
1

Increasing Resilience of SD-WAN by Distributing
the Control Plane [Extended Version]

Friedrich Altheide Simon Buttgereit Michael Rossberg

Abstract—Modern WAN interconnects utilize SD-WAN to
automatically respond to network changes and improve link
utilization, latency, and availability. Therefore, they incorporate
controllers with a centralized view, which collect network state
from managed gateways, calculate suitable forwarding actions,
and distribute them accordingly. However, this limits the robust-
ness and availability of the network control plane, especially in
the event of node or partial network outages. In this paper,
we propose a distributed and highly robust SD-WAN control
plane without any central or regional controller. Our solution can
handle arbitrary device failures as well as network partitioning.
The distributed forwarding decisions are based on user-defined,
dynamically evaluated path cost functions, and consider not
only path quality but also quality fluctuations. The evaluation
shows that our approach can handle several thousand SD-
WAN gateways and hundreds of network policies in terms of
computation. Further, the communication overhead introduced
due to its distributed architecture is discussed and shown to be
negligible compared to a central approach.

This paper is an extended version of our work published in [1].
It describes the information transmitted between sites as well as
a strategy for deploying policies, discusses approaches reducing
communication bandwidth, introduces grouping of multiple flows
without requiring explicit coordination, and provides a detailed
analysis of the bandwidth required.

Index Terms—SD-WAN, SDN, Robustness, Distributed Systems

I. INTRODUCTION

To enable per-application-based traffic engineering, modern
networks are continuously monitored to automatically react to
network changes e.g., by adapting the routes of flows inside
the controlled network. This improves the per-flow through-
put, end-to-end latency, and ultimately, experienced quality.
The presumably most common technique to achieve such
an automatic, fine-grained traffic control is Software Defined
Networking (SDN). When used between remote locations
connected over one or more Wide Area Network (WAN), it is
referred to as Software Defined WAN (SD-WAN).

In general, SD-WAN comprises of centralized SD-WAN
controllers, programmed with abstract policies, which decide
where to route traffic. Each policy defines how different
traffic should be handled between the SD-WAN gateways
under the management of the controller (see Fig. 1), and can
be updated if requirements change. Based on these global
policies, SD-WAN controllers select a connection suitable

Friedrich Altheide is with the secunet Security Networks AG, Germany
(e-mail: friedrich.altheide@secunet.com).

Simon Buttgereit (corresponding author) and Michael Rossberg are with
the Telematics and Computer Networks Group at the Technische Universität
Ilmenau, Germany (e-mail: firstname.lastname@tu-ilmenau.de).

for a specific traffic flow. In some cases, it also initiates
the establishment of connections between the gateways. In
this context, a connection typically refers to an end-to-end
association between two gateways, which can be established
through a variety of means such as a VPN tunnel or an
MPLS label path, combined with a unique connection ID. To
make qualified decisions where to route flows based on the
current network state, the controller regularly acquires network
topology information from the managed SD-WAN gateways.
This information is obtained either by querying the gateways
or by proactively receiving relevant data, such as the currently
established tunnels and their properties, e.g., latency, error
rate, or current usage, but also device-specific information
like the current utilization of the gateway or its WAN uplinks.
Once a decision is made, corresponding forwarding rules are
sent to the SD-WAN gateways, which realize the forwarding
decisions.

The centralized view enables the programming of complex
network behaviors with relatively simple and comprehensive
network programs, which are executed on the controller. To-
day’s widely deployed SD-WAN solutions offer comparatively
simple, automatic, flexible, and fine-grained traffic control
to optimize routing, both per network flow, but also on a
more global scale. But to retain reactivity to link failures or
overload situations, a permanent connection to (some kind
of) centralized controller is required. Although it is common
to deploy multiple controllers for high availability across an
SD-WAN infrastructure, they can still pose a neuralgic point,
particularly in scenarios involving partial network partition-
ing. Firstly, the deployed SDN controllers may not be able
to exchange state appropriately due to high latency, packet
errors, or reachability/connectivity issues. Secondly, WAN
partitioning may result in SDN devices losing connectivity
to all controllers, making them incapable of responding to
new events such as topology modifications. Consequently, the
robustness and availability of the network control plane are
decreased significantly.

Based on the foundational SDN requirements outlined by
Stallings [2] and the fundamental observations about internet
routing by Paxson [3], we state that a solution for an automatic,
fine granular SD-WAN traffic control should support the
implementation of global network policies on a global and
local scale and facilitate:
(F1) decisions based on the current Quality of Service (QoS)

properties of the used WAN connections,
(F2) flexible packet matching,
(F3) symmetric traffic flows, e.g., to ease network trou-

bleshooting [3], or to cope with Network Address Trans-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0000-7267-1573
https://orcid.org/0009-0004-5184-7866
https://orcid.org/0009-0002-0749-5336

2

lation (NAT) and stateful firewalling,
(F4) load balancing traffic across multiple gateways of a

single site (gateway cluster),
(F5) high availability support, e.g., clusters with geo-

redundancy, as well as
(F6) simple firewalling (blocking of flows).
Furthermore, a solution should be:
(N1) highly available,
(N2) robust against network failures and partitioning as well

as arbitrary node failures,
(N3) reactive towards network changes, yet provide stable

end-to-end connections,
(N4) be able to handle thousands of SD-WAN gateways,
(N5) offer a high flexibility for an administrator, yet still be

comprehensible and
(N6) should be independent of any kind of exposed infras-

tructure.
Unlike existing solutions, this paper presents an SD-WAN ar-
chitecture that satisfies the stated requirements by completely
distributing the control plane onto all SD-WAN gateways.

By dividing global network policies into gateway-local
policies and selecting WAN connections based on user-defined
cost function values, as well as estimations of value fluctua-
tions, we achieve highly robust and available traffic engineer-
ing that remains responsive even in the event of device and
network failures.

This paper is an extended version of our work published
in [1] and is organized as follows: The subsequent section
presents the current state of the art. Compared to [1] it is
extended by specifying the information exchanged between the
different SDN components. Section III and IV describe new
methods of consequently distributing the SD-WAN control
plane and how to program such a distributed system. Section
III is extended by describing a fundamental policy deployment
strategy, while section IV additionally discusses approaches
that reduce the communication bandwidth. Further, grouping
of multiple flows without requiring explicit coordination are
newly introduced. Following, in Sec. V the proposed archi-
tecture is evaluated, extending the original paper with a more
detailed analysis of the required bandwidth. The paper closes
with a conclusion and a description of possible future work.

II. RELATED WORK & BACKGROUND

One solution to overcome the described issues resulting from
a centralized architecture could be the use of well-established
distributed routing protocols. The Border Gateway Protocol
(BGP) is the major routing protocol for large networks. It
offers exceptional scalability, availability, and robustness by
avoiding the need for a central instance. Further, BGP supports
flexible parameterization to differentiate paths through a net-
work. Yet, aside from destination prefixes, it is not capable of
routing fine granular traffic flows over different paths without
sacrificing scalability. Additionally, BGP does not natively
support the representation of bandwidths or latency in its
parameters, making it unable to automatically optimize these
network characteristics. To achieve more flexibility, distributed
routing protocols can be extended by a central coordinator.

WAN 2

WAN 1

SD-WAN
Controllers

Fig. 1. A centralized SD-WAN infrastructure decides how to route traffic
between the different single-gateway and cluster sites. Any connectivity issue
between an SD-WAN gateway and the controller or the different controllers
results in reactivity issues of the control plane. Thus, the robustness of the
control plane is quite limited.

Fibbing [4] is such a hybrid approach, allowing a central entity
to influence unmodified Open Shortest Path First (OSPF)
routers by introducing fake links and nodes [4]. While this
approach is very promising in regards to its robustness, the
steering granularity still cannot match SDN.

To support a fine-grained traffic control while overcoming
the described issues of SDN, a common approach is to deploy
distributed controllers. The simplest design is the usage of a
clustered controller infrastructure with common state being
synchronized between the elements. Every SDN device is
assigned to one controller [5]. This assignment can either be
static or dynamic to support automatic load-balancing between
the cluster elements [6], [7]. If synchronization between the
controllers is done with some kind of consent protocol such
as Paxos [8] the number of cluster nodes and latency among
them, as well as the number of consensuses required [9]
become a limiting factor. To limit this problem, some SDN
controllers use eventual consistency [10], yet the amount of
data to synchronize becomes enormous for a large number
of SDN controllers. While horizontal clustering improves the
availability of the cluster itself, the reactivity of the controlled
network remains limited when gateways cannot reach the
controllers due to network issues. Hence, clusters are typically
distributed among different regions to compensate regional
network outages [11], [12]. While this improves the availabil-
ity, it also introduces additional latency to the synchronization
messages, thus limits the scalability.

This limitation can be lifted by using a hierarchical con-
troller design [13]–[15], which splits the network in several
independent network regions. Each region is managed by its
own independent regional controller. To steer traffic between
regions, a global controller is introduced. Hence, failures of
a regional controller do not affect other regions. Although
this design seems promising and offers good scalability, it
suffers from availability issues as the routing between regions

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

3

Data
Category Interval

per per per per regularly on onceconnection uplink policy device change

Latency ✗ ✗
Rx error rate ✗ ✗ ✗
Tx bandwidth ✗ ✗ ✗
Rx bandwidth ✗ ✗ ✗
CPU load ✗ ✗
Temperature ✗ ✗
Flow rule information ✗ ✗
Connection → Uplink ✗ ✗
Link speed ✗ ✗
Booked bandwidth ✗ ✗
Reachability of

✗ ✗ ✗site-local network

TABLE I
RELEVANT INFORMATION REQUIRED FOR A DECIDING ENTITY.

cannot adapt to network changes, e.g., high link utilization
and changed error rates, once the global controller becomes
unreachable. Consequently, connectivity problems between
controllers can result in inter-regional network partitions.
Additionally, depending on the sizes of the regions, outages
of regional controllers may still have a substantial impact.

Background on network statistics: As outlined before,
deciding instances (the SD-WAN controllers) always have
to acquire the current network state to make qualified de-
cisions. In a scenario with a single controller, all gateways
must send information about their established connections
and gateway-specific information to the controller. Table I
lists and categorizes these based on how often they must be
transmitted and if there are collected per connection, uplink,
policy, or per device. Note that, depending on the concrete
scenario the required information may vary. Some information
only needs to be sent once, e.g., during the establishment of
a connection, while other information requires transmission
upon change or at regular intervals. Some data describes
characteristics of the gateway itself, yet the majority of the
information concerns the status of uplinks or the established
connections. It is worth noting that in scenarios with regional
controllers, the decision-making process would only require
data about the connections within their specific region. Yet,
inter-regional information is usually relayed by the regional
controllers. Subsequently, the regional controllers receive all
data and selectively send information pertaining the inter-
region connections to the central controllers. Additionally, it
has become common practice to periodically retrieve infor-
mation about the currently deployed flow rules for reasons
of robustness. The controller subsequently sends flow rules,
connection establishment requests (e.g. in form of a tunnel),
and, depending on the used southbound protocol, statistic
requests to the gateways.

III. DISTRIBUTING THE SD-WAN CONTROL PLANE

In this work, we propose to fully distribute the control plane
and thus the decision process into the distributed SD-WAN
gateways (see Fig. 2). These distributed entities must then
coordinate how to route flows while achieving scalability
and minimizing the control overhead. The entire concept is

WAN 2

WAN 1

Fig. 2. SD-WAN controller elements (green) are placed on each gateway and
coordinate their decisions on whether and how to route/distribute network
traffic between their sites.

designed to function without the need for any kind of external
instance. It ensures that any pair of sites that is able to
communicate, e.g., by establishing a connection between its
SD-WAN gateways, directly coordinates their respective intra-
site traffic. Hence, a failure of one site or its gateways only
affects connections with or within that site, while other sites
are unaffected and can still realize their network policies. But,
to achieve high availability (A) and partition tolerance (P),
it may be necessary to sacrifice strong consistency (C) as
explained by the CAP theorem [16]. Consequently, protocols
such as Paxos [8], are not suitable under all conditions. Instead,
we employ the method of eventual consistency [17], which
ensures that the entire network converges to a consensus
on how to handle network traffic. This means that, after a
network failure, any discrepancies or conflicts that arose will
be resolved over time, and the network will be configured with
a homogeneous view.

A. Distributed global network policies

A global SD-WAN policy typically comprises a traffic descrip-
tion and an objective.

1) The traffic description defines the flow that is described
by the policy. It is typically based on the packet head-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

4

ers and can contain multiple conjunctive or disjunctive
matching criteria, e.g., HTTPS traffic (usually identified
by TCP port 443 or 8443) tagged with VLAN ID 20.

2) The objective describes how to handle the traffic flow
defined by the traffic description. In the context of
SD-WAN the objective determines whether matched
packets should be dropped (firewalling) or the desired
quality of the used connection.

Implementing such a global policy in a distributed manner
by coordinating decisions among a potentially large number
of gateways can be complex and may not scale well if
done improperly. In existing SD-WAN solutions, this problem
is typically avoided as central SD-WAN controllers have
global knowledge of network topology and state. While a
centralized instance may be necessary for some complex
SD-WAN policies to coordinate all decisions, it is not required
for the majority. This is because SD-WAN policies usually
involve paths between at most two sites, which means that
coordination on routing decisions can be limited to the two
sites alone. Global policies that relate solely to traffic within a
single site can be managed within that specific site but fall
outside the scope of this work. Note that we assume that
the IP ranges of the site-local networks of different SD-WAN
gateways are disjoint unless they connect the same site in form
of a cluster (more details follow).

To describe policies that are limited to one pair of sites we
introduce the term inter-site policy. A global network policy
is transformed into multiple inter-site policies, each describing
a specific flow between exactly two sites or more precisely
between two subnets (see Fig. 3). Limiting each inter-site
policy to exactly one subnet at each site simplifies selecting
a connection for an inter-site policy, as different connections
to the same remote site may announce different local subnets
(clustering). Without this limitation, some policies may not
be feasiable (details in Sec. IV-C). Consequently, a global
policy encompassing multiple subnets of a pair of sites is
split into multiple independent inter-site policies each with
one source and one destination subnet. This approach enables
local decision-making by SD-WAN gateways (details follow
in Sec. III-B).

The transformation of a global policy into multiple inter-
site policies can be executed by a centralized manage-
ment/monitoring component, a local administration tool, or
even the gateway itself. Implementing this transformation in
the gateway allows for the distribution of global policies
between gateways without involving a third party. An admin-
istrator could create a global policy, transfer it to a single
gateway, and as long as the network is unpartitioned, the
policy may propagate to all gateways. While this approach can
distribute policies, its design necessitates additional memory
on the gateways to store all network policies. Further, there has
to be a method of handling conflicts between different policy
revisions. The following rules implement a relatively basic
approach (more sophisticated approaches can be considered):

R1 Every policy can be identified by a deterministic ID,
e.g., the hash of the traffic description and policy.

R2 The current policy configuration of a gateway is called

Global policy:

For all kind of traffic
use low-latency con-
nections WAN 2

WAN 1

A
10.10.0.0/24

B
192.20.0.0/16

C
172.45.10.0/24

Inter site policies:

1. For traffic between
site A and B use low-
latency connection.
2. For traffic between
site A and C use low-
latency connection.
3. For traffic between
site B and C use low-
latency connection.

A
10.10.0.0/24

WAN 2

WAN 1

WAN 2

WAN 1

WAN 2

WAN 1

B
192.20.0.0/16

C
172.45.10.0/24

A
10.10.0.0/24

B
192.20.0.0/16

C
172.45.10.0/24

Fig. 3. Global policy is transformed into three inter-site policies between
each pair of sites/networks.

policy set and represented by the IDs of all configured
policies along with a set counter.

R3 If a gateway receives a policy set, it checks if the
received is newer than the currently configured one,
e.g., by comparing a set counter. If it is, it checks for
unknown policy IDs within the new set, requests the
appropriate policies from the remote gateway, switches
to the new policy set, and further distributes the new
policy set. Otherwise, it keeps the old configuration.

For this simple approach, the used counters must be synchro-
nized out-of-band, else (different) administrators may config-
ure and deploy different policy sets with the same counter.
This synchronization mechanism could be implemented by
some kind of deployment and monitoring platform, which
does not affect the availability and robustness of the decision
algorithm itself yet provides an overview over the currently
active policies.

B. Realizing inter-site policies

We aim to support two types of SD-WAN policies: Firewalling
(drop) policies and routing policies. Firewalling policies do not
require advanced synchronization because each gateway in-
volved can independently check packets to determine whether
to forward or drop them. Routing policies, in contrast, require
coordination between the participating instances. To preempt
potential instabilities that may arise from diverse underlay
conditions, or overlay NAT and state-full firewalling, it is
advantageous for flows between two sites to employ symmetric
paths in both directions. To achieve this symmetry, protocols
that allow each site to make independent decisions should be
avoided. Instead, both sites must coordinate which WAN con-
nection to choose. As the available connections between two
sites may have a high latency, e.g., due to the physical distance,
classical consensus protocols may limit the responsiveness.
Instead, we propose to deterministically select one site as the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

5

Site BSite A

WANA2

B1
A1

A3
B2

A-B Policy: HTTP (Leader: A1)

A-B Policy: SSH (Leader: A2)

A-B Policy: Backups (Leader: A3)

Fig. 4. Two multi-gateway sites A and B are configured with three inter-
site policies with site A being the leading site. To achieve a good scalability,
the role of the inter-site policy leader for the three different policies can be
distributed across gateway A1, A2, and A3. The two sites are connected
by three connections (). For the HTTP policy, which is led by A1, the
regularly transferred and relayed statistic data (

➔

) as well as the distributed
decisions (➔) are depicted. Note that this process happens for all policies,
yet is not displayed for the sake of simplicity.

leading site. The leading site is then responsible of choosing
a single connection for each inter-site policy between itself
and the remote site. The latter must follow these decisions.
To select the leading site for each pair of sites, we compare
the hashes of the concatenated site IDs and prefer the smaller
one:

hash(IDsite1 |IDsite2)
?
< hash(IDsite2 |IDsite1)

This comparison prevents the site with the smallest ID from
always taking the role of the leading site. Instead, the number
of leader roles per site is evenly distributed in larger networks
(details follow in evaluation).

For reasons of high availability, one or both sites may
consist of multiple SD-WAN gateways, called a cluster of
gateways. To allow a good scalability, availability, and robust-
ness, we propose to further distribute the decision-making of
the individual inter-site policies within a cluster. We therefore
introduce the role of the inter-site policy leader. Gateways
assigned to this role make all decisions for a concrete inter-site
policy. Other gateways within the same site, as well as those in
the remote site, then follow the decisions made by the leader
for that particular inter-site policy. Since a site typically will
be configured with multiple inter-site policies, the different
inter-site policy leaders can be distributed across all SD-WAN
gateways of the cluster (see Fig. 4).

The decision-making process is illustrated for three sites as
an example in Fig. 5. It starts with each gateway notifying the
inter-site policy leader of all connections that are appropriate
for the given policy by transmitting the current connection and
device statistics (more details follow in Sec. IV). This action
is triggered by a local and policy-specific statistic timer. To
deal with outliers, statistics are fetched more frequently than
specified by the statistic timer from the gateway’s data plane
and smoothened, e.g., with a moving average. Additionally,
the fluctuation for each statistical value is determined by
computing the moving average of the difference between
the smoothened and current values. This corresponds to an

iteratively approximated mean absolute deviation, i.e., the
first absolute central moment. The smoothened statistics and
fluctuations are sent over the available connections (see Fig. 4)
and relayed within the leading site, either over the site’s
local network or additional intra-site connections. This process
ensures that the leading gateway has information about all
available connections as well as remote site gateways.

When a decision timer triggers, the leading gateway selects
a distinct connection to the remote site. It then notifies the
remote gateway by sending an activation message containing
the policy ID over the selected connection. If the decision
alters a previous one that involved another gateway, the former
decision is revoked by sending a deactivation message contain-
ing the policy ID through the previously chosen connection.
If the previous connection no longer exists, this step can be
skipped. In cases where the decision remains the same, a
small message is dispatched to keep the soft-state alive. Upon
receiving a decision, a gateway generates and installs new
forwarding rules into its data plane.

All these steps are repeated periodically and can be divided
into rounds/periods. However, in the event of a connection
failure, this information must be processed immediately. The
leading gateway calculates the new decisions and disseminates
it without waiting for a timer. It should be noted that each
gateway can take on the leader role for multiple inter-site
policies simultaneously, e.g., site C in Fig. 5 for A-C and B-C.

To limit the impact of gateway or network failures, the
inter-site policy leader role is assigned to the gateway that
the policy’s network flow is currently sent over. This ap-
proach enhances both robustness and availability compared
to randomly distributing inter-site policy leader roles. After
startup, each gateway first selects itself as the leader for all
inter-site policies where it is part of the leading site. If a
gateway discovers another gateway within the same site that it
is currently unaware of, it establishes a bidirectional channel.
Both gateways then exchange information about the inter-
site policies they are currently leading and the quality of
their selected connections. In cases where both gateways are
equally suited for a particular policy, the gateway with the
higher ID relinquishes its role, resulting in the establishment
of a single leader. In all other cases the gateway with the
better connection wins and stays the policy leader. After both
gateways exchanged their leading roles, exactly one leader
exists for every inter-site policy. If the leader selects to route
the flow via another gateway, it informs all gateways and hands
over the policy leader role.

To address situations where multiple gateways claim the
role of the inter-site policy, each leader distributes its current
decision and its quality to all other cluster members after each
round. Hence, by applying the rules stated above each cluster
member is aware of the current leader for each policy. In order
to sustain responsiveness in the event of a leading gateway
failure, each decision has a lifetime texp = ttimer + c with
c > 0. Each gateway in the leading site periodically checks
for expired decisions. For each expired decision, the gateway
announces itself as the new leader to all other gateways within
the site. The presented rules as well as the regular exchange of
the current decisions ensure that over time only one inter-site

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

6

Site BSite A Site C

No statistics received
yet, thus calculate and
send no decision

Leader site for: A-C
B-CLeader site for: A-BNo leader

Leader for all
connections, thus no
other instance needs
own statistics

No leader, thus no
decisions to make and
distribute

No new decision,
only send keepalive

Decision Timer

Statistic timer
Statistics B

Statistic Timer
Statistics A

Statistics Timer

Decision Timer

Decision Timer

Decision A-BInsert flow rules

Insert flow rules
Insert flow rules

Decision Timer
Decision A-C

Decision A-B
Insert flow rules

Statistics timer
Statistics B

Statistic Timer

Statistics A

Statistics Timer

Connection failure
Decision A-C

Decision A-B
Insert flow rules

Insert flow rules

Decision Timer

Keepalive

Insert flow rules

Write into DB

Read from DB

Read from DB

Read from DB

Write into DB

Write into DBWrite into DB

Write into DB

Write into DB

Write into DB

Write into DB

Write into DB

Write into DB

Read from DB

Fig. 5. Time sequence of decision making between three sites. Site A with no leader role only sends statistics and statistic fluctuation, receives decisions,
and writes appropriate flow rules into the data plane. If a site has one (B) or multiple leading roles (C), it receives and stores statistics along with their
fluctuations. Based on these, a decision is calculated and then transmitted to the appropriate remote site. After a decision was received by a site, flow rules
are written into the data plane of the site’s gateways. Both steps of sending statistics and calculating decisions are triggered by timers. In case of a connection
failure, a new decision is calculated immediately, and the timer is restarted. For sake of readability, the statistic timers as well as the decision timers of one site
are executed at the same time. It should be noted that in reality all timers are not synchronized and operate independently. The process of sending/receiving
statistics and calculating/receiving a decision for a specific inter-site policy can be divided into rounds. Each round lasts for one timer interval and starts when
the statistic timer is triggered.

policy leader will remain, even if multiple gateways choose to
promote themselves as the leader simultaneously.

Due to connection failures, a clustered leading site may
split into multiple partitions that are unable to communicate
with each other. We assume that each of the site’s subnets
is connected to at most one partition, since otherwise a
connection between the partitions would exists. Since inter-site
policies exclusively contain a single subnet per site, as defined
in Sec. III-A, their functionality remains intact. Even if two
gateways should temporarily elect themselves as leaders after
connections are regained, the protocol ensures that eventually
only one leader remains.

IV. PROGRAMMING A DISTRIBUTED CONTROL PLANE

By utilizing the described architecture, decisions can be made
in a fully distributed manner, eliminating the requirement
for a central component or global/regional knowledge. Thus,
telling the control plane on how to react to changing network

characteristics is not realizable by one simple network program
deployed on a central component. However, for reasons of
usability, a simple but comprehensive method of programming
the distributed system is required. We therefore propose to
let the distributed gateways weight every connection based
on locally available data such as connection statistics, gate-
way utilization and/or the current time. The calculation of
a specific connection’s weight is accomplished through the
use of customizable metric functions within the distributed
SD-WAN gateways. These functions, as demonstrated in List-
ing 1, determine a weight > 0 for each connection. The
idea is to let the inter-site policy leader compare different
connections using their calculated weights with lower cost
considered as the better connection. As a connection involves
two endpoints, either both endpoints weight their statistics
independently and send the weight to their policy leaders,
or the connection statistics are transferred to the leading site,
where they are weighted and then sent to the leaders. In both

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

7

fn costs(con_stats, util, timestamp) -> f64 {
if(timestamp between 8am and 10am) {
// classify connections in 10ms steps
return con_stats.latency().as_ms().round() / 10

}
if(timestamp between 10pm and 4am) {

// select no connection and block traffic
return f64::MAX;

}
// prefer connection with lowest latency
return con_stats.latency().as_ms();

}

Listing 1. Based on the connection statistics and the current time a pro-
grammed metric function returns a weight.

cases the leader can then sum both weights to a connection
weight, which is then used for comparing connections. If the
goal is to balance the execution time between both sites, it
could be beneficial to evaluate the statistics independently
on each endpoint. Yet, [1] revealed that while such a design
is technically feasible, it significantly reduces scalability and
works only for very small numbers of policies. This is because,
instead of transmitting statistics once, the solution requires the
transmission of all metric weights of each connection, leading
to a linear bandwidth increase when new policies are installed.
Thus, all weights of an inter-site policy should be evaluated
at the point where the decision is made.

Either way, the programmed metric functions used to weight
the statistics should be easily changeable to provide high
flexibility for administrators. This enables the adjustment
of existing steering properties or the introduction of new
QoS requirements. Further, robustness (e.g., limiting resource
consumption) and security must be ensured, e.g., by isolating
the metric function execution. To fulfill these requirements,
we utilize the binary format WebAssembly (Wasm) [18],
which not only is executed with near native speed inside
web browsers, but also in isolated execution environments
called WebAssembly System Interface (WASI)1. It allows a
user to write costs() functions in any supported language2,
compile them into a textual representation and append it to the
global and subsequently to the inter-site policies. The binary
is then loaded into the gateway’s WASI execution environment
and used to calculate the weight of a connection for a specific
policy.

A. Making stable decisions

After receiving the weights of all connections, each inter-site
policy leader needs to select one distinct connection for their
policy. Like any traffic control algorithm, we aim to increase
the quality of all flows while also ensuring stable end-to-end
connections. Yet, optimizing the quality of inter-site policies
presents several challenges that the selection algorithm must
address:

1) Selecting the best available connection for all inter-site
policies might decrease the quality of that connection.

1https://wasi.dev/
2https://github.com/appcypher/awesome-wasm-langs

Costs

Best connections

High priority switch

Low priority switch

c(conbest) ƒ(conbest)

Fig. 6. All connections with costs inside the fluctuation of the “best”
connection c(conbest) ± f(conbest) are included into the best connection
class. If the currently used connection is outside this class, the inter-site policy
should be switched to a class member over time (dotted lines). Depending on
the current cost difference, the switch is scheduled soon or later.

2) Load balancing different inter-site policies onto the n
metrical best connections might decrease quality if n is
chosen too small (e.g., bandwidth exhaustion), yet also
if chosen too high, e.g., higher delay for flows routed
over nth best connection.

3) Switching traffic of multiple inter-site policies simulta-
neously might (negatively) affect each other.

4) Inter-site policies might continuously toggle between
connections since switching could decrease the quality
of the selected connection while the previous connec-
tions quality might recover due to reduced utilization.

5) If one connection consistently offers slightly better costs
over an extended period of time for an inter-site pol-
icy, it should be used to improve overall quality. The
connection switch should neither be too fast (e.g., only
temporary low costs) nor too slow (poor quality until
switch is performed).

These challenges do not only occur because of dynamically
programmed metric functions, but also because of varying
WAN quality as well as variations in the number and size of
traffic flows. Furthermore, objectives can conflict with each
other, like reducing toggles between two connections and
preferring the better connection in the long run. As a result,
relying on a static threshold per metric and switching when it is
exceeded will not adequately address the challenges described.
Instead, a dynamic threshold is necessary. Its evaluation has to
be efficient in computation but also in memory consumption.
Hence, incremental calculations are preferred.

As a solution for the presented challenges, we propose a
class of best connections. This class includes all connections
whose current metric value falls within the fluctuation range
of the best available connection f(conbest) (see Fig. 6). As
with the handling of outliers when collecting statistics, the
calculated metric values are smoothened, e.g., with a moving
average, and a fluctuation is calculated.

When employing the first absolute central moment for
fluctuation calculation, we observed that the fluctuation of
the best connection will quickly converge to a value close
to 0 if the metric weight is nearly static, e.g., the delay
on an unutilized link. However, in case of extremely short
quality degradations, the fluctuation also stays close to 0.
Thus, our approach to calculate the fluctuation may not be the
perfect choice for all scenarios. For example, weighting rapidly
fluctuating network situations quicker than stable situations
may be more suitable. The evaluation of different fluctuation

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://wasi.dev/
https://github.com/appcypher/awesome-wasm-langs

8

metrics and their application in different scenarios is, however,
left for future work.

Switching an inter-site policy to another connection within
the class of best connections does not offer a statistically
relevant advantage, since all metrics within the class are
insignificantly different from the best connection for the given
metric. Yet, if the used connection is not part of the class,
a (random) connection within the class (see Fig. 6) should
be selected to transfer the corresponding traffic over a path
with higher quality. To prevent instabilities due to many
switches at the same time, the decision to switch to a different
connection is decided in each round using a Bernoulli distribu-
tion independently from the previous round. Considered over
multiple rounds, it corresponds to a geometric distribution. The
probability p whether to switch to another connection in this
decision period/round is determined by the difference between
the current metric value c(concur) and the upper limit of the
class of best connections c(conbest) + f(conbest).

p = max

(
α, 1− c(conbest) + f(conbest)

c(concurrent)

)
: α ∈ (0, 1]

If the previous connection is only slightly better than the
best connection, p will diverge to the minimal switching
probability α. Otherwise, the value of p will be between α
and 1, depending on the difference between the connections.
Therefore, α influences how long an inter-site policy stays on
a connection that is nearly similar to the best connection but
not part of the class of best connections. In Sec. V-A, we
evaluate the duration required for a connection switch, taking
into account different values of p.

B. Limiting the required communication

As outlined in the previous sections, all connected SD-WAN
gateways have to directly exchange information regarding its
established connections, WAN uplinks, policies as well as
device-specific information like the CPU load (detailed list
in Table I). This information must be directly exchanged
among all connected gateways. To also support low bandwidth
uplinks, the required bandwidth should be reduced. The sub-
sequent paragraphs will outline various approaches to achieve
this reduction.

1) Compression: Lossless compression can be applied to
the data being transmitted, trading off some bandwidth for
extra computation time in compression and decompression.
For measured data modern compression algorithms typically
achieve compression ratios ranging from 1.5 to 3 [19]. Yet, it
is important to note that this process is most effective when
different statistic values and/or decisions are transmitted as
groups rather than individually.

2) Selective Send: By design, the leading site requires
statistics from all established connections to select a suitable
connection for each inter-site network policy. Hence, it is
not possible to only send statistics for connections that are
currently in use. Instead, the statistic values may be limited
to those required by the leading site, e.g., by annotating
each metric function with the required values. Then, non-
leading gateways can spare out irrelevant information from

the control messages. A simple and practical approach could
be to categorize metric functions into different classes based
on the statistics values they use. This way, a local gateway can
easily determine which statistics to send. For smaller setups
with only a limited number of distinct metric functions, this
approach can lead to reduced bandwidth usage. Nonetheless,
based on the statistics listed in Table I, even with slightly
more metric functions, nearly all statistic values are likely to
be used. In such cases, the benefit remains marginal.

3) Reduced statistic/decision frequency: Changing the in-
terval of sending statistics and making decisions directly
impacts the amount of data to send but also the system’s
responsiveness (see Sec. V-A for more details). Thus, the inter-
val should be tailored to the concrete scenario’s requirements.
For certain scenarios, connection statistics might require more
frequent updates than uplink or device information. As a result,
multiple independent sending intervals could be introduced for
the different statistic types, to reduce the bandwidth required.

4) Reducing redundant information: If a gateway has mul-
tiple connections to the same remote gateway, it should send
per-device and per-uplink information only once. Further, if
a gateway with a low-bandwidth uplink has set up multiple
connections to a cluster, it can send per-device and per uplink
information to just one of the cluster gateways. The gateways
of the remote site can then distribute the information within the
cluster. This approach can also be employed for the decision-
sending process. Note, that while this approach reduces the
number of control messages, the following sites must be
notified of the current cluster members of a leading site to
detect cluster partitions. Otherwise, per-device and per-uplink
statistics may not be available in all partitions resulting in
partitions lacking the required statistics.

5) Statistic Reflectors: To reduce the strain at low-
bandwidth gateways, particular well-connected sites can be
designated as statistic reflectors that would forward statistics
as needed. The assignment can be either static or dynamic. If a
single reflector was used, the concept would remain relatively
straightforward. Yet, to increase robustness and balance load
across multiple sites, it is beneficial to have multiple reflectors.

6) Distributing control messages over time: The process
of sending statistics to the different remote sites should be
distributed over time. While this method does not reduce the
required bandwidth it helps avoiding burst of control messages.
This method could also be applied to any data sent to one site,
yet this increases header overhead.

C. Multi-Flow Policies

The described distributed SD-WAN solution facilitates policy-
based routing for specific traffic flows. Nonetheless, in certain
scenarios, there may be the desire to direct multiple flows
over a single pair of gateways or even the same connection,
e.g., when using intrusion detection systems, or multi-flow
applications expecting similar latency across all flows. If
multiple flows share the same source and destination subnet,
disjunctive traffic descriptions can be used within a single
inter-site policy, e.g., all TCP traffic with destination ports 443
or 8443 between 10.0.0.0/24 and 192.168.0.0/24. Any flow

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

9

matching the description will be treated as a single flow and
will always use the same connection.

However, grouping of multiple flows with different sub-
nets, e.g., all HTTP flows destined to 172.168.0.0/24 or
182.168.0.0/24 or 192.168.0.0/24, is not possible out of the
box, since the inter-site policies only define flows between
exactly one subnet at each site (see Sec. III-A). Thus, such a
global policy would result in distinct inter-site policies for
every pair of subnets, each deciding independently which
connection to choose. Consequently, multiple different con-
nections could be utilized. Forcing a set of inter-site policies
to only use connections between a pair of gateways or even one
specific connection, requires additional coordination between
these inter-site policies, especially if partitioning scenarios
within in cluster shall be considered. To avoid this additional
coordination, we introduce the concept of virtual multi-flow
groups, which aggregate a set of inter-site policies that should
be treated uniformly. Configuration options allow specifying
whether this “uniform treatment” means using a single con-
nection (no load-balancing wanted) or to utilize connections
between one pair of gateways (load-balancing over different
connections still possible).

To implement the preference of making uniform decisions,
we modify the process of selecting a connection from the
class of best connections. The objective is not to impose a
decision, but rather to guide independent inter-site policies
toward a cohesive resolution, eliminating the necessity for
explicit coordination. Instead of choosing a class member
randomly, we enhance the likelihood of selecting a connection
to the gateway with the highest number of subnets associated
with the multi-flow group. In case of multiple candidates,
connections to the gateway with the lower gateway ID take
precedence. In configurations mandating a single connection,
this choice is further refined by incorporating the connection
ID.

To reduce the number of used connections in the long
term, these specialized inter-site policies are not obliged to
remain on a previous selected connection that is still part of
class of the best connection. Instead, an inter-site policy can
sporadically check if a different connection within the class
of best connections exists with a gateway announcing more of
the associated subnets. Thus, if a pair of gateways announces
all required subnets and its connections are part of the class
of the best connections, all inter-site policies part of the multi-
flow group will eventually transition to that connection. It is
important to note that if a connection announces all needed
subnets, but does not fall within the class of best connections,
it will not be used. In case, no pair exists offering all required
subnets, multiple pairs are used. When a consistent decision
over a single connection is required, it is imperative to utilize
only one metric program. Yet, if the sole requirement is for
the pair of gateways to be identical, multiple different metric
programs can be employed.

In essence, the introduction of multi-flow groups provides
a straightforward method of uniformly routing specific traffic
flows without the need for additional complex synchronization
methods. This approach is applicable in cluster scenarios
where members are connected to different sets of local subnets

and is also capable of handling cluster partitioning.

V. EVALUATION

The evaluation of the distributed SD-WAN solution follows
the structure of the requirements in section I. The proposed
fully distributed solution (N1, N6) is able to implement global
traffic policies. Matched flows (F2) are steered based on
programmable metric functions (N5), which reflect the current
QoS properties of the used WAN connections (F1). The deci-
sions made by one intent leader do not only facilitate steering
but can also block specific traffic flows (F6). Additionally, load
balancing among a site’s cluster members is attainable (F4),
yet symmetric routing is ensured at all time (F3).

In the following, we first evaluate the time required to
respond to changing network conditions (N3). We will then
discuss robustness (N2) and support of high availability,
especially in case of geo-redundant gateways (F5), and its
scalability (N5).

A. Reaction time

The evaluation of the response time is structured as follows:
First, we discuss the reaction delay at sudden network changes,
e.g., a failing connection. Next, we estimate the duration
for which a connection switch can be artificially delayed
enhancing the overall network stability, if the currently se-
lected connection is only marginally outside the class of best
connection.

1) Minimal reaction time: The routing decision for a spe-
cific policy involves several communication steps that impact
the minimum reaction time. Initially, an inter-site policy leader
must be selected. Next, the network conditions, in form of
connection, uplink and device statistics, are regularly sent to
the leader. The leader then calculates the appropriate decision
and distributes it. In the event of a network or device failure,
the failure must first be detected, and a new leader may need
to be determined. The process of recalculating and distributing
a decision is then repeated.

The selection of the leading site is done implicitly when
setting up a connection. The identification of the correct policy
leader happens implicitly when decisions are exchanged within
a site. Consequently, both selection mechanisms do not add
anything to the reaction time required for regular network
condition changes.

Each gateway regularly collects local information and sends
the statistics every ttimer to the leader. Updates from a remote
site take 1/2 RTTinter before being received at the leading site.
Data measured at the leading site takes 1/2 RTTintra to reach
the inter-site policy leader. Every ttimer, the policy leader
calculates a decision based on the received data and sends it
to all gateways participating in the policy. If a remote gateway
has no direct connection to the leader, updates to and decisions
from the leader have to be forwarded by other gateways of the
leading site adding 1/2 RTTintra per direction. All in all, the
reaction time sums up to:

treact ≤ RTTintra + RTTinter + 2× ttimer

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

10

0 10 20 30 40 50 60

Rounds

0.2

0.4

0.6

0.8

1.0

P
ro

p
ab

ili
ty

of
co

n
n

ec
ti

on
sw

it
ch

p =

0.7 (value with huge difference)

0.3 (value with medium difference)

0.1 (quite similar value)

Fig. 7. Probability of switching into the class of best connections for different
values of p corresponding to a geometric distribution.

In local clusters, members are expected to communicate with-
out significant delay resulting in RTTintra ≈ 0. Further, both
the statistics and decision timer have an expected delay of
1/2 ttimer until the next trigger. Consequently, the expected
reaction time is:

E(treact) = RTTinter + ttimer

The gateway that realizes the inter-site policy’s routing auto-
matically becomes its leader. Hence, a failure of the currently
used connection can be handled immediately by calculating an
appropriate response and informing both the local and remote
gateways (orange color in Fig. 5):

tcon failure =
1

2
RTTintra +

1

2
RTTinter

Gateways at the leading site detect the failure of a policy
leader when decisions are not renewed within its lifespan
texp. If a gateway detects a failure, it instantly assumes itself
as the new leader, calculates a new decision, and distributes
it. As multiple gateways may have elected themselves, a
uniform routing decision is reached after all cluster members
distributed their decisions and a single leader is chosen using
the rules described in Sec. III-B. Thus, the reaction time after
a failure of the leading gateway is:

tlead failure < texp +
1

2
RTTintra +

1

2
RTTinter

2) Artificial delay of reaction time: To maintain a high
robustness and not immediately switch a connection to a
supposedly better one, Sec. IV-A introduced the concept of
artificially extending the reaction time. Nonetheless, even if a
connection switch is delayed, eventually all inter-site policies
should use a connection inside the class of best connections.
Fig. 7 displays the probability of switching a connection when
n decision intervals (rounds) have passed. The different values
of p describe the difference between the current metric and the
class of best connections.

If the decision interval is configured to be 10 seconds, inter-
site policies with a comparatively poor metric value (p = 0.7)

have a 99.9% chance for switching into the class of best
connections in under 1minute/6 rounds. For policies with quite
similar metric values (p = 0.1) it takes 11minutes/66 rounds
to reach the same probability. Thus, a connection that briefly
leaves the class of best connections will not lose the policies
assigned to it. Nonetheless, every policy whose metric value
is not inside the class of best connections for a long time will
eventually switch into it. Yet, if the currently used connection
fails, a new decision is made without any artificial delay.

B. Robustness and high availability support
Sec. III describes how to fulfill the stated functional SD-WAN
requirements without requiring any kind of exposed infrastruc-
ture component. By using inter-site policies instead of global
policies and selecting an inter-site policy-specific leader, only
one instance controls the routing of a specific traffic flow.
Thus, if two gateways can communicate, they are also able
to coordinate decisions to realize the optimal paths according
to the deployed SD-WAN policies. The proposed algorithms
in Sec. III-B ensure that independent from any previous
network failure scenario eventually (1/2 RTT after connectivity
is regained) a single leader persists per policy. The algorithms
not only support a connection between single-gateway sites
but also clustered gateways. If a gateway fails, all its decisions
time out, and the appropriate inter-site policy leader roles will
be taken over by other gateways of the leading cluster. The
described algorithm ensures that only one gateway persists as
the leader for a specific policy.

To ensure high robustness and availability, even in the case
of geo-redundant clusters, the architecture must be capable
of handling high-latency intra-cluster connections. Sec. V-A
shows that the reaction time on changing network conditions
and failures depends on the RTTintra. Yet, the impact is
only additive and does not depend on the number of cluster
gateways. In contrast to the local cluster, the delay between
members of a geo-redundant clusters is subject to its physical
distance. Hence, RTTintra can be expected similar to RTTinter

resulting in:

E(treact geo) = 2× RTTinter + ttimer

The formulas for calculating the reaction time after network
and gateway failures remain the same between geo-redundant
and non-geo-redundant scenarios. In case, two gateways of a
(geo-redundant) cluster do not reach each other because of
a network failure, the cluster falls into two partitions. Nodes
that do not reach their current policy leader start the process
of determining a new policy leader using the rules stated in
Sec. III-B. Nevertheless, each individual inter-site policy has
at most one inter-site policy leader, as each cluster partition
manages distinct and non-overlapping subnets. As outlined in
Sec. IV-C, for multi-flow groups a partition might result in a
routing over different connections of the separate flows if the
corresponding leading gateways belong to different partitions.
Yet, it is crucial to note that if flows belong to different subnets
that cannot reach each other, it is inherently impossible to route
them over the same connection. If connectivity is regained, the
presented reassignment rule will eventually route all flows over
the same connection, if possible.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

11

0.3 0.4 0.5 0.6 0.7

Percentage of leader roles of all connections

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
er

ce
n

ta
ge

of
si

te
s

Number of sites

100

500

1000

1500

Fig. 8. Distribution of percentage of leader roles between varying number of
sites with a standard library SipHash algorithm.

C. Scalability

In Sec. V-A, we observed that the reaction time of the concept
is not a critical factor for scalability. This is because it
remains constant regardless of the number of sites, gateways,
or gateways per site. Instead, the scalability of the overall
solution is primarily determined by three key factors:

1) The execution time and memory usage of the pro-
grammable metric functions.

2) How evenly the evaluation tasks can be distributed
among multiple gateways.

3) The amount of data that needs to be transferred between
gateways and a leader.

When building a prototype, we discovered that the first two
factors pose no significant challenge:

1) CPU and memory usage: The CPU usage scales linear
with the number of metric calculations. This corresponds to
the number of inter-site policies × the number of connections.
In our prototype, a simple metric function requires 775 kB of
memory and takes approximately 3.4 µs to calculate on one
2.20GHz (Xeon Gold 5120) core.

For example, if one CPU core is reserved for the distributed
SD-WAN software, configured with a 10 second interval time,
a gateway could handle up to ∼2 800 000 metric calcula-
tions (including ∼2.0% base utilization). Breaking down the
2 800 000 calculations into 2000 sites connected over two
WANs, each gateway could be configured with 700 inter-site
policies with individual metric functions. Assuming 700 metric
functions are used, about 550MB of memory would be needed
for the metric function handling. Note that if metric functions
are reused by multiple inter-site policies, connections between
two sites must be weighted only once per metric. Hence,
utilizing a shared metric function among multiple policies for
the same pair of sites will reduce the required CPU resources.

2) Distributing the calculations: Distributing the leader
roles equally among all sites reduces the number of calcula-
tions required for an individual gateway by half. Fig. 8 shows
that by utilizing the deterministic selection of a leader site (as

Statistics & Fluctuation of

Connection + Uplink + Device

Connection + Uplink & Device (both rarely sent)

Connection

1 500 1000 1500 2000

Number of connections

0.0

0.5

1.0

1.5

2.0

R
eq

u
ir

ed
b

an
d

w
id

th
[
M
b
it

r
o
u
n
d

]

Fig. 9. Bandwidth requirements for sending statistics and its fluctuation of a
single gateway with one WAN uplink. Optimization strategy of rarely sending
uplink and device statistics (every third interval) is depicted.

described in Sec. III-B), an equal distribution will be achieved
if the number of gateways is sufficiently high. Note that even
for a low number of gateways the skew is negligible, since the
additional load is low.

Additionally, if the calculations are distributed among mul-
tiple gateways, i.e., inside a cluster, the load is further dis-
tributed. Yet, the intra-cluster distribution depends on the re-
alization of the concrete inter-site policies. One well connected
gateway might handle all policies and become the leader
for all policies. Thus, for cases where all metric functions
are quite similar or one cluster member offers a comparably
good connection, appropriate computing resources should be
provisioned.

Note that distributing calculations over multiple gateways
will not necessarily reduce memory usage because the metric
functions must be stored on all gateways to enable rapid
response to a policy leader change. However, like discussed
in the previous section, this does still not pose an issue.

3) Bandwidth overhead: The following evaluation of the
bandwidth overhead of the payloads is partially based on an
initial prototype that we had built for conducting feasibility
tests. Yet, some initial assumptions from our previous work
[1] led to a varying scalability of different factors. Thus, we
leverage the linearity of the different factors to extrapolate
the behavior for high numbers of gateways, connections, and
policies in the following. Although this method may not be
the most precise way to evaluate the required bandwidth, it
provides an insight into the concept’s capabilities as well as
potential challenges when implementing it.

As the leading roles are equally distributed among all sites,
each site transmits and receives statistics (see Table I) as
well as decisions. Since the statistics must be exchanged
directly among all connected gateways, certain data will be
transferred multiple times. However, because decisions are
made exclusively between two sites, connection-specific data
must only be sent once between two connection endpoints
(SD-WAN gateways). The quantity of data required for this
purpose is denoted by the term connection in Fig. 9 and
corresponds exactly to the volume of connection informa-
tion that has to be sent in centralized scenarios. Still, the
gateway’s per-uplink and device-specific information must be
disseminated to all (leading) gateways, in contrast to a single
transmission to the controller. For ease of representation, Fig. 9

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

12

1 500 1000 1500 2000

Number of connections

0

5

10

15

20

25

30
R

eq
u

ir
ed

b
an

d
w

id
th

[
M
b
it

r
o
u
n
d

] Decision updates & keep-alives

All decisions new

30 % new

10 % new

5 % new

Fig. 10. Bandwidth requirement for different percentages of decision updates
per interval across 100 policies. All updates involve gateway changes. If no
new decision is made, a keep-alive packet is sent.

shows the worst-case (one-to-one) connection scenario, where
deduplication of uplink and per device statistics is not possible.
The plot reveals that with a single uplink and no bandwidth
optimization, the uplink and device statistics transmitted to
all remote sites consume roughly the same bandwidth as
the connection statistics. In scenarios where the anticipated
fluctuations of uplink or device statistics are minimal, the
sending interval could be adapted (rarely sent in Fig. 9)
and dynamically increased in response to significant changes.
If additional connections were established to remote leading
gateways, device-specific statistics would only need to be
sent once. Consequently, the required bandwidth for device
statistics would remain unchanged. The same principle applies
to uplink statistics when multiple connections share an uplink
to the same leading site.

After evaluating and choosing a connection using the class
of best connections, two cases can occur. First, the remote
gateway of the newly selected connection may differ from the
previously chosen one. In this situation, the leading gateway
must notify both remote gateways by sending the policy ID (8
byte) and whether the policy is to be activated or deactivated
(1 byte) over the corresponding connection, requiring a total
transmission of 18 bytes. Second, when only a different
connection to the same remote gateway is selected, only a
single gateway has to be informed, resulting in a transmission
of 9 bytes. The scenario where no prior decision was made
aligns with the second case.

Fig. 10 illustrates that, analogous to centralized scenarios,
this demand is multiplied by the number of connections. This
multiplication results in a substantial bandwidth requirement
when all decisions are updated in every round. Yet, in stable
networks, the frequency of connection changes is typically
low, resulting in a considerably reduced demand for band-
width. For instance, in a scenario with a 10-second decision
interval and a 5 % change rate, every single decision is
renewed approximately every 3minutes, indicative of a highly
unstable network. Further, the plot assumes that decision
updates consistently entail a switch of the remote gateway,
necessitating the transmission of two update messages. In
practice, we assume that the majority of decision updates
merely involve switching to a different connection with the
same remote gateway. Thus, only one message needs to be
sent, effectively halving the required bandwidth.

In summary, for 2000 connections with uplink and device
information rarely sent and a 5 % change rate, each gateway
is expected to approximately transmit and receive 4Mbit per
round. With a configured round interval of 10 seconds, this
translates to a transmit and receive bandwidth of 0.4Mbit/s
at each site. Yet, it is worth noting that commercial solutions
employ much larger intervals, such as the 10-minute interval
used in Cisco SD-WAN [20], which would result in an average
bandwidth requirement of 7 kbit/s.

VI. CONCLUSION & FUTURE WORK

This paper presented a novel approach to fully distribute the
control plane of SD-WANs, which enables automatic, fine-
grained traffic control without introducing exposed entities. As
a result, the network control plane remains highly available
and robust, even in the event of device failures or network
partitioning. This is achieved by three methods. The first is
to split global network policies into local inter-site policies.
This eliminates the need for complex consent algorithms when
deciding how to route traffic. It facilitates distributed decisions
over policy-based routes, even if gateways are placed in a geo-
redundant clustered setup with high communication latency.
Second, to enable a simple and comprehensible way of pro-
gramming the distributed control plane, we propose to attach
programmable metric functions to the policies. These functions
are executed inside the distributed instances to evaluate the
quality of appropriate connections. Third, the paper introduced
a method for dynamically selecting an optimal path for rout-
ing without introducing instabilities to the network. This is
achieved by considering not only the current quality of a con-
nection, but also its fluctuations. The quantitative evaluation
shows that this solution can manage several thousand nodes
and inter-site policies in terms of computation. By avoiding a
central controller, statistics and decisions have to be exchanged
between the gateways. Consequently, non-connection-specific
information must be transferred multiple times. Yet, with
some of the suggested bandwidth optimizations in place, the
increased need for bandwidth is only marginal compared to a
centralized solution.

It should be noted that the described methods may not only
be used in combination but could also be applied separately.
Considering the fluctuation of an input value instead of using
only thresholds adds network stability to any SDN/SD-WAN
controlled network. In future work, we plan to evaluate the
scalability and robustness in large real-world setups. Addition-
ally, we aim to develop effective methods for managing and
monitoring the distributed environment, particularly in scenar-
ios involving partitioning. Further, the interaction between the
proposed distributed SD-WAN control plane and the site local
networks has to be assessed.

In summary, this paper introduced new methods for achiev-
ing a highly robust and available traffic engineering solution
that can be used to implement fine-grained global policies
while remaining responsive even in the event of device fail-
ures, network failures, or network partitioning.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

13

REFERENCES

[1] F. Altheide, S. Buttgereit, M. Rossberg, and G. Schaefer, “Increasing
resilience of SD-WAN by distributing the control plane,” in International
Conference on Network of the Future (NoF), 2023, pp. 10–18.

[2] W. Stallings, Foundations of modern networking: SDN, NFV, QoE, IoT,
and Cloud. Addison-Wesley Professional, 2015.

[3] V. Paxson, “End-to-end routing behavior in the internet,” IEEE/ACM
transactions on Networking, vol. 5, no. 5, pp. 601–615, 1997.

[4] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central control
over distributed routing,” in ACM SIGCOMM, 2015, p. 43–56.

[5] V. Yazici, M. O. Sunay, and A. O. Ercan, “Controlling a software-defined
network via distributed controllers,” CoRR, vol. abs/1401.7651, 2014.

[6] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. R. Kompella,
“ElastiCon; an elastic distributed SDN controller,” in ANCS. IEEE,
2014, pp. 17–27.

[7] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in soft-
ware defined networks,” in CNSM, 2013, pp. 18–25.

[8] L. Lamport, “The part-time parliament,” ACM TOCS, vol. 16, no. 2, p.
133–169, may 1998.

[9] T. Zhang, P. Giaccone, A. Bianco, and S. De Domenico, “The role
of the inter-controller consensus in the placement of distributed SDN
controllers,” Computer Communications, vol. 113, pp. 1–13, 2017.

[10] E. Sakic and W. Kellerer, “Impact of adaptive consistency on distributed
SDN applications: An empirical study,” IEEE JSAC, vol. 36, no. 12, pp.
2702–2715, 2018.

[11] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in INM/WREN. USENIX Association, 2010.

[12] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,” in
USENIX OSDI, 2010, p. 351–364.

[13] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” in First Workshop on
Hot Topics in Software Defined Networks, 2012, p. 19–24.

[14] Y. Fu, J. Bi, K. Gao, Z. Chen, J. Wu, and B. Hao, “Orion: A hybrid
hierarchical control plane of software-defined networking for large-scale
networks,” in ICNP, 2014, pp. 569–576.

[15] D. Marconett and S. B. Yoo, “Flowbroker: A software-defined net-
work controller architecture for multi-domain brokering and reputation,”
JNSM, vol. 23, no. 2, pp. 328–359, 2015.

[16] E. Brewer, “CAP twelve years later: How the ”rules” have changed,”
Computer, vol. 45, no. 2, pp. 23–29, 2012.

[17] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations,
extensions, and beyond,” Communications of the ACM, vol. 56, no. 5,
pp. 55–63, 2013.

[18] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up
to speed with WebAssembly,” in ACM SIGPLAN, 2017, pp. 185–200.

[19] A. Gupta, A. Bansal, and V. Khanduja, “Modern lossless compression
techniques: Review, comparison and analysis,” in ICECCT, 2017.

[20] “Policies configuration guide for vEdge Routers, Cisco SD-WAN,” Cisco
Systems, Inc., Tech. Rep. 20, 2022, Chapter 10 - Application-Aware
Routing.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3386962

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

