
Increasing Resilience of SD-WAN by Distributing
the Control Plane

Friedrich Altheide, Simon Buttgereit, Michael Rossberg, Guenter Schaefer
Technische Universität Ilmenau

firstname.lastname@tu-ilmenau.de

Abstract—Modern WAN interconnects utilize SD-WAN to au-
tomatically respond to network changes and improve link utiliza-
tion, latency, and availability. Therefore, they incorporate some
kind of centralized controller that collects network state from all
managed gateways, calculates suitable forwarding actions, and
distributes them accordingly. However, this limits the robustness
and availability of the network control plane, especially in the
event of node or partial network outages. In this paper, we
propose a distributed and highly robust SD-WAN control plane
without any central or regional controller. Our solution can
handle arbitrary device failures as well as network partitioning.
The distributed forwarding decisions are based on user-defined,
dynamically evaluated path cost functions, and consider not
only path quality but also quality fluctuations. The evaluation
shows that our approach can handle several thousand SD-WAN
gateways and multiple hundred network policies in terms of
computation. Yet, it also highlights that distributing all decisions
requires additional communication bandwidth, which may limit
the number of supported connections in certain scenarios.

Index Terms—SD-WAN, SDN, Robustness, Distributed Systems

I. INTRODUCTION

To enable per-application-based traffic engineering, modern
networks are continuously monitored to automatically react
to network changes and reroute traffic, resulting in improved
overall network throughput, per-flow throughput, end-to-end
latency, and ultimately, quality. The presumably most com-
mon technique to achieve such an automatic, fine-grained
traffic control is Software Defined Networking (SDN) and
more specific, when connecting remote locations over a Wide
Area Network (WAN), Software Defined WAN (SD-WAN).
Essential to this approach is a centralized controller that is
programmed with an abstract policy, defining how to han-
dle traffic. Unlike a static configuration, this policy can be
dynamically updated to adapt to changing requirements. The
controller regularly gathers network topology information and
the global network state, such as node and link utilization or
link latency. With this knowledge and based on the global
policies, it can determine where to route specific traffic flows.
Corresponding forwarding rules are then sent to the SDN
devices, which realize the forwarding decisions. This method
enables the programming of complex network behaviors with
relatively simple and comprehensive network programs, which
are executed on the controller. Today’s widely deployed SDN
and SD-WAN solutions offer comparatively simple, automatic,
flexible, and fine-grained traffic control to optimize routing
both per network flow, but also on global scale. But to retain

reactivity to link failures or overload situations, a continuous
connection to (some kind of) centralized controller is required.
Although it is common to deploy multiple controllers across
the controlled infrastructure, they still pose a neuralgic point
in the event of network partitions or limited reachability.
Consequently, the robustness and availability of the network
control plane are decreased significantly.

We state, a solution for an automatic, fine granular traffic
control should support the implementation of global network
policies on a global and local scale and facilitate:

• decisions based on the current Quality of Service (QoS)
properties,

• flexible packet matching,
• symmetric traffic flows, e.g., to cope with Network Ad-

dress Translation (NAT) and stateful firewalling,
• high availability gateway support, e.g., with geo-

redundancy, and
• simple firewalling (blocking of flows).

Furthermore, a solution should be:
• highly available,
• robust against network failures and partitioning as well

as arbitrary node failures,
• reactive towards network changes, yet provide stable end-

to-end connections,
• be able to handle thousands of SD-WAN gateways,
• offer a high flexibility for an administrator, yet still be

comprehensible and
• should be independent of any kind of exposed infrastruc-

ture.
Unlike existing solutions, this paper presents a SD-WAN
architecture that satisfies the stated requirements, by fully
distributing the control plane. By dividing global network
policies into gateway-local policies and selecting WAN con-
nections based on user-defined cost function values, as well
as estimations of value fluctuations, we achieve highly robust
and available traffic engineering that remains responsive even
in the event of device and network failures.

The rest of the paper is structured as following: In the next
section the current state of the art is presented. Section III
and IV describe new methods of consequently distributing
the SD-WAN control plane and how to program such a
distributed system. Following, in section IV the proposed
architecture is evaluated. The paper closes with a conclusion
and a description of possible future work.

2023 14th International Conference on Network of the Future (NoF)

979-8-3503-3807-2/23/$31.00 ©2023 IEEE 10

II. RELATED WORK

One solution to overcome the described issues resulting from
a centralized architecture could be to use well established
distributed routing protocols. The Border Gateway Protocol
(BGP) is the major routing protocol for large networks. It
offers exceptional scalability, availability, and robustness by
avoiding the need for a central control instance. Further,
BGP supports flexible parameterization to differentiate paths
through a network. Yet, aside from destination prefixes, it is
not capable of routing fine granular traffic flows over different
paths without sacrificing scalability. Additionally, BGP does
not natively support the representation of bandwidths or la-
tency in its parameters, making it unable to automatically react
to changes of those network characteristics. These limitations
apply to all common routing protocols.

To support a fine-grained traffic control while overcoming
the described issues of SDN, a common approach is to deploy
distributed controllers. The most simple design is the usage
of a clustered controller infrastructure where the state is
synced between the cluster elements. Every SDN device is
assigned to one controller [1]. This assignment can either be
static or dynamic to support automatic load balancing between
the cluster elements [2], [3]. If synchronization between the
controllers is done with some kind of consent protocol such
as Paxos [4] the number of cluster nodes and latency between
the members, as well as the amount of consensus required [5]
become a limiting factor. To limit this problem, some SDN
controllers use eventual consistency [6], yet the amount of
data to synchronize becomes enormous for a large number
of SDN controllers. While horizontal clustering improves the
availability of the cluster itself, the reactivity of the controlled
network remains limited when gateways cannot reach the con-
trollers due to a network partition. Hence, clusters are typically
distributed among different regions to compensate regional
network outages [7], [8]. While this improves the availability,
it also introduces additional latency to the synchronization
messages, thus limits the scalability.

This limitation can be lifted by using a hierarchical con-
troller design [9]–[11], which splits the network in several
independent network regions. Each region is managed by its
own independent regional controller. To steer traffic between
regions, a global controller is introduced. Hence, failures of
a regional controller do not affect other regions. Although
this design seems promising and offers good scalability, it
suffers from availability issues as the routing between regions
cannot adapt to network changes, e.g., high link utilization
and changed error rates, once the global controller becomes
unreachable. Hence, partitions between controllers can propa-
gate to the inter-regional traffic even if the network between
the controlled gateways is not partitioned.

III. DISTRIBUTING THE SD-WAN CONTROL PLANE

In this work, we propose to distribute the control plane
and thus the decision process into the distributed SD-WAN
gateways (see Fig. 1). These distributed entities must then
coordinate how to route flows while achieving scalability

WAN 2

WAN 1

Fig. 1. SD-WAN controller elements (green) are placed on each gateway and
coordinate their decisions on whether and how to route/distribute network
traffic between their sites.

and minimizing the control overhead. The entire concept is
designed to function without the need for an external instance.
It ensures that any pair of sites, which is able to communicate,
directly coordinates their respective intra-site traffic. Hence, a
failure of one site or its gateways only affects connections
within or with that site, while other sites are unaffected
and can still realize their network policies. But, to achieve
high availability (A) and partition tolerance (P), it may be
necessary to sacrifice strong consistency (C) as explained
by the CAP theorem [12]. Consequently, protocols such as
Paxos [4], are not suitable. Instead, we employ the method
of eventual consistency [13], which ensures that the entire
network eventually reaches a consensus on how to handle
network traffic. This means that, after a network failure, any
discrepancies or conflicts that arose between the gateways will
be resolved over time, and the network will operate uniformly.

A. Distributed global network policies

A global SD-WAN policy typically comprises two parts: a
traffic description and a requirement on how to handle the
traffic. To implement such a policy, a SD-WAN gateway must
first determine whether its site is relevant for the realization of
the policy. If it is, and the policy involves connectivity between
multiple sites, the gateway must search for a path that satisfies
the policy requirement and install appropriate forwarding rules
into its data plane. If the policy only involves traffic within
the site, it is considered a local SDN policy and is outside the
scope of this work.

Coordinating decisions among a potentially large number
of gateways can be complex and may not scale well if done
improperly. In existing SD-WAN solutions, these steps are
typically handled by central SD-WAN controllers that have
global knowledge of the network topology and state. However,
this approach has robustness issues, e.g., prevents partition
tolerance. While a centralized instance may be necessary for
some complex SD-WAN policies to coordinate all decisions,
it’s typically not required for most. This is because SD-WAN
policies usually involve paths between at most two sites, which
means that coordination on routing decisions can be limited
to those two sites alone.

2023 14th International Conference on Network of the Future (NoF)

11

Global policy:

For all kind of traffic use
low-latency connections

WAN 2

WAN 1

A

B

C

Inter site policies:

1. For traffic between
site A and B use low-
latency connection.
2. For traffic between
site A and C use low-
latency connection.
3. For traffic between
site B and C use low-
latency connection.

WAN 2

WAN 1

A B

WAN 2

WAN 1

A C

WAN 2

WAN 1

B C

Fig. 2. Global policy is transformed into three inter-site policies between
each gateway pair.

To describe policies that are limited to one pair of sites we
introduce the term inter-site policy. A global network policy
is transformed into multiple inter-site policies, each describing
a flow between exactly two sites (see Fig. 2). In doing so, a
local decision-making by SD-WAN gateways becomes feasible
(details follow in Sec. III-B).

The transformation of a global policy into multiple inter-
site policies can be executed by a centralized management/-
monitoring component, a local administration tool, or even on
the gateway itself. Note that while an external transforming
component may be necessary during the initial phase, once
the inter-site policies are appropriately distributed, it does not
affect the availability or robustness of the decision algorithm
itself and therefore represents no issue for the overall robust-
ness.

B. Inter-Site policy realization

We aim to support two types of SD-WAN policies: Firewalling
(drop) policies and routing policies. Firewalling policies do not
require advanced synchronization because each gateway in-
volved can independently check packets to determine whether
to forward or drop them. Routing policies, in contrast, require
coordination between the participating instances. To enable
stateful firewalling and NAT, it is necessary for flows between
two sites to use symmetric paths for both directions. Therefore,
protocols that allow each site to make independent decisions
should be avoided. Instead, both sites must coordinate their
decision of which WAN connection to choose. In the context
of this paper, a connection refers to an end-to-end association
between two SD-WAN gateways, which can be established
through a variety of means such as a VPN tunnel, an MPLS
label path, a VLAN, or simply a specific QoS tag. As the
available connections between two sites may have a high
latency, e.g., due to the physical distance, classical consensus

Site BSite A

WANA2

B1
A1

A3
B2

A-B Policy: HTTP

A-B Policy: SSH

A-B Policy: Backups

Fig. 3. Two multi-gateway sites A and B are configured with three inter-
site policies with site A being the leading site. To achieve a good scalability,
the role of the inter-site policy leader for the three different policies can be
distributed across gateway A1, A2 und A3.

protocols may limit the responsiveness. Instead, we propose to
deterministically select one site as the leading site. The leading
site is then responsible of choosing a single connection for
each inter-site policy between itself and the remote site. The
latter has to follow these decisions. To select the leading site
for each pair of sites, we compare the sites’ ID concatenated
with the remote sites’ ID and prefer the smaller hash:

hash(IDsite1 |IDsite2)
?
< hash(IDsite2 |IDsite1)

This comparison prevents the site with the smallest ID from
always taking the role of the leading site. Instead, the number
of leader roles per site is evenly distributed in larger networks
(details follow in evaluation).

For reasons of high availability, one or both sites may
consist of multiple SD-WAN gateways. To allow a good
scalability, availability as well as robustness, we propose to
further distribute the decision-making of the individual inter-
site policies within the leading site.

We therefore introduce the role of inter-site policy leaders.
Gateways assigned to this role make all decisions for a con-
crete inter-site policy. Other gateways within the same site, as
well as those in the remote site, then follow the decisions made
by the leader for that particular inter-site policy. Since a site
typically will be configured with multiple inter-site policies,
the different inter-site policy leaders can be distributed across
all SD-WAN gateways of the leading site (see Fig. 3).

The decision-making is illustrated for three sites as an
example in Fig. 4. It starts with each gateway notifying the
inter-site policy leader of all connections that are appropriate
for the given policy by transmitting the current network quality
(more details follow in Sec. IV). This action is triggered by a
local and policy-specific statistic timer. When a decision timer
triggers, the leader gateway selects a WAN connection/QoS
tag etc. and disseminates the decision among all gateways
of both sites. If a new decision is made that switches to
a different connection, the SD-WAN gateways generate and
install new forwarding rules into their data plane. In case a
remote gateway is not directly reachable by the leader gateway,
but via another gateway, the latter relays information and
decisions. These steps are repeated periodically and can be

2023 14th International Conference on Network of the Future (NoF)

12

Site BSite A Site C

No statistics received
yet, thus calculate and
send no decision

Leader site for: A-BNo leader

Leader for all
connections, thus no
other site needs
statistics of site C

No leader, thus no
decisions to make and
distribute

Decision Timer

Statistic Timer
Statistics B

Statistic Timer
Statistics A

Statistics Timer

Decision Timer

Create flow rules

Write into DB

Read from DB
Decision Timer

Decision A-B

Decision Timer
Decision A-C

Decision B-C

Statistics Timer
Statistics B

Statistic Timer

Statistics A

Statistics Timer
Decision Timer

Decision Timer

Decision A-B

Leader site for: A-C
Leader site for: B-C

Fig. 4. Time sequence of decision making between three sites. Site A with no leader role only sends statistics, receives decisions and writes appropriate
flow rules into the data plane. If a site has one (B) or multiple leading roles (C), it receives and stores statistics. Based on these, a decision is calculated,
and then transmitted to the appropriate remote site. After a decision was received by a site, flow rules are written into the data plane of the sites gateways.
Both steps of sending statistics and calculating decisions are triggered by timers. For sake of readability, the statistic timers as well as the decision timers of
one site are executed at the same time. It should be noted that in reality all timers operate independently and are not synchronized in any way. The process
of sending/receiving statistics and calculating/receiving a decision for a specific inter-site policy can be divided into rounds. Each round lasts for one timer
interval and starts at the moment when the statistic timer is triggered.

divided into rounds/intervals. It should be noted that each
gateway can take on the leader role for multiple inter-site
policies simultaneously, e.g., site C in Fig. 4 for A-C and B-C.

To limit the impact of gateway failures, the inter-site policy
leader role is assigned to the gateway through which the
policy’s network flow is currently sent. This approach en-
hances both robustness and availability compared to randomly
distributing inter-site policy leader roles. After startup, each
gateway first selects itself as the leader for all inter-site
policies where it is part of the leading site. If a gateway
discovers another gateway within the same site that it is
currently unaware of, it establishes a bidirectional channel.
Both gateways then exchange information about the inter-site
policies they are currently leading and the quality of their
selected connections. In cases where both gateways found
no connection or their connections have equal quality for a
particular policy, the gateway with the higher ID relinquishes
its role, resulting in the establishment of a single leader. In
all other cases the gateway with the better connection wins
and stays the policy leader. After both gateways exchanged
their leading roles, exactly one leader exists for every inter-

site policy. If the leader selects to route the flow via another
gateway, it informs all gateways and hands over the policy
leader role.

To remain responsive in the event of a leading gateway
failure, decisions have a lifetime texp = c · ttimer with c > 1.
Each gateway in the leading site periodically checks for
expired decisions. For each expired decision, the gateway
announces itself as the new leader to all other gateways within
the site. The presented rules ensure that over time only one
inter-site policy leader will remain, even if multiple gateways
choose to promote themselves as leader simultaneously. Even
if the gateways of a site currently do not reach each other,
the protocol ensures that eventually one leader is chosen and
a symmetric decision can be made for each inter-site policy
independently.

IV. PROGRAMMING A DISTRIBUTED CONTROL PLANE

By utilizing the described architecture, decisions can be made
in a fully distributed manner, eliminating the requirement
for a central component or global/regional knowledge. Thus,
telling the control plane on how to react to changing network

2023 14th International Conference on Network of the Future (NoF)

13

fn costs(con_stats, util, time_stamp) -> f64 {
if(time_stamp between 8am and 10am) {

// classify connections in 10ms steps
return con_stats.latency().as_ms().round() / 10

}
if(time_stamp between 10pm and 4am) {

// select no connection and block traffic
return f64::MAX;

}
// prefer connection with lowest latency
return con_stats.latency().as_ms();

}

Listing 1. Based on the connection statistics and the current time a pro-
grammed metric function returns a weight.

characteristics, is not realizable by one simple network pro-
gram deployed on a central component. Yet, for reasons of
usability, a simple but comprehensive method of programming
the distributed system is required. We therefore propose to let
the distributed gateways weight every connection, based on
locally available data such as connection statistics, gateway
utilization and/or the current time. The calculation of a spe-
cific connection’s weight is accomplished through the use of
customizable metric functions within the SD-WAN gateways.
These functions, as demonstrated in Listing 1, determine the
weight > 0 for each connection. The idea is to let the inter-
site policy leader compare different connections using their
calculated weights with lower cost considered as the better
connection. As a connection involves two endpoints, either
both endpoints weight their statistics independently and send
the weight to their policy leaders, or the connection statistics
are transferred to the leading site, where they are weighted
and then sent to the leaders. In both cases the leader can then
sum both weights to a connection weight which is then used
for comparisons. If the goal is balancing the execution time
between both sites, it is beneficial to evaluate the statistics
independently on each endpoint. Yet, the weights have to be
transmitted per metric and connection, which results in a linear
increase of the required bandwidth to exchange the weights.
Hence, sending weights is only suitable for networks with
only few metric functions. For networks with a high number
of different metrics, statistics should be transmitted to the
leading site instead. This approach can significantly reduce
the required bandwidth as statistics are only sent once per
connection. The statistics are then weighted by the gateways at
the leading site and transmitted to the corresponding inter-site
policy leaders. Details on this can be found in the evaluation
section V-C.

Either way, the programmed metric functions used to weight
the statistics should be easily changeable to provide high
flexibility for administrators. Otherwise, it would not be pos-
sible to adapt existing steering properties or introduce new
QoS requirements. Further, robustness (e.g., limiting resource
consumption) and security must be ensured, e.g., by isolating
the metric function execution. To fulfill these requirements,
we utilize the binary format WebAssembly (Wasm) [14],
which not only is executed with near native speed inside

web browsers, but also in isolated execution environments
called WebAssembly System Interface (WASI)1. It allows a
user to write costs() functions in any supported language2,
compile them into a textual representation and append it to the
global and subsequently to the inter-site policies. The binary
is then loaded into the gateway’s WASI execution environment
and used to calculcated the weight of a connection for a
specific policy.

A. Making stable decisions

After receiving the weights of all connections, each inter-site
policy leader needs to select one distinct connection for their
policy. Like any traffic control algorithm, we aim to increase
the quality of all flows, while also ensuring stable end-to-end
connections. Yet, optimizing the quality of inter-site policies
presents several challenges that the selection algorithm must
address:

1) Selecting the best available connection for all inter-site
policies might decrease the quality of that connection.

2) Load balancing different inter-site policies onto the n
metrical best connections might decrease quality, if n is
chosen too small (e.g., bandwidth exhaustion) yet also,
if chosen too high, e.g., higher delay for flows routed
over nth best connection.

3) Switching traffic of multiple inter-site polices simulta-
neously might (negatively) affect each other.

4) Inter-site policies might continuously toggle between
connections, since switching could decrease the quality
of the selected connection while the previous connec-
tions quality might recover, due to reduced utilization.

5) If one connection consistently offers slightly better costs
over an extended period of time for an inter-site pol-
icy, it should be used to improve overall quality. The
connection switch should neither be too fast (e.g., only
temporary low costs) nor too slow (poor quality until
switch is performed).

These challenges do not only occur because of dynamically
programmed metric functions, but also because of varying
WAN quality, as well as traffic flows in number and size.
Furthermore, objectives can conflict with each other, like
reducing toggles between two connections and preferring the
better connection in the long run. As a result, relying on a
static threshold per metric and switching when it is exceeded
will not adequately address the challenges described. Instead,
a dynamic threshold is necessary. Its evaluation has to be
efficient in computation but also in memory consumption.
Hence, incremental calculations are preferred.

As a solution for the presented challenges, we propose a
class of best connections. This class includes all connections
whose current metric falls within the fluctuation range of the
best available connection f(conbest) (see Fig. 5). This fluctu-
ation could be calculated by first smoothing out outliers, e.g.,
with a moving average, and then determining the deviation

1https://wasi.dev/
2https://github.com/appcypher/awesome-wasm-langs

2023 14th International Conference on Network of the Future (NoF)

14

Costs

Best connections

High priority switch

Low priority switch

c(conbest)

ƒ(conbest)

Fig. 5. All connections with costs inside the fluctuation of the “best”
connection c(conbest) ± f(conbest) are included into the best connection
class. If the currently used connection is outside this class, the inter-site policy
should be switched to one of the class members (dotted lines). Depending on
the current cost difference, the switch is scheduled soon or later.

from the current value (which could also be smoothed out
by a moving average). When applying this method first for
testing, we observed that the fluctuation of the best connection
quickly converges to a value close to 0 if the metric weight is
nearly static, e.g., the delay on a low utilized link. Yet, in case
of an extremely short quality degradation, the fluctuation also
stays close to 0. Thus, our approach to calculate the fluctuation
does not seem to be the perfect choice to model fluctuation
for all scenarios. Other methods, of limiting the attenuation
by incorporating rapidly fluctuating network situations more
quickly than stable situations, may be more suitable. The
evaluation of different fluctuation metrics and their application
in different scenarios is, however, left for future work.

Switching an inter-site policy to another connection within
the class of best connections does not offer a statistically
relevant advantage, since all metrics within the class are
insignificantly different from the best connection for the given
metric. Yet, if the used connection is not part of the class, a
(random) connection within the class (see Fig. 5) should be
selected to transfer the corresponding traffic over a path with
higher quality. To prevent instabilities due to many switches at
the same time, the moment of switching is randomly chosen
using a Bernoulli distribution. The probability p whether to
switch to another connection in this decision interval/round is
determined by the difference between the current metric value
c(concur) and the upper limit of the class of best connections
c(conbest) + f(conbest).

p = min

(
α, 1− c(conbest) + f(conbest)

c(concurrent)

)
: α ∈ (0, 1]

If the previous connection is only slightly better than the
best connection, p will diverge to the minimal switching
probability α. Otherwise, the value of p will be between α
and 1, depending on the difference between the connections.
Therefore, α influences how long a inter-site policy stays on
a connection that is nearly similar to the best connection but
not part of the class of best connections. In Sec. V-A, we
evaluate the duration required for a connection switch, taking
into account different values of p.

V. EVALUATION

The evaluation of a distributed SD-WAN solution is oriented
on the requirements, stated in section I. Support for flexible,

QoS-based routing and firewalling decisions as well as sym-
metric routing follows directly from the architecture, described
in the previous two sections.

In the following, we first evaluate the time required to
respond to changing network conditions. We will then discuss
robustness and support of high availability, especially in case
of geo-redundant gateways, and its scalability. The scalability
evaluation is partially based on an initial prototype that we
had built for conducting feasibility tests. Yet, some initial
assumptions led to a varying scalability of different factors
(details follow in Sec. V-C). Thus, we leverage the linearity
of the different factors to extrapolate the behavior for high
numbers of gateways, connections, and policies. Although
this method may not be the most precise way to measure
scalability, it provides an insight into the concept’s capabilities
as well as potential challenges when implementing it.

A. Reaction time

To evaluate the reaction time, we will first discuss how fast
our approach can react to network changes such as failing
connection. Next, we will calculate the duration for which a
connection switch can be artificially degraded to enhance the
overall network stability, if the currently selected connection
is only marginally outside the class of best connection.

1) Minimal reaction time: The routing decision for a spe-
cific policy involves several communication steps that impact
the minimum reaction time. Initially, an inter-site policy leader
must be selected. Next, the network conditions are regularly
sent to the leader. The leader then calculates the appropriate
decision and distributes it. In the event of a network or device
failure, the failure must first be detected, and a new leader
may need to be determined. The process of recalculating and
distributing a decision is then repeated.

The selection of the leading site is done implicitly when
setting up a connection. The selection of the correct policy
leader then takes one message inside the cluster and happens,
when a policy is inserted. Both steps can be considered as
setup and do not add to the reaction time required for regular
network condition changes.

Each gateway regularly collects local information and trans-
mits them (statistics or precalculated metrics) every ttimer

to the leader. Updates from a remote site take 1/2 RTTinter

before beeing received at the leading site. Data measured
at the leading site takes 1/2 RTTintra to reach the inter-site
policy leader. Every ttimer, the policy leader calculates a
decision based on the received data and sends it to all gateways
participating in the policy. If a remote gateway has no direct
connection to the leader, updates to and decisions from the
leader have to be forwarded by other gateways of the leading
site adding 1/2 RTTintra per direction. All in all, the reaction
time sums up to:

treact ≤ RTTintra + RTTinter + 2 · ttimer

In local clusters, members are expected to communicate with-
out significant delay resulting in RTTintra ≈ 0. Futher, both
the statistics and decision timer, have a expected delay of

2023 14th International Conference on Network of the Future (NoF)

15

1/2 ttimer until the next trigger. Consequently, the expected
reaction time is:

E(treact) = RTTinter + ttimer

The gateway that realizes the inter-site policy’s routing auto-
matically becomes its leader. Hence, a failure of the currently
used connection can be handled immediately, by calculating an
appropriate response and informing both the local and remote
gateways:

tcon failure =
1

2
RTTintra +

1

2
RTTinter

Gateways at the leading site detect the failure of a policy
leader when decisions are not renewed within its lifespan
texp. If a gateway detects a failure, it instantly assumes itself
as the new leader, calculates a new decision, and distributes
it. As multiple gateways may have elected themselves, a
uniform routing decision is reached after all cluster members
distributed their decisions and a single leader is chosen using
the rules described in Sec. III-B. Thus, the reaction time after
a failure of the leading gateway is:

tlead failure < texp +
1

2
RTTintra +

1

2
RTTinter

It should be noted, that, if the Transmission Control Protocol
(TCP) is used for gateway communication one additional
Round Trip Time (RTT) has to be accounted for the initial
handshake. Yet, this is typically performed, when initializing
connections, thus does not add onto the reaction time.

2) Artificial reaction time degradation: To maintain a high
robustness and not immediately switch a connection to a
supposedly better one, Sec. IV-A introduced the concept of
artificially extending the reaction time. Yet, even if a connec-
tion switch is delayed, eventually all inter-site policies should
use a connection inside the class of best connections. Fig. 6
displays the probability of switching a connection when n
decision intervals (rounds) have passed. The different values
of p describes the difference between the current metric and
the class of best connections.

If the decision interval is configured to be 10 seconds, inter-
site policies where the metric is comparatively poor (p = 0.7)
have a 99.9% chance for switching into the class of best
connections in under 1minute/6 rounds. For policies with quite
similar metric values (p = 0.1) it takes 11minutes/66 rounds to
reach the same probability. Thus, a connection, which briefly
leaves the class of best connections, will not lose the policies
assigned to it. Nonetheless, every policy whose metric value
is not inside the class of best connections for a long time
will eventually switch into it. It should be noted, that the
artificial reaction time degradation is not applied to switches
after connection failures, where the fastest possible switch is
always used.

B. Robustness and High Availability Support

Sec. III describes how to fulfill the stated functional SD-WAN
requirements without requiring any kind of exposed infrastruc-
ture component. By using inter-site policies instead of global

0 10 20 30 40 50 60

Rounds

0.2

0.4

0.6

0.8

1.0

P
ro

p
ab

ili
ty

o
f

co
n

n
ec

ti
o

n
sw

it
ch

p =

0.7 (value with huge difference)

0.3 (value with medium difference)

0.1 (quite similar value)

Fig. 6. Probability of switching into the class of best connections for different
values of p.

policies and selecting an inter-site policy-specific leader, only
one instance controls the routing of a specific traffic flow.
Thus, if two gateways are able to communicate, they are
also able to coordinate decisions to realize the optimal path
according to SD-WAN policies. The proposed algorithms in
Sec. III-B ensure that independent from any previous network
failure scenario eventually (1/2 RTT after connectivity is re-
gained) a single leader persists per policy. The algorithms not
only support a connection between single-gateway sites but
also gateway clusters. If a gateway fails, all its decisions time
out, and the appropriate inter-site policy leader roles are taken
over by another gateway of the leading cluster. The described
algorithm ensures that only one gateway persists as leader for
a specific policy.

To ensure high robustness and availability, even in the case
of geo-redundant clusters, the architecture must be capable
of handling high-latency intra-cluster connections. Sec. V-A
shows that the reaction time on changing network conditions
and failures depends on the RTTintra. Yet, the impact is
only additive and does not depend on the number of cluster
gateways. In contrast to the local cluster, the delay between
members of a geo-redundant clusters is subject to its physical
distance. Hence, RTTintra can be expected similar to RTTinter

resulting in:

E(treact geo) = 2 · RTTinter + ttimer

The formulas for calculating the reaction time after network
and gateway failures remain the same between geo-redundant
and non-geo-redundant scenarios. In case, two gateways of
a (geo-redundant) cluster do not reach each other because
of a network failure, the cluster falls into two partitions.
Nodes that do not reach their current policy leader start the
process of determining a new policy leader using rules stated
in Sec. III-B. Thus, a second cluster, which acts independently
from the first one, forms. After communication between both
partitions is regained and the connections are reestablished the

2023 14th International Conference on Network of the Future (NoF)

16

0.3 0.4 0.5 0.6 0.7

Percentage of leader roles of all connections

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
er

ce
n

ta
g

e
o

f
si

te
s

Number of sites

100

500

1000

1500

Fig. 7. Distribution of percentage of leader roles between varying number of
sites with a standard library SipHash algorithm.

initial policy leader algorithm is executed again. Subsequently
only one inter-site policy leader remains.

C. Scalability

In Sec. V-A, we observed that the reaction time of the concepts
is not a critical factor for scalability. This is because it
remains constant regardless of the number of sites, gateways,
or gateways per site. Instead, the scalability of the overall
solution is primarily determined by three key factors:

1) The execution time and memory usage of the pro-
grammable metric functions.

2) How evenly the evaluation tasks can be distributed
among multiple gateways.

3) The amount of data that needs to be transferred between
gateways and a leader.

When building the prototype, we discovered that the first two
factors pose not such a big challenge as factor three.

1) CPU and memory usage: The CPU usage scales linear
with the number of metric calculations. This corresponds to
the number of inter-site policies × the number of connections.
In the following, this product is called policy connections. One
policy connection represents one inter-site policy realized for
one connection to choose from. In our prototype, a simple
metric function requires 775 kB of memory and takes approx-
imately 3.4 µs to calculate on one 2.20GHz (Xeon Gold 5120)
core.

As an example, if one CPU is reserved for the distributed
SD-WAN software, configured with a 10 s interval time, a
gateway could handle up to ∼2 800 000 policy connections (in-
cluding ∼2.0% base utilization). Breaking down the 2 800 000
policy connections into 2000 sites connected over two WANs,
a gateway would be configured with 700 different policies.
Assuming every policy has its own metric function, about
550MB of storage would be needed for the metric function
handling.

1 100 200 300 400 500

Number of connections

0.0

2.5

5.0

7.5

10.0

12.5

R
eq

u
ir

ed
b

an
d

w
id

th
[
M
b
it

r
o
u
n
d

] Exchanging:

Weights (400 Metrics)

Weights (100 Metrics)

Weights (25 Metrics)

Statistics (400 Metrics)

1 10 20 30 40 50

Number of metrics

0.0

2.5

5.0

7.5

10.0

12.5

R
eq

u
ir

ed
b

an
d

w
id

th
[
M
b
it

r
o
u
n
d

] Exchanging:

Weights (4000 Connections)

Weights (1000 Connections)

Weights (250 Connections)

Statistics (4000 Connections)

Statistics (100 Connections)

Fig. 8. Extrapolated bandwidth requirements (at one site) for exchanging
metric costs or statistics. For metric numbers < 10 sending precalculated
metrics requires less bandwidth. Yet, in every other situation sending raw
traffic statistics requires significant less bandwidth.

2) Distributing the calculations: Distributing the leader
roles equally among all sites reduces the number of calcu-
lations required for an individual gateway by half. Fig. 7
shows that by utilizing the deterministic selection of a leader
site (as described in Sec. III-B) along with a standard library
hash algorithm (SipHash [15]), an equal distribution can be
achieved if the number of gateways is sufficiently high.

Additionally, if the calculations are distributed among mul-
tiple gateways, e.g., inside a cluster, this number can be
increased furthermore. Yet, the intra-cluster distribution de-
pends on the realization of the concrete inter-site policies.
One well connected gateway might handle all policies and
become leader for all policies. Thus, for cases where all metric
functions are quite similar or one cluster member offers a
comparably good connection, appropriate computing resources
should be provisioned.

In most cases, distributing calculations over multiple gate-
ways will not reduce memory usage because the metric func-
tions must be stored on all gateways to enable rapid response
to a policy leader change.

3) Bandwidth overhead: Due to our fully distributed ar-
chitecture, control data is exchanged between all connected
gateways instead of sending it directly to a single data center.
This leads to a maximum of n−1 instead of 1 communication
partner per gateway. If a limited number of metrics is used,
sending the precalulated metric values (8 bytes per metric
and connections) is more efficient then sending raw data
plane statistics (48 bytes per connection, both depicted in
Fig. 8). Yet, for high numbers of different metric functions
bandwidth requirements vastly exceed acceptable limits. Thus,
our prototype should be sending raw traffic statistics instead
of the precalculated metric values to achieve a good scalability
in relastic scenarios. Nevertheless, it should be noted that an
overhead of 0.8Mbit/round (sending statistics for 2000 con-

2023 14th International Conference on Network of the Future (NoF)

17

nections) might become significant for a low bandwidth site,
e.g., with a DSL connection. To further reduce the required
bandwidth, subscribing only to the necessary data and sending
only incremental changes could be further evaluated. Note
that if metric functions are enriched by e.g., device specific
statistics like uplink utilization and CPU usage, slightly more
precalculated metric values can be exchange before reaching
the point of break even for sending statistics. Therefore, the
prefered approach remains to exchange statistics.

VI. CONCLUSION & FUTURE WORK

This paper presented a novel approach that fully distributes
the control plane of SD-WAN, which enables automatic, fine-
grained traffic control without introducing exposed entities. As
a result, the network control plane remains highly available
and robust, even in the event of device failures or network
partitioning. This is achieved by three methods. The first is,
to split global network policies into local inter-site policies.
This eliminates the need for complex consent algorithms
when deciding how to route traffic and enables a distributed
decision over policy based routes, even if gateways are placed
in a geo-redundant clustered setup with high communication
latency. Second, to enable a simple and comprehensible way
of programming the distributed control plane, we propose
to attach programmable metric functions to the policies.
These functions are executed inside the distributed instances
to evaluate the quality of appropriate connections. Third,
the paper introduced a method for dynamically selecting an
optimal path for routing without introducing instabilities into
the network. This is achieved by considering not only the
current quality of a connection, but also its fluctuations. The
quantitative evaluation shows that this solution is capable of
managing several thousand nodes and inter-site policies in
terms of computation. However, by avoiding a central con-
troller, statistics and decisions have to be directly exchanged
between the gateways. Hence, more control connections have
to be maintained and device-specific statistics are transmitted
multiple times instead of sending them once. In future work,
we will assess the impact of different approaches to reduce
control traffic, such as sending only incremental changes,
on the reactivity of the distributed SD-WAN control plane.
Further, we plan to evaluate the scalability and robustness in
large real world setups.

It should be noted that the described methods may not only
be used in combination, but could also be applied separately.
Considering the fluctuation of an input value instead of using
only thresholds adds network stability to any SDN/SD-WAN
controlled network. To go further, distributed and dynam-
ically programmable metric functions could be applied to
any distributed optimization tasks, such as packet routing,

network function placement or resource dimensioning in ad
hoc networks. In summary, this paper introduced new methods
for achieving a highly robust and available traffic engineering
solution that can implement fine-grained global policies while
remaining responsive even in the event of device failures,
network failures, or network partitioning.

REFERENCES

[1] V. Yazici, M. O. Sunay, and A. O. Ercan, “Controlling a software-
defined network via distributed controllers,” CoRR, vol. abs/1401.7651,
2014. [Online]. Available: http://arxiv.org/abs/1401.7651

[2] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. R. Kompella,
“ElastiCon; an elastic distributed SDN controller,” in 2014 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS). IEEE, 2014, pp. 17–27.

[3] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in
software defined networks,” in Proceedings of the 9th International
Conference on Network and Service Management (CNSM 2013), 2013,
pp. 18–25.

[4] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, p. 133–169, may 1998.

[5] T. Zhang, P. Giaccone, A. Bianco, and S. De Domenico, “The role
of the inter-controller consensus in the placement of distributed SDN
controllers,” Computer Communications, vol. 113, pp. 1–13, 2017.

[6] E. Sakic and W. Kellerer, “Impact of adaptive consistency on distributed
SDN applications: An empirical study,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 12, pp. 2702–2715, 2018.

[7] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in Proceedings of the 2010 Internet Network
Management Conference on Research on Enterprise Networking, ser.
INM/WREN’10. USA: USENIX Association, 2010, p. 3.

[8] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,”
in Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’10. USA: USENIX Association,
2010, p. 351–364.

[9] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, ser.
HotSDN ’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 19–24.

[10] Y. Fu, J. Bi, K. Gao, Z. Chen, J. Wu, and B. Hao, “Orion: A hybrid
hierarchical control plane of software-defined networking for large-scale
networks,” in 2014 IEEE 22nd International Conference on Network
Protocols, 2014, pp. 569–576.

[11] D. Marconett and S. B. Yoo, “Flowbroker: A software-defined network
controller architecture for multi-domain brokering and reputation,” Jour-
nal of Network and Systems Management, vol. 23, no. 2, pp. 328–359,
2015.

[12] E. Brewer, “CAP twelve years later: How the ”rules” have changed,”
Computer, vol. 45, no. 2, pp. 23–29, 2012.

[13] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations,
extensions, and beyond,” Communications of the ACM, vol. 56, no. 5,
pp. 55–63, 2013.

[14] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up
to speed with WebAssembly,” in Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2017, pp. 185–200.

[15] J.-P. Aumasson and D. J. Bernstein, “SipHash: a fast short-input PRF,”
in Progress in Cryptology-INDOCRYPT 2012: 13th International Con-
ference on Cryptology in India, Kolkata, India, December 9-12, 2012.
Proceedings 13. Springer, 2012, pp. 489–508.

2023 14th International Conference on Network of the Future (NoF)

18

