
Saad Saleh, Anouk S. Goossens, Sunny Shu, Tamalika Banerjee and Boris Koldehofe. Analog In-Network Computing through Memristor-based Match-
Compute Processing. In Proceedings of the 43rd International Conference on Computer Communications (INFOCOM 2024), IEEE, 10 pages, 2024.

Analog In-Network Computing through
Memristor-based Match-Compute Processing

Saad Saleh∗‡, Anouk S. Goossens†‡, Sunny Shu∗, Tamalika Banerjee†‡, Boris Koldehofe§‡
∗Bernoulli Institute, University of Groningen, Netherlands

†Zernike Institute for Advanced Materials, University of Groningen, Netherlands
‡CogniGron (Groningen Cognitive Systems and Materials Center), University of Groningen, Netherlands

§Department of Computer Science and Automation, Technische Universität Ilmenau, Germany
s.saleh@rug.nl, a.s.goossens@rug.nl, s.shu@student.rug.nl, t.banerjee@rug.nl, boris.koldehofe@tu-ilmenau.de

Abstract—Current network functions consume a significant
amount of energy and lack the capacity to support more
expressive learning models like neuromorphic functions. The
major reason is the underlying transistor-based components
that require continuous energy-intensive data movements be-
tween the storage and computational units. In this research,
we propose the use of a novel component, called Memristor,
which can colocalize computation and storage, and provide
computational capabilities. Building on memristors, we propose
the concept of match-compute processing for supporting energy
efficient network functions. Considering the analog processing
of memristors, we propose a Probabilistic Content Addressable
Memory (pCAM) abstraction which can provide analog match
functions. pCAM provides deterministic and probabilistic outputs
depending upon the closeness of match of an incoming query
with the specified network policy. pCAM uses a crossbar array
for line rate matrix multiplications on the match outputs. We
proposed a match-compute packet processing architecture and
developed the programming abstractions for a baseline network
function, i.e., Active Queue Management, which drops packets
based upon the higher-order derivatives of sojourn times and
buffer sizes. The analysis of match-compute processing over a
physically fabricated memristor chip showed only 0.01 fJ/bit/cell
of energy consumption, which is 50 times less than the traditional
match-action processing.

Index Terms—Energy Efficiency; Switches; Memristors.

I. INTRODUCTION

The Internet heavily uses complex network functions like
congestion control [1], load balancing [2], packet schedul-
ing [3], traffic analysis [4] [5], etc., in order to maintain the
Quality of Service (QoS) and apply network policies for end
users. Building on packet processors in routers and switches,
network functions operate at remarkable line rate performance
of 12.8-51.2 Tbps [6] [7]. A downside which is often neglected
is the enormous energy footprint of such components e.g.,
240-340 TWh to transport data between senders and receivers
(equivalent to 10% of world’s nuclear power generation) [8].
They also have limited ability to support more expressive
learning models, like Cognitive functions using neuromorphic
computing [9]. One major reason for these shortcomings is
the architecture of packet processors which heavily builds on
Ternary Content Addressable Memory (TCAM). TCAM mem-
ory nowadays builds on transistor-based components which
require continuous data movements between the storage and
match units (consuming up to 90% of system’s energy [10]).

GPUs

Match
0.3

0.7

0.4 0.2

D
IG
IT
A
L

A
N
A
LO

G

Data

ALU

Compute Action

ALUCompute

0.1

0.4

0.6 0.9

ALU

In-Memory ComputationsSRAMs

1
0
1

0
0
1

GPUs

Match
0.3

0.7

0.4 0.2

D
IG
IT
A
L

A
N
A
LO

G

Data

ALU

Compute Action

ALUCompute

0.1

0.4

0.6 0.9

ALU

In-Memory ComputationsSRAMs

1
0
1

0
0
1

Fig. 1: Energy savings by limiting data movements in the
match-compute processing vs the match-action processing.

Moreover, it lacks the capacity to support computations, like
matrix multiplications, in the data plane required for learning
models. Overcoming such shortcomings requires a shift to
technologies with the ability to colocalize computation and
storage in a single component, and enhance the computational
ability of packet processors. A highly promising technology
with this ability is the Memristor with substantial industrial
effort and well-established performance, but less known to the
research community [11] [12].

Memristors are nanoscale programmable components that
can store data in the form of a physical property, called
Resistance. Built upon the principles of in-memory computing,
memristors can perform computations by providing an output
depending upon the input and the resistance [13]. The efficient
integration of such components in packet processors, however,
requires to take into account their analog nature. In this
paper, we focus on the problem of integrating such compo-
nents by proposing appropriate packet processing abstractions
which also work in the analog domain. In particular, we
aim to enhance the traditional match-action processing, where
header fields are matched against locally stored rules to take
corresponding actions, by a new concept we call match-
compute processing. Match-compute processing enables the
execution of computation operations in the data plane (Fig. 1).
Building on [14], we introduce the Probabilistic Content
Addressable Memory (pCAM) abstraction for supporting the
match-compute processing and demonstrate for memristor-
based components how to build the abstractions. The pCAM
abstraction provides analog match functions by computing the
closeness of an incoming query with the stored network policy.
It can be programmed to provide a discrete programmed
output (maximum or minimum) for a given range, called as

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

mailto:s.saleh@rug.nl
mailto:a.s.goossens@rug.nl
mailto:s.shu@student.rug.nl
mailto:t.banerjee@rug.nl
mailto:boris.koldehofe@tu-ilmenau.de

Saad Saleh, Anouk S. Goossens, Sunny Shu, Tamalika Banerjee and Boris Koldehofe. Analog In-Network Computing through Memristor-based Match-
Compute Processing. In Proceedings of the 43rd International Conference on Computer Communications (INFOCOM 2024), IEEE, 10 pages, 2024.

deterministic output, to show a complete match or mismatch.
It can also be programmed to compute an analog output
for a given range of input, called as probabilistic output, to
indicate a partial match. The deterministic and probabilistic
outputs of multiple parallel pCAM cells are used as inputs to a
programmable crossbar array. The crossbar array multiplies the
pCAM outputs with the programmed weights and computes
the output function by taking into account all parallel matches.
In this paper, we demonstrate that the analog processing of
pCAM-based match-compute processing is effective and effi-
cient in implementing advanced network functions, like Active
Queue Management (AQM). With the help of analog match-
compute, Packet Drop Probability (PDP) can be modeled
based on the analog higher-order derivatives of sojourn times
and buffer sizes. In addition, the design of pCAM relying on
analog components allows for substantial energy savings.

Contributions and Research Findings. In this paper,
we propose the match-compute based packet processing for
supporting energy efficient network functions and analyze
its performance over a physically fabricated memristor chip
developed for this research1. Our major contributions include;
(1) Development of a novel match-compute framework for
packet processors; (2) Proposition of the packet processing
architecture built over the pCAM abstraction; (3) Develop-
ment of the programming abstractions for the match-compute
processing; (4) Analysis of the match-compute processing for
a network function, i.e., AQM, for a physically fabricated
memristor chip of Nb-doped SrTiO3. Our analysis over the
experimental data set of the memristor chip showed only
0.01 fJ/bit/cell of energy consumption for match-compute pro-
cessing which is 50 times less than the state-of-the-art match-
action processing. We estimated the PDP for an AQM function
based on the higher-order derivatives of sojourn times and
buffer sizes. The match-compute based AQM showed better
support for congestion management than the prior techniques
due to the incorporation of line rate computations.

Paper Organization. Sec-II presents the match-action pro-
cessing, memristors, and the problem statement. Sec-III
presents the proposed match-compute processing. The packet
processing architecture and programming abstractions are pre-
sented in Sec-IV. The performance analysis of the proposed
match-compute processing is shown in Sec-V. Sec-VI presents
the literature review and Sec-VII concludes the paper.

II. BACKGROUND

In this section, we present the limitations of match-action
processing, features of memristors, and the problem statement.

A. Match-Action Processing and Limitations

Match-action processing is used in switches and routers for
matching the incoming header fields against stored policies
and applying the highest priority match among a set of
matching policies. Existing architectures do matching in one
clock cycle to ensure line rate performance with features

1Anouk S. Goossens and Tamalika Banerjee fabricated the Nb-doped
SrTiO3 memristor chip.

St
at

e
Re

si
st

an
ce

M
EM

RI
ST

O
R

Fig. 2: The input-state response for a memristor [14].

like prefix matching. However, match-action processing per
se is not sufficient to support all kinds of network functions,
like AQM can be processed via match-action processing but
requires external computational components. In consequence,
additional continuous data movements are required which are
considered expensive in terms of performance and energy
usage [15]. It is also important to observe that the current
designs of match-action processing in the form of TCAM
are known to be expensive in terms of the cost in resources
and energy consumption. The architecture requires typically
a substantial amount of transistors. Increasing the deployed
policies in the design imposes a significant cost in terms of
energy since the underlying design lacks scalability. Finally,
the transistor-based design can keep the state of policies only
in a volatile operation and requires a continuous power supply.

B. Memristor-based In-memory Computing

The memristor is a novel nanoscale component, which has
drawn recently significant attention from industry as a pos-
sible replacement for traditional transistor-based technology.
Memristor stores information in the form of a programmable
state, represented as a physical material property Resistance.
The state of a memristor is analog and it can be used to
store the network policies in packet processors. The memristor
can compute in-memory by providing an output which is a
function of the applied read input and the programmed initial
state. The initial state is programmed by applying a set of
write signals i.e., continuous high/low voltage pulses for long
(write) durations. The read operation applies voltage pulses of
shorter (read) durations in order to fetch the stored state and it
cannot alter the initial state. Unlike the traditional components,
memristor is the only two-terminal component which can
provide different state resistances against the same analog read
input, as shown in Fig. 2. In the given case, same applied input
can yield either S1

h1
or S1

l1
depending upon the programmed

initial state of S1
1 or S1

m. Moreover, reprogramming the initial
state to Sn

1 or Sn
m can generate a new input-state response for

a memristor as shown in Fig. 2 (Computation-n).

C. Problem Statement

Integrating the properties of components like memristors is
a quite challenging task as it requires the translation of features
from the analog to the digital domain. In this paper, we aim at

Saad Saleh, Anouk S. Goossens, Sunny Shu, Tamalika Banerjee and Boris Koldehofe. Analog In-Network Computing through Memristor-based Match-
Compute Processing. In Proceedings of the 43rd International Conference on Computer Communications (INFOCOM 2024), IEEE, 10 pages, 2024.

(a) TCAM-based match-action processing. (b) pCAM-based match-compute processing.

Fig. 3: Abstract working operations of the match-action vs the proposed match-compute packet processing.

an understanding of designing the appropriate packet process-
ing abstractions for enhancing the expressiveness of network
functions and supporting energy efficient network functions.
In particular, we propose a novel Match-Compute abstraction
to utilize the colocalization of memory and processing.

To understand the implications for network abstractions,
consider the example of an AQM function. An AQM function
needs to calculate the PDP based upon the sojourn time,
buffer size, and rate of change of these parameters in a single
stage. The match-action processing like TCAM (Fig. 3a) only
supports matching of incoming query q with the stored policies
(using f()) in N stages, as shown in Eq. 1. The output of
f() is high only if the stored policy is equal to the incoming
query or don’t care bit X (Eq. 2). The action corresponds
to the match with the highest priority pi (Eq. 3). In this
framework, it is not possible to express matching restrictions.
Therefore, typical solutions either have limitations in precision
and accuracy or time consumption for PDP computation. With
the proposed match-compute abstraction, we aim to express
the network functions requiring multiple network policies like
sojourn time and buffer size for AQM in a single stage, as
shown below. It enables us to specify multiple features and
calculate the network function with high precision, accuracy,
and less energy consumption at line rate in the data plane.

Unsolvable Network Functions:
if (a<f1(q)<b) & (c<f2(q)<d) → Action(1)

Examples
AQM:

f1(q) = Sojourn Time; f2(q) = Buffer size;
Firewall:

f1(q) = Packet Rate; f2(q) = Source IP;
Load Balancing:

f1(q) = Bandwidth; f2(q) = Latency;
Generalized Unsolvable Function:∑N

j=1(Priority(e, j)×(a<fj(q)<b)) → Action(e)
Constraint: Policies f() programmed in parallel TCAMs.

III. PROPOSED MATCH-COMPUTE PROCESSING

In this section, we present the proposed match-compute pro-
cessing and its formalizations for various network functions.

Oi =

N∏
j=1

fi,j(q); ∀i ∈M (1)

fi,j(q) =

{
1 if Stored policy = Input|X
0 if Stored policy ̸= Input|X

(2)

Action = max{pi ∗Oi : i ∈ M, pi ∈ Priority(i)} (3)

A. Match-Compute Processing Architecture

The proposed match-compute processing consists of apply-
ing the analog match process on the incoming query in order
to identify the closeness of the incoming query with the stored
network policy. The match process uses a programmable
non-linear analog function f(x) corresponding to the stored
policy and it can be realized by the development of a novel
abstraction called pCAM. In the next stage, the compute stage,
the analog outputs of multiple parallel occurring matches are
combined in order to evaluate the cumulative effect of matches.
The compute stage applies a programmable multiplication
and accumulation function ψ(x) to the outputs of f(x) in
order to extract the network function output from multiple
parallel occurring matches. ψ(x) assigns the priorities to stored
policies inside various cells. The function ψ(x) is realized by
a memristor-based crossbar array [16] [17]. Fig. 3b presents
the proposed analog match-compute processing.

Building on [14], we propose a memristor-based pCAM
abstraction for programming the non-linear function f(x).
The abstract working operation of pCAM as compared to the
TCAM is shown in Fig. 4. pCAM has a range of deterministic
matches providing discrete outputs, i.e., maximum or mini-
mum outputs, based on the match of the incoming query with
the stored policies. Moreover, pCAM also has a probabilistic
range of matches providing analog outputs depending upon
the difference of incoming query with the stored policies. By
using both deterministic and probabilistic matches, pCAM can
represent more expressive network functions and can compute
precise analog matches. The function ψ(x) is implemented
by an m × n memristor-based crossbar array. It can be
programmed to compute the weighted sum of inputs (pCAM
outputs) for computing the most relevant match.

Fig. 5 shows the match-compute tables containing the

Saad Saleh, Anouk S. Goossens, Sunny Shu, Tamalika Banerjee and Boris Koldehofe. Analog In-Network Computing through Memristor-based Match-
Compute Processing. In Proceedings of the 43rd International Conference on Computer Communications (INFOCOM 2024), IEEE, 10 pages, 2024.

D
ig

ita
l

O
u

tp
u

t

(a) TCAM cell model.

A
na

lo
g

O

u
tp

ut

(b) pCAM cell model.

Fig. 4: The graphical output and programmable parameters of
state-of-the-art TCAM vs the proposed pCAM abstraction.

(a) Match-Action table. (b) Match-Compute table.

Fig. 5: Comparison of match-action vs match-compute tables.

analog stored policy and the priority matrix for multiple
parallel occurring matches. The formal definitions of the
programmable parameters in the match-compute processing
are expressed in Func-1. The programmable parameters of
the pCAM include the specification of the input range (M1,
M2, M3, M4) for deterministic and probabilistic matches,
and programmability of the output range (pmax and pmin),
as shown in Fig. 4. Unlike the TCAM, pCAM provides
the granular programmability of the hardware resources for
minimizing the data movements. The computational process
inside the match-compute unit is expressed in Algorithm-1.
Based upon the analog input, the output ranges between a
maximum of pmax and a minimum of pmin inside every
pCAM cell. The output of multiple parallel pCAM cells is
multiplied by their respective weights w and the sum of
weighted outputs is used to take the actions.
1 M1 : S t a r t o f P r o b a b i l i s t i c Match
2 M2 : S t a r t o f D e t e r m i n i s t i c Match
3 M3 : End of D e t e r m i n i s t i c Match
4 M4 : S t a r t o f P r o b a b i l i s t i c Match
5 pmax : Programmed match p r o b a b i l i t y
6 pmin : Programmed mismatch p r o b a b i l i t y
7 wij : Programmable w e i g h t s ∀i ∈M, j ∈ N

Function 1: Parameters of Match-Compute Processing.

B. Match-Compute Formalizations for Network Functions

In this section, we present the formalizations of match-
compute processing for network functions based on the preci-
sion requirements (flexibility) and mutual information (over-
lap) among parallel matches. The output of the pCAM-based
match-compute units is represented in Eq. 4. f(), w and q
represent the pCAM cell functions, associated weights, and the
incoming query, respectively. N and M refer to the number
of parallel pCAM cells and actions (outputs), respectively.

Actioni =

N∑
j=1

(wij × fj(q)); ∀i ∈M (4)

Algorithm 1 The output function of a match-compute unit.

1: function COMPUTEACTION(I)
2: for j ∈ N do
3: switch j do
4: case I ∈ (M1,M2)

5: fj(I)← pmax(I−M1)−pmin(I−M2)
M2−M1

6: case I ∈ (M3,M4)

7: fj(I)← pmax(I−M4)−pmin(I−M3)
M3−M4

8: case I ∈ [M2,M3]
9: fj(I)← pmax

10: case I ∈ ¬[M1,M4]
11: fj(I)← pmin

12: end for
13: for i ∈M do
14: Oi ←

∑N
j=1 wijfj(I)

15: end for
16: end function

1) Non-flexible Non-Overlapping Network Functions: The
network functions related to hard network policies represent
the class of non-flexible non-overlapping functions. These
functions require high precision with a definite binary out-
put independent of the neighboring match operations. For
example, IP lookup requires discrete output in every match
independent of the matches in parallel cells. The formal def-
initions of the match-compute processing for these functions
are expressed in Func-2. In the updated function, probabilistic
regions of pCAM cells are eliminated by making M2 and M4

equal to M1 and M3, respectively. Moreover, the maximum
and minimum outputs of pCAM are set to be 1 and 0 respec-
tively because there is no intake from neighboring parallel
matching pCAM cells. The weights for overlapping matches
are also set to zero. The output of these functions depends
only on the respective pCAM cells without any input from
neighboring cells, as shown in Eq. 5. The function f() reduces
to a MaxMin() function which produces only high or low
outputs based on the match operation.

1 M1 ←M2 : E l i m i n a t i n g t h e p r o b a b i l i s t i c r e g i o n s
2 M3 ←M4 : E l i m i n a t i n g t h e p r o b a b i l i s t i c r e g i o n s
3 pmax ← 1 : Maximizing t h e match p r o b a b i l i t y
4 pmin ← 0 : Min imiz ing t h e mismatch p r o b a b i l i t y
5 wij ← 0 : Min imiz ing t h e w e i g h t s ∀i ̸= j

Function 2: Non-flexible non-overlapping network functions.

Actioni = wii ×MaxMini(q); ∀i ∈M (5)

2) Non-Flexible Overlapping Network Functions: It rep-
resents the class of network functions with high precision
requirements (non-flexibility), but overlap with the neighbor-
ing match-compute cells. For example, the firewall function
takes into account multiple parallel matches in order to ex-
press multiple policies and requires a discrete output. For
these network functions, the weight factor is critical and it
is programmed based upon the priority of various pCAM
cells in order to perform the computation operation. The

Saad Saleh, Anouk S. Goossens, Sunny Shu, Tamalika Banerjee and Boris Koldehofe. Analog In-Network Computing through Memristor-based Match-
Compute Processing. In Proceedings of the 43rd International Conference on Computer Communications (INFOCOM 2024), IEEE, 10 pages, 2024.

probabilistic region of pCAM is eliminated by programming
M2 and M4 to M1 and M3, respectively (Func-3). pmax

and pmin are also programmed to upper-threshold and lower-
threshold, respectively. The output of these functions depends
upon all the weights of neighboring policies, as shown in
Eq. 6. Moreover, the pCAM function f() also reduces to a
MaxMin() function for a discrete output.

1 M1 ←M2 : E l i m i n a t i n g t h e p r o b a b i l i s t i c r e g i o n s
2 M3 ←M4 : E l i m i n a t i n g t h e p r o b a b i l i s t i c r e g i o n s
3 pmax ← Upper-threshold : Maximum match p r o b a b i l i t y
4 pmin ← Lower-threshold : Minimum mismatch p r o b a b i l i t y

Function 3: Non-flexible overlapping network functions.

Actioni =

N∑
j=1

(wij ×MaxMinj(q)); ∀i ∈M (6)

3) Flexible Non-Overlapping Network Functions: The net-
work functions, like packet scheduling, build heavily on flex-
ible outputs based upon the inputs but lack overlap with the
neighboring match-compute cells. For example, the congestion
in one queue is entirely unrelated to the other queue due to
separate flow categories in different queues. For these network
functions, the weight for overlapping input is programmed to
be zero (Func-4). The rest of the parameters are programmed
by the network function based on the requirements of different
processing stages. The output of the flexible non-overlapping
network functions is represented by Eq. 7. The function f()
defined inside pCAM cells performs computations for these
network functions.

1 wij ← 0 : Programmable w e i g h t s ∀i ̸= j

Function 4: Flexible non-overlapping network functions.

Actioni = wii × fi(q); ∀i ∈M (7)

4) Mimicking the Digital Match-Action Processing: In or-
der to implement the traditional digital algorithms, the pCAM-
based match-compute abstraction can also mimic the match-
action processing. In this case, the probabilistic regions of the
pCAM cells are eliminated (Func-5). Moreover, the region for
maximum and minimum outputs is split equally in the entire
input range. The maximum and minimum outputs are pro-
grammed to 1 and 0, respectively. All weights for neighboring
pCAM cells are set to zero. The output for the binary network
functions is represented in Eq. 8. Similar to digital match-
action processing, there is an associated priority for every rule
and zero overlap between neighboring matches.

1 M1 ←M2 : E l i m i n a t i n g t h e p r o b a b i l i s t i c r e g i o n s
2 M3 ←M4 : E l i m i n a t i n g t h e p r o b a b i l i s t i c r e g i o n s
3 M3 −M1 ← 1

2 : S p l i t t i n g t h e c e l l f u n c t i o n
4 pmax ← 1 : Maximizing t h e match p r o b a b i l i t y
5 pmin ← 0 : Min imiz ing t h e mismatch p r o b a b i l i t y
6 wij ← 0 : Programmable w e i g h t s ∀i ̸= j
7 wii ← Priority : Programmable r u l e p r i o r i t i e s ∀i ∈M

Function 5: Digital Match-Action Processing.

Actioni = wii ×MaxMini(q); ∀i ∈M (8)

IV. PROGRAMMING MATCH-COMPUTE PROCESSING

In this section, we present the proposed packet process-
ing architecture and the programming abstractions of match-
compute processing for a baseline network function i.e., AQM.

A. Proposed Packet Processing Architecture

The proposed packet processing architecture for the pCAM-
based match-compute processing is shown in Fig. 6. The major
modules and their functions are described below.

Ingress and egress match-compute pipeline. The match-
compute processing stages are used in the ingress and egress
packet processing pipeline in order to support energy effi-
cient network functions. The match-compute units are pro-
grammable by the controller based on the network function
requirements. Each match-compute stage has parallel pCAM
cells containing the network policies and the output is fed to
the crossbar array which contains the programmed priorities
for various network policies. All stages are connected with
the corresponding actions in order to execute the decisions for
network functions. The processing pipeline can use multiple
serial stages for the processing steps. The network func-
tions requiring complex learning models, like Spiking Neural
Networks (SNN), use both ingress and egress pipelines for
incorporating complex decisions for network functions.

Analog Traffic Manager. The match-compute processing
units are present inside the traffic manager to deploy AQM
algorithms because the current packet processors lack the
programmability inside traffic manager [6]. Using the match-
compute based AQM, packet processors can adapt the PDP
based upon the variation in the sojourn time and buffer size.

Parser. The role of the parser is to extract the required
features from incoming traffic i.e., packet header and payload
fields, and feed them to the match-compute units based upon
the programmability by the controller. Since the data plane
supports computations, all kinds of classification features,
including traffic statistics and characteristics, are used for the
deployment of learning models in the data plane.

Ingress and egress packet queues. Considering the vari-
able processing rates of different network processing units, the
packet queues are present on both the ingress and egress side
of the packet processing architecture. These queues store the
network packets and supply them to the match-compute units
based on the processing rate of the network.

Controller. The controller plays the crucial role of pro-
gramming the pCAM cells and the crossbar array inside the
match-compute units for computing the network function.
The controller consists of the parse graph and the control
program for extracting the required packet information and
programming the processing pipeline.

B. Proposed Programming Abstractions

The pCAM-based match-compute processing provides the
programmability of the hardware resources along with the
computation operations in the data plane. In this regard, the
various programmable functions are described below.

Saad Saleh, Anouk S. Goossens, Sunny Shu, Tamalika Banerjee and Boris Koldehofe. Analog In-Network Computing through Memristor-based Match-
Compute Processing. In Proceedings of the 43rd International Conference on Computer Communications (INFOCOM 2024), IEEE, 10 pages, 2024.

Egress Match-Compute Pipeline

Match-Compute
Configuration

Network
Controller

Control
Program

Parse Graph

Ingress
Packet
Queues

Egress
Packet
Queues

Eth-1

Eth-2

Eth-3

Eth-n

Eth-1

Eth-2

Eth-3

Eth-n

Parser

Match-
Compute

based
Traffic

Manager

Ingress Match-Compute Pipeline

Flexible &
Non-Overlapping

Functions

Non-flexible &
Non-Overlapping

Functions

Flexible &
Overlapping

Functions

Non-flexible &
Overlapping

Functions

Digital Network
Functions

Fig. 6: The packet processing architecture for the memristor-based match-compute processing.

pCAM function. The pCAM-based match-compute units
can be programmed by specifying the range of probabilistic
and deterministic matches, and the maximum and minimum
outputs, as shown in the function prog pcam(). Based upon
the parameters, the controller applies the relevant signals
(voltages) from the stored database to respective pCAM cells
for programming the network policies inside the switch.

Crossbar-based computation function. The priorities of
various policies are programmed by the weight function where
the large weights correspond to high priorities and vice versa,
as shown in the function prog weights(). At the output of
the crossbar, the cumulative effect of all policies in parallel
pCAM cells is obtained, as shown in the function compute().

pCAM input-output function. The input-output function
of every pCAM cell is expressed in the function pcam().
This function can be used by the controller to compute the
parameters of individual pCAM cells based on the input-output
response provided by the programmer.

Processing pipeline. The architecture uses a programmable
processing pipeline based on the specified feature set. In order
to update it, the occurrence of features is changed in the feature
set, as shown in the function pipeline().

Match-compute tables. The match-compute tables have
three parameters i.e., read, output, and action. Since the com-
putation operation is analog, the raw output of computation
can also be used for network function outputs like PDP for
AQM. On the input, the match-compute tables read the feature
set from the packet processors. On the output, the raw analog
outputs and the corresponding actions are generated, as shown
in the function MatchCompute().

pCAM update function. As part of the action, the individ-
ual pCAM modules and the weight function can be updated
by the function update pcam(). This function reshapes the
operation of the network function based on the requirements.

1 f u n c t i o n prog pcam () {
2 program (M1 , M2 , M3 , M4 , pmax , pmin) ;
3 / / Apply ing v o l t a g e s t o t h e pCAM
4 }

1 f u n c t i o n p r o g w e i g h t s (input , i , j){
2 for (i ϵ M, j ϵ N)
3 wij = input ; / / Program t h e d e s i r e d p r o b a b i l i t y
4 end
5 }

1 f u n c t i o n compute (f e a t u r e − i){
2 a n a l o g o u t p u t i =

∑n
j=1 wijpcam(feature-i) ;

3 / / Ou tpu t o f match −compute u n i t s
4 }

1 f u n c t i o n pcam (i n p u t , o u t p u t){
2 i f (i n p u t ≤ M1 | | i n p u t ≥ M4)
3 o u t p u t =pmin ;
4 e l s e i f M1 < i n p u t < M2

5 o u t p u t =(pmax(input−M1)− pmin(input−M2))/(M2 −M1)
6 e l s e i f M3 < i n p u t < M4

7 o u t p u t =(pmax(input−M4)− pmin(input−M3))/(M3 −M4)
8 e l s e
9 o u t p u t =pmax ; / / I n p u t − Outpu t r e s p o n s e by c o n t r o l l e r

10 }

1 f u n c t i o n p i p e l i n e () { / / P r o c e s s i n g p i p e l i n e
2 o u t p u t = p i p e l i n e {
3 compute (f e a t u r e −1) , / / S tage −1
4 . . .
5 compute (f e a t u r e −n)} / / S tage −n
6 }

1 t a b l e MatchCompute{
2 r e a d s{
3 f e a t u r e s e t () ;} / / Reading the features for pCAM
4 o u t p u t{
5 p i p e l i n e () ;} / / Computing t h e a n a l o g o u t p u t
6 a c t i o n s {
7 action pCAM () ; / / Action set for pCAM
8 update pCAM () ;} / / P r o g r a m m a b i l i t y o f pCAM
9 }

1 a c t i o n update pcam (id , p a r a m e t e r [1 : 8] , w){
2 s e t f i e l d (prog pCAM . f e a t u r e −1 , M[1 : 8] , w) ;
3 . . .
4 s e t f i e l d (prog pCAM . f e a t u r e −n , M[1 : 8] , w) ;
5 }

C. Proof-of-Concept: Match-Compute based AQM

In this section, we present the application of match-compute
processing for an AQM-based network function.

Proposed AQM technique. We propose a match-compute
based AQM which utilizes the higher-order derivatives of
sojourn time and buffer size to calculate the PDP. The estima-
tion of higher-order derivatives takes huge energy and system
resources in traditional digital architectures. However, the
analog components, like Comparators, Op-Amps, can compute
the derivatives with less energy consumption and resource
utilization [18]. Based upon the first-order derivative, the pro-
posed AQM can estimate the rate of increase of packet delay

Saad Saleh, Anouk S. Goossens, Sunny Shu, Tamalika Banerjee and Boris Koldehofe. Analog In-Network Computing through Memristor-based Match-
Compute Processing. In Proceedings of the 43rd International Conference on Computer Communications (INFOCOM 2024), IEEE, 10 pages, 2024.

0
.2

0
.8

0
.2

011 01 01

Fig. 7: The inherent semantics of the traffic manager built over match-compute processing pipeline.

and buffer size. It helps in the timely mitigation of congestion
by dropping the packets. The second-order derivative provides
an additional insight into the rate of change of the first-order
derivative and it helps in estimating the sharp arrival/departure
rate of packets for packet drop estimation. Lastly, the third-
order derivative provides information about the bursty periods
of the network traffic. Similarly, the higher-order derivatives
of buffer size provide information about the congestion which
is used in the computation of PDP.

Architecture for AQM. The architecture of the match-
compute based AQM consists of the pCAM cells for estima-
tion of the analog match and crossbar arrays to assign weights
to the outputs of various pCAM cells, as shown in Fig. 7. The
controller has the crucial role of collecting features from the
data set by using analog components and programming the
match ranges and priorities in the pCAM and the crossbar
array. Moreover, the digital incoming traffic features can be
converted to the analog domain through Digital-to-Analog
Converters (DACs). After the computation, the processing
pipeline generates the raw analog output which is the PDP.
It can be used directly or converted to digital signal through
Analog-to-Digital Converters (ADCs).

Programming Parameters. Building on the programming
abstractions in Sec-IV-B, the match-compute based AQM
consists of the features as mentioned in Func-6. The feature
sets include 8 programmable parameters i.e., sojourn time,
buffer size, and the consecutive three higher-order derivatives
of these parameters. The feature priorities are set by the
programmable weights in order to compute the PDP based
upon the cumulative effect of various features.

1 f u n c t i o n f e a t u r e s e t () {
2 s o j o u r n t i m e ; \\P a c k e t d e l a y in queue
3 d / d t (s o j o u r n t i m e) ; \\1 s t d e r i v . o f P a c k e t d e l a y
4 d2 / d t2 (s o j o u r n t i m e) ;\\2 nd d e r i v . o f P a c k e t d e l a y
5 d3 / d t3 (s o j o u r n t i m e) ;\\3 rd d e r i v . o f P a c k e t d e l a y
6 b u f f e r s i z e ; \\B u f f e r C a p a c i t y
7 d / d t (b u f f e r s i z e) ; \\1 s t d e r i v . o f B u f f e r c a p a c i t y
8 d2 / d t2 (b u f f e r s i z e) ; \\2nd d e r i v . o f B u f f e r c a p a c i t y
9 d3 / d t3 (b u f f e r s i z e) ; \\3 rd d e r i v . o f B u f f e r c a p a c i t y

10 }

Function 6: Feature set for AQM.

V. PERFORMANCE ANALYSIS

In this section, we analyze the energy consumption and
performance metrics of the match-compute based AQM in
comparison to the prior state-of-the-art AQM algorithms.

A. Energy Consumption

In order to validate the support of match-compute process-
ing for network functions, like AQM, a physical memristor
chip was fabricated using the Nb-doped SrTiO3. This chip
contains 25 memristors and all memristors share a common
binding topology. All memristors can be fabricated in three
different configurations, referred as small, medium, and large
devices [19]. We developed the match-compute models in
Matlab comprising of pCAM with crossbar array connections.
The match-compute models use the experimental dataset of
the memristor chip for analyzing the energy efficiency of the
analog packet processing. Fig. 8 shows the memristor chip and
the states of the memristors. Since resistance is very large at
small voltages, conductance (inverse of resistance) has been
plotted from the experimental dataset in Fig. 8.

The energy consumption of the match-compute based AQM
is shown in Fig. 9. The results show that the memristors
can provide a range of states for mapping network policies
and the energy consumption can go up to 0.16 nJ/bit/cell.
However, match-compute based AQM also offers a range
of states with very low energy consumption. The minimum
energy consumption for match-compute processing is only
0.01 fJ/bit/cell. In the results, the Input refers to the search
query extracted from either the raw packet header fields or
the feature extraction modules. In case of AQM, the input
range varies corresponding to the features, like sojourn times
and higher-order derivatives, mapped to the range of −2 to 4.
The analysis of programmable PDP is shown in Fig. 10. The
results show the distinct programmable PDP by configuring
the memristor in unique states for input range [−2,1] and
[1,4]. The less number of PDPs in the range [−2,1] refer
to the limitations of the underlying hardware. However, it’s
possible to map all the input fields to the range of [1, 4]
for high precision AQM flows e.g., TCP flows, and use the
range [−2,1] for low precision AQM network flows e.g., UDP
flows. It is pertinent to mention that energy consumption

Saad Saleh, Anouk S. Goossens, Sunny Shu, Tamalika Banerjee and Boris Koldehofe. Analog In-Network Computing through Memristor-based Match-
Compute Processing. In Proceedings of the 43rd International Conference on Computer Communications (INFOCOM 2024), IEEE, 10 pages, 2024.

(a) Memristor chip. (b) Experimental readings.

Fig. 8: Multiple memristive states against the analog inputs
for the physically fabricated memristor chip.

(a) Complete range. (b) Selected range.

Fig. 9: Energy consumption of match-compute based AQM.

depends both on the stored state and the input query, and the
complete trends can only be represented in three dimensions
(Fig. 11a). The analog computation has an associated one-
time cost of converting packet fields from the digital to the
analog domain, but it’s much more scalable with an increasing
number of pCAM cells, as shown in Fig. 11b. Since AQM
can collect analog fields using analog components, this cost
is not applicable for the AQM. The comparison of energy
consumption for match-compute based AQM with state-of-
the-art techniques showed at least 50 times improvement in
performance (Tab. I).

B. Quality of Service

In order to analyze the performance of the match-compute
based AQM, we developed the pCAM-based AQM models in
the ns-3 simulator [28]. The pCAM model was programmed to
drop the network packets based on traffic statistics like sojourn
time, buffer size, and higher-order derivatives of these features.
We used a fair-queuing approach in which different traffic

TABLE I: The performance comparison of Transistors(T)/
Memristors(M)-based Digital(D)/Analog(A) computations.

Researches [20] [21] [22] [23] [24] [25] [26] [27] pCAM
Computation (D/A) D D D D D D D D A
Technology (T/M) T T M M M M M M M
Latency (ns) 1 1.9 1 0.29 0.18 2.3 8 1
Energy (fJ/bit) 0.58 1.98 1-16 1.04 1.2 2.15 3 7.4 0.01

(a) Input ∈ [-2,1]. (b) Input ∈ [1,4].

Fig. 10: The range of analog PDPs for various input header
ranges (queuing delays).

(a) Energy consumption per bit. (b) Digital vs Analog.

Fig. 11: The trends of energy consumption.

classes are assigned to different queues and the PDP of each
class is independent of the neighboring class. The performance
of pCAM-based AQM was compared with the state-of-the-art
AQM algorithms including RED [29], PIE [30], CoDel [31],
FQ-CoDel [32] and COBALT [33]. pCAM was programmed
with three different configurations in order to show the di-
versity and programmability. The results for video streaming
applications by using 100 clients, 5 servers, and Poisson
distributed flows (5 Mbps/client) are shown in Fig. 12. The
results show that pCAM provides comparable throughput to
the traditional algorithms. However, pCAM can be configured
for lowest or highest sojourn time based upon the constraints
of Packet Loss Ratio (PLR) and Queue length. A lower sojourn
time in pCAM results in lower queue length but higher PLR
and vice versa. Overall, pCAM provides the most configurable
options for providing different QoS to various network traffic
flows based on the requirements.

The performance of pCAM was also analyzed by increasing
the network traffic load and measuring the impact on perfor-
mance metrics, as shown in Fig. 13. The results show that
pCAM provides throughput similar to the traditional algo-
rithms. The PLR for pCAM is much lower than the traditional
algorithms except for FQ-CoDel which has a much higher
queue length. The algorithms, like PIE, CoDel, provided less
sojourn time but suffered from excessive packet losses. On
the contrary, pCAM managed an optimum queue length and
minimized the packet losses. The comparison shows that
pCAM provides satisfactory QoS by increasing the traffic load.

Saad Saleh, Anouk S. Goossens, Sunny Shu, Tamalika Banerjee and Boris Koldehofe. Analog In-Network Computing through Memristor-based Match-
Compute Processing. In Proceedings of the 43rd International Conference on Computer Communications (INFOCOM 2024), IEEE, 10 pages, 2024.

Fig. 12: Video streaming analysis of pCAM (6, 7, 8) vs RED (1), PIE (2), CoDel (3), FQ-CoDel (4) and COBALT (5).

Fig. 13: Performance of pCAM with prior state-of-the-art
AQM algorithms by increasing the network traffic load.

VI. LITERATURE REVIEW

The requirement of more expressive network functions like
cognitive functions is a fundamental requirement of packet
processors [34]. Saleh et al. [8] identified the applications
of cognitive models for enabling energy efficient and self-
learning network functions. Since the current data plane cannot
take actions based upon multiple parallel matching policies,
Shrivastav [35] [36] proposed multi-dimensional match-action
tables using FPGAs and showed line rate performance for
network functions requiring multiple policies. In [15], Zulfiqar
et al. highlighted the latency issues by continuous data move-
ments between the switch’s operating systems and the control
plane. The authors suggested future research on incorporating
line rate computational capabilities in the data plane.

The use of memristors has been actively studied for sup-
porting energy efficient high-performance operations [37] [38].

Saleh et al. developed memristor-based TCAMs for supporting
energy efficient network functions, like IP lookup, in the data
plane [22] [39]. Due to non-volatility, the proposed match-
action processing did not consume any energy in the standby
mode and required only 1-16 µW of energy during the match
operations. In [40] [41], Graves et al. developed memristor-
based TCAMs for supporting network functions like Regular
Expression Matching. The research showed that memristor-
based TCAMs can increase the throughput by 12 times (upto
47.2 Gbps) as compared to the FPGAs. However, these re-
searches did not exploit the analog nature of the memristors.
Recent researches [42]–[47] focused on the development of
analog Content Addressable Memory (CAM) for storing poli-
cies in the analog domain. The output is either digital or analog
based on the application. The results showed that memristor-
based analog CAM can provide space and energy savings by
18 and 10 times, respectively. However, unlike pCAM, these
analog CAM designs do not support the programmability of a
nonlinear function at the cell level. A comparison of all studies
shows that memristor-based CAMs have not been used for
deterministic and probabilistic computations in the data plane.

VII. CONCLUSION AND FUTURE WORK

In this paper, we showed the support of line rate compu-
tations for energy efficient network functions by leveraging
the novel technology of memristors. We proposed the match-
compute processing building on pCAM abstraction which
supports both deterministic and probabilistic matches in the
data plane. pCAM provides line rate matrix multiplications
through crossbar array interconnections. We developed the
packet processing architecture, programming abstractions, and
analyzed the performance for an AQM function. The proposed
AQM function drops packets based upon the analog higher-
order derivatives of sojourn times and buffer sizes. The analy-
sis over the dataset of a physically fabricated memristor chip
showed only 0.01 fJ/bit/cell of energy consumption which is
50 times less than the traditional processing. In the future, we
would focus on supporting cognitive models, like SNN, at the
packet processors. Moreover, we would study the self-learning
network functions to develop autonomous packet processors.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support
of the CogniGron research center and the Ubbo Emmius Funds
(University of Groningen).

Saad Saleh, Anouk S. Goossens, Sunny Shu, Tamalika Banerjee and Boris Koldehofe. Analog In-Network Computing through Memristor-based Match-
Compute Processing. In Proceedings of the 43rd International Conference on Computer Communications (INFOCOM 2024), IEEE, 10 pages, 2024.

REFERENCES

[1] X. Chen et al., “Fine-Grained Queue Measurement in the Data Plane,”
in Proceedings of the International Conference on Emerging Networking
Experiments And Technologies. ACM, 2019, pp. 15–29.

[2] R. MacDavid, X. Chen, and J. Rexford, “Scalable Real-Time Bandwidth
Fairness in Switches,” in Proceedings of the International Conference
on Computer Communications. IEEE, 2023, pp. 1–10.

[3] Z. Yu et al., “Programmable Packet Scheduling with a Single Queue,” in
Proceedings of the SIGCOMM Conference. ACM, 2021, pp. 179–193.

[4] S. Saleh et al., “Breaching IM Session Privacy Using Causality,” in
Proceedings of the Global Communications Conference. IEEE, 2014,
pp. 686–691.

[5] S. Saleh, M. U. Ilyas, K. Khurshid, A. X. Liu, and H. Radha, “IM Ses-
sion Identification by Outlier Detection in Cross-correlation Functions,”
in Proceedings of the Annual Conference on Information Sciences and
Systems. IEEE, 2015, pp. 1–5.

[6] Intel®. (2023) Tofino 2 12.8 Tbps, Reduced Stage, 4 Pipelines.
Intel. [Online]. Available: https://www.intel.com.au/content/www/au/en/
products/details/network-io/intelligent-fabric-processors.html

[7] NVIDIA. (2023) Spectrum-4. 51.2 Tb/s Ethernet Switch
ASIC. NVIDIA. [Online]. Available: https://www.nvidia.com/en-us/
networking/ethernet-switching/

[8] S. Saleh and B. Koldehofe, “On Memristors for Enabling Energy
Efficient and Enhanced Cognitive Network Functions,” IEEE Access,
vol. 10, pp. 129 279–129 312, 2022.

[9] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and
B. Kay, “Opportunities for Neuromorphic Computing Algorithms and
Applications,” Nature Computational Science, vol. 2, pp. 10–19, 2022.

[10] A. K. Ramanathan et al., “Look-Up Table based Energy Efficient
Processing in Cache Support for Neural Network Acceleration,” in
Annual International Symposium on Microarchitecture. IEEE/ACM,
2020, pp. 88–101.

[11] O. Vaughan, “A History of Memristors in Five Covers,” Nature Elec-
tronics, vol. 6, no. 1, pp. 7–7, 2023.

[12] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
Missing Memristor Found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[13] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory Devices and Applications for In-Memory Computing,” Nature
Nanotechnology, vol. 15, no. 7, pp. 529–544, 2020.

[14] S. Saleh and B. Koldehofe, “The Future is Analog: Energy-Efficient
Cognitive Network Functions over Memristor-Based Analog Compu-
tations,” in Proceedings of the Workshop on Hot Topics in Networks.
ACM, 2023, p. 254–262.

[15] A. Zulfiqar, B. Pfaff, W. Tu, G. Antichi, and M. Shahbaz, “The
Slow Path Needs an Accelerator Too!.” ACM SIGCOMM Computer
Communication Review, vol. 53, no. 1, pp. 38–47, 2023.

[16] C. Wang et al., “Parallel In-Memory Wireless Computing,” Nature
Electronics, pp. 1–9, 2023.

[17] S.-i. Yi, J. D. Kendall, R. S. Williams, and S. Kumar, “Activity-
Difference Training of Deep Neural Networks using Memristor Cross-
bars,” Nature Electronics, vol. 6, no. 1, pp. 45–51, 2023.

[18] M. A. Zidan et al., “A General Memristor-based Partial Differential
Equation Solver,” Nature Electronics, vol. 1, no. 7, pp. 411–420, 2018.

[19] A. S. Goossens, M. Ahmadi, D. Gupta, I. Bhaduri, B. J. Kooi, and
T. Banerjee, “Memristive Memory Enhancement by Device Miniatur-
ization for Neuromorphic Computing,” Advanced Electronic Materials,
vol. 9, no. 4, p. 2201111, 2023.

[20] I. Arsovski, T. Hebig, D. Dobson, and R. Wistort, “A 32 nm 0.58-
fJ/bit/Search 1-GHz Ternary Content Addressable Memory Compiler
Using Silicon-Aware Early-Predict Late-Correct Sensing with Embedded
Deep-Trench Capacitor Noise Mitigation,” IEEE Journal of Solid-State
Circuits, vol. 48, no. 4, pp. 932–939, 2013.

[21] I. Hayashi et al., “A 250-MHz 18-Mb Full Ternary CAM With Low-
Voltage Matchline Sensing Scheme in 65-nm CMOS,” IEEE Journal of
Solid-State Circuits, vol. 48, no. 11, pp. 2671–2680, 2013.

[22] S. Saleh, A. S. Goossens, T. Banerjee, and B. Koldehofe,
“TCAmMCogniGron: Energy Efficient Memristor-Based TCAM for
Match-Action Processing,” in Proceedings of the International Confer-
ence on Rebooting Computing. IEEE, 2022, pp. 89–99.

[23] S. Matsunaga et al., “Fully Parallel 6T-2MTJ Nonvolatile TCAM
with Single-Transistor-Based Self Match-line Discharge Control,” in
Symposium on VLSI Circuits-Digest of Technical Papers. IEEE, 2011,
pp. 298–299.

[24] K. Gnawali and S. Tragoudas, “High-Speed Memristive Ternary Con-
tent Addressable Memory,” IEEE Transactions on Emerging Topics in
Computing, vol. 10, no. 3, pp. 1349–1360, 2021.

[25] V. Bontupalli, C. Yakopcic, R. Hasan, and T. M. Taha, “Efficient
Memristor-Based Architecture for Intrusion Detection and High-Speed
Packet Classification,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 14, no. 4, pp. 1–27, 2018.

[26] L. Zheng, S. Shin, S. Lloyd, M. Gokhale, K. Kim, and S.-M. Kang,
“RRAM-Based TCAMs for Pattern Search,” in International Symposium
on Circuits and Systems. IEEE, 2016, pp. 1382–1385.

[27] W. Xu, T. Zhang, and Y. Chen, “Design of Spin-Torque Transfer
Magnetoresistive RAM and CAM/TCAM with High Sensing and Search
Speed,” IEEE Transactions on Very Large Scale Integration Systems,
vol. 18, no. 1, pp. 66–74, 2009.

[28] Ns3 network simulator. [Online]. Available: https://www.nsnam.org/
[29] S. Floyd and V. Jacobson, “Random Early Detection Gateways for

Congestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, 1993.

[30] R. Pan, P. Natarajan, F. Baker, and G. White, “Proportional Integral
Controller Enhanced (PIE): A Lightweight Control Scheme to Address
the Bufferbloat Problem,” RFC 8033, Feb. 2017. [Online]. Available:
https://www.rfc-editor.org/info/rfc8033

[31] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled
Delay Active Queue Management,” RFC 8289, Jan. 2018. [Online].
Available: https://www.rfc-editor.org/info/rfc8289

[32] T. Høiland-Jørgensen, P. McKenney, D. Taht, J. Gettys, and
E. Dumazet, “The Flow Queue CoDel Packet Scheduler and Active
Queue Management Algorithm,” RFC 8290, Jan. 2018. [Online].
Available: https://www.rfc-editor.org/info/rfc8290

[33] J. Palmei et al., “Design and Evaluation of COBALT Queue Discipline,”
in International Symposium on Local and Metropolitan Area Networks.
IEEE, 2019, pp. 1–6.

[34] S. Saleh, S. Shu, and B. Koldehofe, “Adaptive In-Network Queue
Management using Derivatives of Sojourn Time and Buffer Size,” in
Proceedings of the Network Operations and Management Symposium.
IEEE, 2024, p. 5 pages.

[35] V. Shrivastav, “Programmable Multi-Dimensional Table Filters for Line
Rate Network Functions,” in Proceedings of the SIGCOMM Conference.
ACM, 2022, p. 649–662.

[36] V. Shrivastav, “Stateful Multi-Pipelined Programmable Switches,” in
Proceedings of the SIGCOMM Conference. ACM, 2022, p. 663–676.

[37] S. Saleh and B. Koldehofe, “Memristor-based Network Switching Ar-
chitecture for Energy Efficient Cognitive Computational Models,” in
Proceedings of the International Symposium on Nanoscale Architectures.
ACM, 2023, p. 4 pages.

[38] S. Saleh, A. S. Goossens, T. Banerjee, and B. Koldehofe, “PAmM:
Memristor-based Probabilistic Associative Memory for Neuromorphic
Network Functions,” in Proceedings of the Non-Volatile Memory Tech-
nology Symposium. IEEE, 2023, pp. 1–5, in Press.

[39] S. Saleh, A. S. Goossens, T. Banerjee, and B. Koldehofe, “Towards
Energy Efficient Memristor-based TCAM for Match-Action Processing,”
in Proceedings of the International Green and Sustainable Computing
Conference. IEEE, 2022, pp. 1–4.

[40] C. E. Graves et al., “Memristor TCAMs Accelerate Regular Expression
Matching for Network Intrusion Detection,” IEEE Transactions on
Nanotechnology, vol. 18, pp. 963–970, 2019.

[41] C. E. Graves et al., “Regular Expression Matching with Memristor
TCAMs,” in Proceedings of the International Conference on Rebooting
Computing. IEEE, 2018, pp. 1–11.

[42] C. Graves, C. Li, K. Ozonat, and J. P. Strachan, “Hardware Accelerator
with Analog-Content Addressable Memory (a-CAM) for Decision Tree
Computation,” Apr. 21 2022, US Patent App. 17/071,924.

[43] C. Li, C. Graves, and J. P. Strachan, “Analog, Non-volatile, Content
Addressable Memory,” Nov. 24 2020, US Patent 10,847,238.

[44] C. Li, C. Graves, and J. P. Strachan, “Methods and Systems for an
Analog CAM with Fuzzy Search,” May 4 2021, US Patent 10,998,047.

[45] C. Li et al., “Analog Content-Addressable Memories with Memristors,”
Nature Communications, vol. 11, no. 1, pp. 1–8, 2020.

[46] S.-C. Liu, J. P. Strachan, and A. Basu, “Prospects for Analog Circuits in
Deep Networks,” in Analog Circuits for Machine Learning, Current/Volt-
age/Temperature Sensors, and High-speed Communication: Advances in
Analog Circuit Design. Springer, 2021, pp. 49–61.

[47] G. Pedretti et al., “Differentiable Content Addressable Memory with
Memristors,” Advanced Electronic Materials, vol. 8, no. 8, p. 2101198,
2022.

https://www.intel.com.au/content/www/au/en/products/details/network-io/intelligent-fabric-processors.html
https://www.intel.com.au/content/www/au/en/products/details/network-io/intelligent-fabric-processors.html
https://www.nvidia.com/en-us/networking/ethernet-switching/
https://www.nvidia.com/en-us/networking/ethernet-switching/
https://www.nsnam.org/
https://www.rfc-editor.org/info/rfc8033
https://www.rfc-editor.org/info/rfc8289
https://www.rfc-editor.org/info/rfc8290

	Introduction
	Background
	Match-Action Processing and Limitations
	Memristor-based In-memory Computing
	Problem Statement

	Proposed Match-Compute Processing
	Match-Compute Processing Architecture
	Match-Compute Formalizations for Network Functions
	Non-flexible Non-Overlapping Network Functions
	Non-Flexible Overlapping Network Functions
	Flexible Non-Overlapping Network Functions
	Mimicking the Digital Match-Action Processing

	Programming Match-Compute Processing
	Proposed Packet Processing Architecture
	Proposed Programming Abstractions
	Proof-of-Concept: Match-Compute based AQM

	Performance Analysis
	Energy Consumption
	Quality of Service

	Literature Review
	Conclusion and Future Work
	References

