station wants to transmit, they are guaranteed to collide!
 - □ Just too impatient...
- □ But certainly better than pure ALOHA or slotted ALOHA

Non-Persistent CSMA


- □ When channel is idle, transmit
- When channel is busy, wait a random time before checking again whether the channel is idle
 - Do not continuously monitor to greedily grab it once it is idle
 - Conscious attempt to be less greedy
- Performance depends a bit on the random distribution used for the waiting time
 - But in general better throughput than persistent CSMA for higher loads
 - □ At low loads, random waiting is not necessary and wasteful


TELEMATIK

P-Persistent CSMA


- Combines ideas from persistent and non-persistent CSMA
 Uses a slotted time model
- □ When channel is idle, send
- When channel is busy, continuously monitor it until it becomes idle
 - □ But then, do not always transmit immediately
 - □ But flip a coin transmit with probability p
 - □ With probability 1-p, do not send and wait for the next slot
 - If channel is busy in the next slot, monitor for idleness
 - Else, flip a coin again

Telematics I (SS 2024): 05 - Medium Access Control

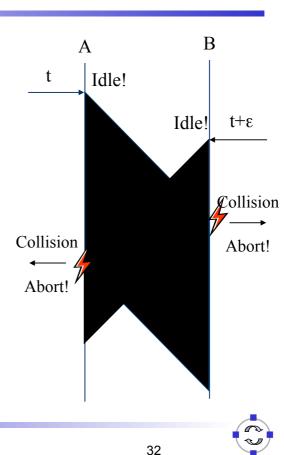
□ What happens at even higher load?

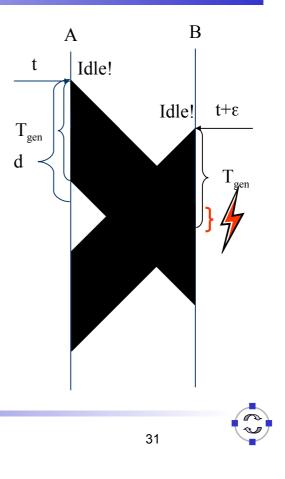
Performance of CSMA Schemes with Load depicted on a Logarithmic Scale

L. Kleinrock, F. Tobagi. *Packet Switching in Radio Channels Part I – Carier Sense Multiple Access Modes And Their Throughput-Delay Characteristics.* IEEE Transactions on Communications, Volume 23, No 12, December 1975

□ You should always ask yourself questions like this!

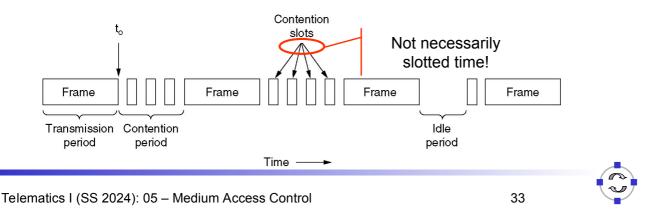
30


CSMA and Propagation Delay


- Any CSMA scheme has a principal obstacle: The propagation delay d
- Suppose two stations become ready to send at time t and t+ε
 - At t, the channel is completely idle
 - The stations are separated by a propagation delay d > ε
- Second station cannot detect the already started transmission of first station
 - Will sense an idle channel, send, and collide (at each other, or at a third station)

Telematics I (SS 2024): 05 - Medium Access Control

Collision Detection – CSMA/CD


- When two packets collide, lots of time is wasted by completing their transmission
- If it were possible to *detect* a collision when it happens, transmission could be aborted and a new attempt made
 - Wasted time reduced, no need to wait for (destroyed) packets to complete
- Depending on physical layer, collisions *can* be detected!
 - Necessary: Sender must be able to listen to the medium when sending, compare what it sends with what it receives
 - □ If different: declare a collision
 - ! CSMA/CD Carrier Sense Multiple Access/Collision Detection

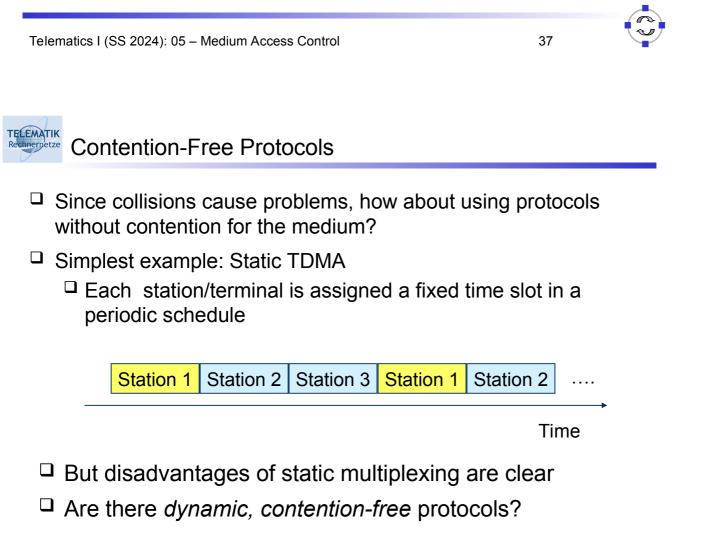
What to Do After a Collision Happens?

- □ Stations do want to transmit their packets, despite detecting a collision
- Have to try again
 - □ Immediately? Would again ensure another collision ☺
 - □ Coordinate somehow? Difficult, no communication medium available
 - Wait a random time!
 - Randomization "de-synchronizes" medium access, avoids collisions
 - However: will result in some idle time, occasionally
 - ! Alternation between contention and transmission phases

How to Choose Random Waiting Time?

- Simplest approach to choose a random waiting time:
 Pick any one of *k* slots
 - □ Assumes a slotted time model for simplicity
 - Uniformly distributed from [0,..., k-1] the contention window
- \Box Question: How to choose upper bound *k*?
 - □ Small *k*: Short delay, but high risk of repeated collisions
 - Large k: Low risk of collisions (as stations' access attempts are spread over a large time interval), but needlessly high delay if few stations want to access the channel
 - With large contention window, collisions become less likely
 - ! Let k adapt to the current number of stations/traffic load

- One option: somehow *explicitly* find out number of stations, compute an optimal *k*, signal that to all stations
 Difficult, high overhead, ...
 - □ An *implicit* approach possible?
- □ What is the consequence of a small *k* when load is high?
 - Collisions!
 - Hence: Use a collision as an indication that the contention window is too small – increase it!
 - Will reduce probability of collisions, automatically adapt to higher load
- Question: How to increase k after collision, how to decrease it again?


Telematics I (SS 2024): 05 - Medium Access Control

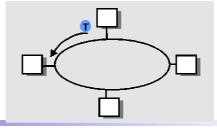
- □ Increase after collisions: Many possibilities
 - \Box Commonly used: **Double** the contention window size *k*
 - But only up to a certain limit, say, 1024 slots start out with k
 = 2
 - □ This is called *binary exponential backoff*
- \Box Decreasing *k*: Also many options possible
 - E.g., if sufficiently many frames have not collided reduce k (subtract a constant, cut in half, ...)
 - Complicated, might waste resources by not being agile enough, …
 - □ Or play it simple: Just start *every time* at k = 1!
 - Common option

- Static multiplexing
- □ Dynamic channel allocation
- Collision-based protocols
- □ Contention-free protocols
- Limited contention protocols
- □ Case study: Ethernet

Recharge retree Bit-Map Protocol

- Problem of static TDMA: When a station has nothing to send, its time slot is idling and wastes resources
- Possible to only have time slots assigned to stations that have data to transmit?
 - Needs some information exchange which station is ready to send
 - □ They should *reserve* resources/time slots
- □ Some approaches:
 - Central master assigns right to talk (like in classroom; polling)
 - Token Passing
 - □ Stations announce will to send (bit-map protocol)

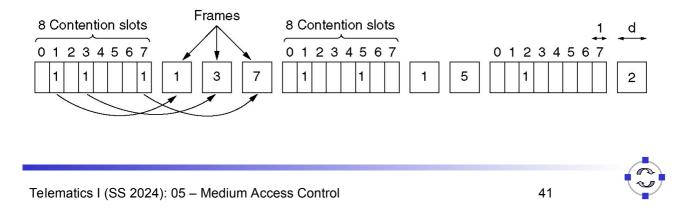
Telematics I (SS 2024): 05 - Medium Access Control


Polling:

- Master node "invites" slave nodes to transmit in turn
- □ Concerns:
 - Polling overhead
 - □ Latency
 - Single point of failure (master)

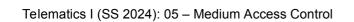
Token passing:

- Control token passed from one node to next sequentially
- Can be realized on either topological or logical ring structure


- Token message
- □ Concerns:
 - Token overhead
 - Latency
 - □ Token might get lost

Recharge retree Bit-Map Protocol

- Stations announce their will to transmit
 - ! Bit-map protocol
 - Short reservation slots, only used to announce desire to transmit
 - Must be received by every station
 - □ All stations need to know when slots start \Rightarrow requires tight time synchronization!



- □ Behavior at low load
 - If there is (hardly) any packet, the medium will repeat the (empty) contention slots
 - A station that wants to transmit has to wait its turn before it can do so
 - ! Delay
- Behavior at high load
 - At high load, medium is dominated by data packets (which are long compared to contention slots)
 - Overhead is negligible
 - ! Good and stable throughput
- □ Note: Bit-map *is* a carrier-sense protocol!

- Static multiplexing
- Dynamic channel allocation
- Collision-based protocols
- Contention-free protocols
- □ *Limited contention protocols*
- Case study: Ethernet

Best of Both Worlds?

- Desirable: Protocol with
 - □ Low delay at low load like a contention protocol
 - High throughput at high load like a contention-free protocol
- □ Hybrid or *adaptive* solution?

! Limited-contention protocols do exist

- One possible idea: adapt number of stations per contention slot
 - Contention slots are nice for throughput, but at low load, we cannot afford to wait a long time for every station's slot
 - Several stations have to share a slot, dynamically

Adaptive Tree Walk

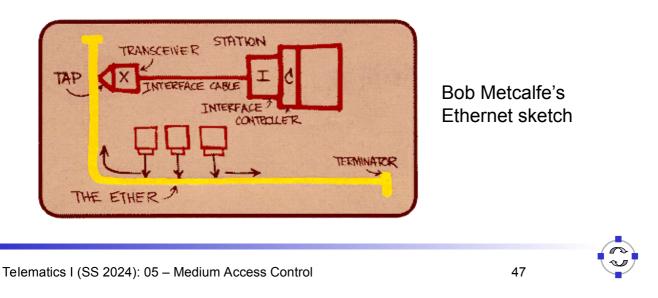
TELEMATIK

- Idea: Use several "levels of resolution" for the contention slots
 - □ Inspired by levels in a tree
 - □ At highest level, all nodes share a single slot
 - If only node from this group claims the contention slot, it may transmit
 - □ If more than one ⇒ collision in contention slot ⇒ double slots, half the stations assigned to each slot
 - □ And recurse

Telematics I (SS 2024): 05 – Medium Access Control

- □ Static multiplexing
- Dynamic channel allocation
- Collision-based protocols
- Contention-free protocols
- □ Limited contention protocols
- □ Case study: Ethernet

3

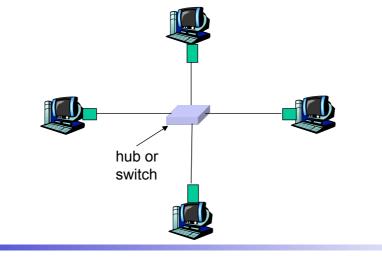

45

Stations

A Case Study: Ethernet

TELEMATIK

- "Dominant" wired LAN technology:
- □ Cheap \$20 for 100Mbs!
- □ First widely used LAN technology
- □ Simpler, cheaper than token LANs and ATM
- □ Kept up with speed race: 10 Mbps 10 Gbps


- □ A practical example, dealing (mostly) with MAC: Ethernet
 - □ Standardized by IEEE as standard 802.3
 - Part of the 802 family of standards dealing with MAC protocols
 - Also contains PHY and DLC specifications
- Issues
 - Cabling
 - Physical layer
 - □ MAC sublayer
 - Switched Ethernet
 - Fast & Gigabit Ethernet

Star Topology

TELEMATIK

- Bus topology popular through mid 90s
- Now star topology prevails
 - □ Main advantage: easier (automatic) maintenance in case of a misbehaving adapter
- □ Connection choices: hub or switch (more later)

Telematics I (SS 2024): 05 - Medium Access Control

49

ELEMATIK Rechnernetze	Ethernet Cabling

T (R

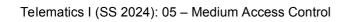
"Yellow cable"

	-			
Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax 🐔	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2000 m	1024	Best between buildings
Core	Controller Transceiver cable Vampire tap		Contro Transceiver + controller	oller Twisted pair Conne

10Base2

10Base5

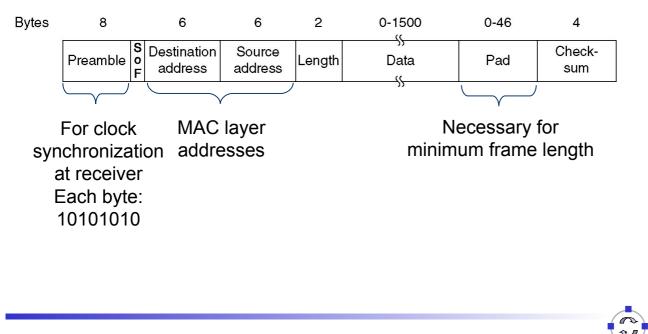
50


Hub

10BaseT

Transceiver Connector

- □ Connectionless:
 - No handshaking between sending and receiving adapter
- Unreliable:
 - Receiving adapter doesn't send acks or nacks to sending adapter
 - Stream of datagrams passed to network layer can have gaps
 - Gaps will have to be filled by higher layers (if required)
 - Otherwise, the application will see the gaps


Ethernet Physical Layer

- Details depend on medium
- Common: Manchester encoding
 - □ At +/- 0.85 V (typically) to ensure DC freeness
- □ With option for signal violations
 - Used to demarcate frames

TELEMATIK

Essentially: CSMA/CD with binary exponential backoff Frame format:

Telematics I (SS 2024): 05 – Medium Access Control

- □ No slots
- Adapter doesn't transmit if it senses that some other adapter is transmitting, that is, carrier sense
- Transmitting adapter aborts when it senses that another adapter is transmitting, that is, collision detection
- Before attempting a retransmission, adapter waits a random time, that is, random access

- 1. Adapter receives datagram from net layer & creates frame
- 2. If adapter senses channel idle, it starts to transmit frame. If it senses channel busy, waits until channel idle and then transmits
- 3. If adapter transmits entire frame without detecting another transmission, the adapter is done with frame !

- 4. If adapter detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, adapter enters exponential backoff: after the nth collision, adapter chooses a K at random from {0, 1, 2, ..., 2^m-1} with m = min{10, n}. Adapter waits K×512 bit times and returns to Step 2

55

Telematics I (SS 2024): 05 – Medium Access Control

Ethernet CSMA/CD Algorithm (1)

Jam Signal:

make sure all other transmitters are aware of collision; 48 bits

Bit time:

 .1 microsec for 10 Mbps Ethernet ; for K = 1023, wait time is about 50 msec

Exponential Backoff:

- Goal: adapt retransmission attempts to estimated current load
 - Heavy load: random wait will be longer
- First collision: choose K
 from {0, 1}; delay is K×
 512 bit transmission times
- After second collision: choose K from {0,1,2,3}...
- After ten collisions, choose
 K from {0,1,2,3,4,...,1023}

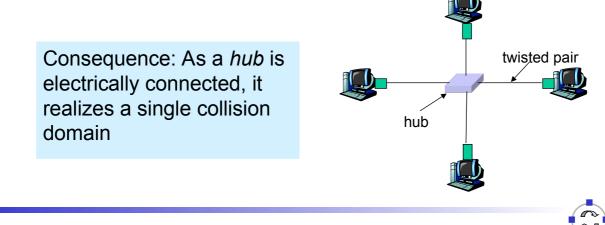
CSMA/CD Efficiency

- \Box t_{prop} = max prop between 2 nodes in LAN
- \Box t_{trans} = time to transmit max-size frame
- Exact computation of CSMA/CD efficiency is beyond the scope of this course; the following gives a good approximation:

efficiency =
$$\frac{1}{1+5t_{prop}/t_{trans}}$$

- □ Efficiency goes to 1 as t_{prop} goes to 0
- $\hfill\square$ Goes to 1 as t_{trans} goes to infinity
- Much better than ALOHA, but still decentralized, simple, and cheap

Telematics I (SS 2024): 05 - Medium Access Control


TELEMATIK	
Rechnernetze	
Rechnernetze	

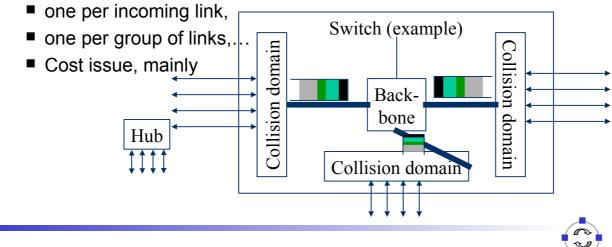
Hubs

TELEMATIK

Hubs are essentially physical-layer repeaters:

- Bits coming from one link go out all other links
- At the same rate
- □ No frame buffering
- □ No CSMA/CD at hub: adapters have to detect collisions
- Provides net management functionality

Switched Ethernet


- With conventional 10Base5/10Base2 Ethernet, all stations attached to a single cable form a *collision domain*
 - Packets from all these stations might potentially collide
 - Big collision domains stress the CSMA/CD mechanism, reducing performance
- How to reduce collision domains but still maintain connectivity of local stations?
- Use smaller collision domains
 To ensure connectivity, put a *switch* in
 Separate collision domains
 To generate collision domains

TELEMATIK

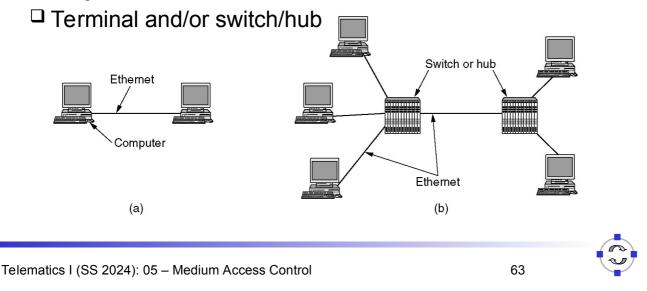
An Ethernet Switch

- Unlike a hub, not a simple electrical connection for a star-wired topology
- □ How to exchange packets between different collision domains?
 - Switch contains buffers to intermediately store incoming packets before forwarding them towards their destination
 - Different buffer structures possible:

Fast Ethernet

TELEMATIK

- □ "Normal" (even switched) Ethernet "only" achieves 10 MBit/s
- □ 1992: Build a faster Ethernet!
 - Goals: Backward compatible, stick with the old protocol to avoid hidden traps, get job done quickly
 - Result: 802.3u aka "Fast Ethernet"
- Fast Ethernet
 - □ Keep everything the same (frame format, protocol rules)
 - □ Reduce bit time from 100 ns to 10 ns
 - Consequences for maximum length of a wiring segment, minimum packet sizes? (Recall unavoidable collisions in CSMA!)


Name	Cable	Max. segment	Advanages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

- Standard category 3 twisted pairs (telephony cables) cannot support 200 MBaud over 100 m cable length
 - Solution: use 2 pairs of wires in this case, reduce baud rate (recall Manchester has baudrate = 2 bitrate)
- Also, cat. 5 cabling does not use Manchester, but 4B/5B (thus, 4 bits are send in 5 signal steps)

Gigabit Ethernet

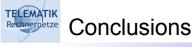
□ Ok: can we go another factor of 10 faster?

- □ 1995 gigabit Ethernet
- Goal: again, keep basic scheme as it is
- In Gigabit Ethernet (and Fast Ethernet), each wire has exactly two machines attached to it:

- □ With a switch
 - □ No shared collision domains ! no collision ! no need for CSMA/CD
 - □ Allows full-duplex operation of each link
- With a hub
 - □ Collisions, half duplex, CSMA/CD
 - Maximum cable distance is reduced to 25 m
 - Actually: not very sensible combination from a cost/performance perspective (you already paid the cabling cost...)

□ Cabling:

Name	Cable	Max. segment Advantages	
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP


Further Ethernet Evolution

- □ Of course, the speed evolution did not stop at 1 Gbit/s
 - □ 2.5 GBASE-T: 2.5 Gbit/s
 - □ 5 GBASE-T: 5 Gbit/s
 - □ 10 GBASE-T: 10 Gbit/s
 - □ 25 GBASE-T: 25 Gbit/s
 - □ 40 GBASE-T: 40 Gbit/s
 - □ In 2018, the IEEE started work on 100 Gbit/s, 200 Gbit/s & 400 Gbit/s

Some observations:

- The higher the bitrate, the shorter the maximum cable length
- □ At rates higher than 10 Gbit/s different connectors than RJ45 are used
- □ At rates ≥ 10 Gbit/s energy consumption of transmission over copper raises significantly
- Fiber optical transmission can support much larger distances, has lower error rates, uses less energy and is thus often preferred for very high data rates

Telematics I	(SS 2024): 05 -	Medium	Access	Control
	(

MAC protocols are a crucial ingredient, pivotal for good performance

Static multiplexing just won't do for bursty traffic

- □ Main categories: Collision, collision-free, limited contention
- □ Main figures of merit: Throughput, delay, fairness
 - □ There hardly is a "best" solution
- □ Important case study: Ethernet
 - Main lesson to be learned: Keep it simple!

