
Saad Saleh, Sunny Shu, and Boris Koldehofe. Adaptive In-Network Queue Management using Derivatives of Sojourn Time and Buffer Size. In
Proceedings of the 37th Network Operations and Management Symposium (NOMS 2024), IEEE, 6 pages, 2024.

Adaptive In-Network Queue Management using
Derivatives of Sojourn Time and Buffer Size

Saad Saleh∗†, Sunny Shu∗, Boris Koldehofe‡†
∗Bernoulli Institute, University of Groningen, Netherlands

†CogniGron (Groningen Cognitive Systems and Materials Center), University of Groningen, Netherlands
‡Department of Computer Science and Automation, Technische Universität Ilmenau, Germany

s.saleh@rug.nl, s.shu@student.rug.nl, boris.koldehofe@tu-ilmenau.de

Abstract—Active Queue Management (AQM) algorithms are
heavily used in packet processors to maintain an optimal queue
size and avoid issues like Bufferbloat. Despite the remarkable
performance, the traditional AQM algorithms face a major
challenge of estimating the accurate queue congestion due to
bursty network conditions. The major reason is the use of
baseline queue statistics for congestion estimation like delay and
sojourn time for Random Early Detection (RED) and Controlled
Delay (CoDel), respectively. In this paper, we propose a novel
dAQM algorithm that uses advanced traffic statistics like three
higher-order derivatives of sojourn time and buffer size along
with the baseline sojourn time and buffer size for accurate
congestion estimation. dAQM adjusts its drop rate based on the
continuously varying congestion to cater to the needs of bursty
traffic. We simulated dAQM in ns-3 and analyzed its performance
for FTP traffic by variation in traffic load and packet sizes.
The results showed that dAQM provides at least 25% and
39.7% reduction in packet loss ratio and flow completion time,
respectively, as compared to the traditional AQM algorithms.

Index Terms—Queue Management; Quality of Service; Con-
gestion; Network Management.

I. INTRODUCTION

The network systems use Active Queue Management
(AQM) algorithms to maintain an optimal queue size inside
packet processors [1] [2]. A small queue size increases the
packet losses resulting in poor Quality of Service (QoS) for
end users [3]–[5]. On the contrary, a large queue size increases
the end-to-end delay resulting in issues like Bufferbloat [6]–
[8]. The role of AQM algorithms is to compute the state of
queue congestion and drop the packets. Despite the promising
performance, the current AQM algorithms face a major chal-
lenge of estimating the accurate congestion in bursty network
conditions. The major reason is the use of baseline queue
statistics like EWMA delay and sojourn time for Random
Early Detection (RED) [9] and Controlled Delay (CoDel) [10],
respectively. Moreover, the current AQM algorithms lack
adaptability and the packet drop mechanisms are independent
of the rate of change of congestion in the queues. These
shortcomings motivate the development of algorithms that use
advanced traffic statistics, like the rate of change of congestion,
for computing the Packet Drop Probability (PDP) and adapting
the AQM based on the state of congestion.

Our research focuses on the understanding of advanced
queue statistics like higher-order derivatives of sojourn time

and buffer size for AQM algorithms. In this paper, we develop
a novel Derivative-based Active Queue Management (dAQM)
algorithm that computes the PDP based on the sojourn time,
buffer size, and the three higher-order derivatives of sojourn
time and buffer size. The higher-order derivatives provide the
rate of increase of congestion in the queues. It aids in the
computation of the PDP based on the state of the congestion. It
effectively handles the bursty network traffic by continuously
measuring the state of network congestion. The first-order
derivative of sojourn time provides the rate of increase of
packet delay in the queue. It is directly linked to the increase
in queue congestion. A higher increase corresponds to a higher
PDP and vice versa. Similarly, the second and third-order
derivatives provide the rate of increase of first and second-
order derivatives, respectively. They capture the periods of
bursty network traffic by showing slight variations in packet
delay. The traditional AQM algorithms do not consider the
buffer capacity during PDP computation and require sepa-
rate buffer management algorithms [11]–[14]. Our proposed
dAQM algorithm incorporates the buffer size and its three
higher-order derivatives to drop packets based on the available
buffer capacity. The use of buffer size increases the precision
of PDP and avoids packet losses due to buffer overflows.

Contributions and Research Findings. We develop a
higher-order derivative based AQM algorithm. Our major con-
tributions are three-fold; (1) Development of a novel dAQM
algorithm that uses the sojourn time, buffer size, and the three
higher-order derivatives of sojourn time and buffer size for
PDP computation, (2) Performance analysis of the proposed
dAQM algorithm over variation in traffic loads and packet
sizes for FTP traffic, (3) Understanding of the architecture
and comparison with prior state-of-the-art AQM algorithms.
The analysis over FTP traffic showed that dAQM reduces the
Flow Completion Time (FCT) by at least 39.7% (from 25.4 s
to 15.3 s) as compared to the prior AQM algorithms i.e.,
RED, PIE, CoDel, FQ-CoDel, and COBALT. dAQM reduces
the Packet Loss Ratio (PLR) by at least 25% as compared
to the prior AQM algorithms without any comprimise on
throughput. We proposed three configurations of dAQM based
on the derivative thresholds. The results showed that dAQM
provides the most configurability in PLR, delay, and Queue
Length (QL) based on the application requirements.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

mailto:s.saleh@rug.nl
mailto:s.shu@student.rug.nl
mailto:boris.koldehofe@tu-ilmenau.de


Saad Saleh, Sunny Shu, and Boris Koldehofe. Adaptive In-Network Queue Management using Derivatives of Sojourn Time and Buffer Size. In
Proceedings of the 37th Network Operations and Management Symposium (NOMS 2024), IEEE, 6 pages, 2024.

T
im

e
 s

ta
m

pi
n

g

S
pl

itt
e

r

Fig. 1: The switching architecture for the execution of dAQM.

Paper Organization. Sec-II summarizes the related work.
The system architecture and dAQM algorithm have been
presented in Sec-III. Sec-IV analyzes the performance of
dAQM. Finally, Sec-V concludes the paper.

II. LITERATURE REVIEW

Significant research has been conducted on the understand-
ing of optimal traffic features in computing the PDP for AQM
algorithms based on the state of congestion.

RED uses the Exponential Weighted Moving Average
(EWMA) delay for dropping the packets based on network
congestion [9] [15]. An improvement of RED, called FQ-
RED, handles different traffic classes separately to avoid
unfairness [16]. The major shortcoming of RED is its poor
performance for bursty traffic. The programmability of drop
probability based on delay is another major challenge [10].

CoDel uses the sojourn time for computing the PDP based
on the state of congestion [17]. An improvement called
Fair/Flow Queue CoDel (FQ-CoDel), handles flows separately
based on traffic classes for fairness [18]. However, the drop
mechanism of CoDel is independent of the rate of change of
congestion. In fact, the drop rate aggressively increases with
time until the threshold limit for sojourn time is reached.

Proportional Integral Controller Enhanced (PIE) uses the
PLR for computing the PDP and adjusts its PDP based on the
feedback from the queue [19] [20]. BLUE uses both PLR and
link idle statistics in its estimation of queue congestion [21].
Recently, multiple features have been used in AQM algorithms
to increase the performance. For example, CoDel and BLUE
Alternate (COBALT) combines both CoDel and BLUE for
accurately estimating the congestion [22]. CAKE [23] com-
bines COBALT with a traffic shaper and flow isolation module
to incorporate fair queuing with improved packet handling.
Despite promising performance, these techniques rely heavily
on raw queue statistics and they cannot adapt based on the
continuously varying congestion situation in a bursty network.

Several researches have focused on the use of advanced
traffic statistics for the estimation of congestion state. These
traffic statistics include traffic load pattern [24], buffer size
with delay [25], traffic labels [26], traffic classes (like best
effort, real-time, and low latency) [27], and disturbance ob-
server and smith predictor [28]. Some advanced techniques
used reinforcement learning-based drop decisions [29], policy-
oriented drop probability based on delay and resource uti-
lization [30], and flow statistics-based drop estimation [31].
Many complex approaches have been developed for the tuning

of advanced metrics like reinforcement learning-based metric
tuning [32] [33], model predictive control theory [34], and
reparametrization techniques [35]. A comparison of all the
researches shows that the computation of accurate congestion
state is an open research problem. The higher-order derivatives
of sojourn time and buffer size have not been studied for the
computation of PDP in AQM algorithms.

III. PROPOSED DAQM ALGORITHM

In this section, we present the system architecture and the
details of the higher-order derivative-based dAQM algorithm.

System Architecture. The switching architecture for the
execution of dAQM is shown in Fig. 1. The switch builds
on the traditional PISA architecture based on Match-Action
tables [36]. The incoming packets are stored in the Ingress
Packet Queues. The Parser extracts the packet header fields
and passes them to the Match-Action tables in the ingress
packet processing stages. The Traffic manager splits the traffic
into multiple queues based on traffic classes. It collects the
sojourn time and buffer size for feeding into the dAQM
module. dAQM calculates the PDP and feeds it back to the
packet drop module. The output of dAQM is processed by a set
of egress packet processing stages until ready for processing
by the egress packet queues. dAQM can be implemented in
four possible methods; (1) Programming dAQM inside the
Match-Action tables [37], (2) Using the emerging match-
action frameworks that support more expressive line rate
network functions [38]–[46], (3) Network Function Virtualiza-
tion (NFV)-based software implementation, (4) Programming
dAQM inside an SDN-based controller.

dAQM Algorithm. The processing stages for the execution
of dAQM are shown in Fig. 2. All packets entering the queues
are time-stamped to record the sojourn time. At the dequeue,
sojourn time is measured for every outgoing packet. Buffer
size is measured after fixed intervals to measure queue utiliza-
tion. Based on the sojourn time (s(t)), dAQM calculates the
first (s′(t)), second (s′′(t)), and third-order (s′′′(t)) derivatives
of sojourn time at regular intervals (∆ts) using Eq. 1, Eq. 2 and
Eq. 3, respectively. Similarly, the three higher-order derivatives
of buffer size are computed at regular intervals to estimate the
rate of change of buffer size.

s′(t) =
s(t)− s(t− 1)

∆ts
(1)

s′′(t) =
s′(t)− s′(t− 1)

∆ts
(2)



Saad Saleh, Sunny Shu, and Boris Koldehofe. Adaptive In-Network Queue Management using Derivatives of Sojourn Time and Buffer Size. In
Proceedings of the 37th Network Operations and Management Symposium (NOMS 2024), IEEE, 6 pages, 2024.

TABLE I: The programmed parameters of prior state-of-the-art algorithms and the three configurations of proposed dAQM.

AQM Parameters AQM Parameters
PIE Thdeq = 20 Tupdate= 15 alpha = 0.125 beta = 1.25 CoDel Int= 100 ms Target= 5 ms

COBALT Pdrop= 0 Inc.= 0.08 Dec.= 0.04 BlueTh.= 400 FQ-CoDel Int= 100 ms Target= 5 ms Flows= 1024

RED Thmax= 1000 Thmin= 500 QW= 0.002 Target= 5 ms alpha = 0.01 beta = 0.9

dAQM1 s= 1000 s′= 10 s′′= 10 s′′′= 10 b= 120 p b′= 1 b′′= 10 b′′′= 10
Dr[2]= 0.05 Dr[4]= 0.05 Dr[6]= 0.05 Dr[8]= 0.05 Dr[1]= 0.05 Dr[3]= 0.05 Dr[5]= 0.05 Dr[7]= 0.05

Dd[2]= 400 ms Dd[4]= 400 ms Dd[6]= 400 ms Dd[8]= 400 ms Dd[1]= 400 ms Dd[3]= 400 ms Dd[5]= 400 ms Dd[7]= 400 ms
dAQM2 s= 600 s′= 0.1 s′′= 0.1 s′′′= 0.1 b= 80 p b′= 0.1 b′′=0.1 b′′′=0.1

Dr[2]= 0.5 Dr[4]= 0.5 Dr[6]= 0.5 Dr[8]= 0.5 Dr[1]= 0.5 Dr[3]= 0.5 Dr[5]= 0.5 Dr[7]= 0.5
Dd[2]= 400 ms Dd[4]= 400 ms Dd[6]= 400 ms Dd[8]= 400 ms Dd[1]= 400 ms Dd[3]= 400 ms Dd[5]= 400 ms Dd[7]= 400 ms

dAQM3 s=100 s′=0.01 s′′= 0.01 s′′′= 0.01 b= 20 p b′= 0.01 b′′= 0.01 b′′′= 0.01
Dr[2]= 0.98 Dr[4]= 0.98 Dr[6]= 0.98 Dr[8]= 0.98 Dr[1]= 0.98 Dr[3]= 0.98 Dr[5]= 0.98 Dr[7]= 0.98

Dd[2]= 400 ms Dd[4]= 400 ms Dd[6]= 400 ms Dd[8]= 400 ms Dd[1]= 400 ms Dd[3]= 400 ms Dd[5]= 400 ms Dd[7]= 400 ms

In
pu

t

O
ut
pu

t

Fig. 2: The flowchart of the proposed dAQM algorithm.

s′′′(t) =
s′′(t)− s′′(t− 1)

∆ts
(3)

In the next stage, dAQM matches the higher-order deriva-
tives with the programmed predicates which contain the
thresholds of derivative limits (T1, T2, etc.). Since higher-order
derivatives show major fluctuations in delay (unlike the lower-
order derivatives), the match process assigns higher priority to
higher-order derivatives than lower-order ones. The packets
matching the programmed predicates are marked for packet
drops. The rest of the packets are forwarded to the output
port. The packets are dropped based on the matched derivative
thresholds. dAQM contains the programmed drop rates (Dr)
and drop durations (Dd) against all matched predicates. After
packet drops, the state of congestion is measured again to
update the drop rates and durations.

IV. MODELING AND PERFORMANCE ANALYSIS

In this section, we present the modeling and performance
analysis of the proposed dAQM algorithm.

TABLE II: Simulation parameters of the network.

Parameter Value Parameter Value
Clients/Servers 100/5 Pkt Size 1400 B

Link Bandwidth 2 Gbps Link Latency 1 ms
Trans. Rate (pc.) 10/5/1.5/0.128/0.08 Mbps Buffer Size 2000 p

CBR ON/OFF=1/0s VBR ON/OFF=1/1.5s

A. dAQM ns-3 model

The simulation model for dAQM has been built in ns-3 [47].
The network consists of 100 clients communicating with 5
servers through a common switch. The switch uses the dAQM
with a fair-queuing mechanism to handle various flows in
separate queues. Constant Bit Rate (CBR) distribution model
was used for simulating FTP traffic. In order to understand the
performance improvements, the traditional AQM algorithms
including RED, PIE, CoDel, FQ-CoDel, and COBALT were
also simulated. All AQM algorithms were optimized for max-
imum throughput. In consistent with prior researches [48]–
[53], the performance parameters of the various AQM algo-
rithms and simulation setup are shown in Tab-I and Tab- II,
respectively. dAQM was programmed in 3 configurations i.e.,
dAQM1, dAQM2, and dAQM3. dAQM3 was programmed with
the lowest derivative thresholds. It drops packets with slight
variations in delays. dAQM2 and dAQM1 had higher derivative
thresholds to cater to the traffic that can handle higher delays.

B. Performance analysis

The performance of dAQM was analyzed by variation in
traffic loads and packet sizes for FTP traffic.

Increasing the traffic load. Fig. 3 presents the perfor-
mance of dAQM in comparison to prior AQM algorithms by
increasing the traffic load from 50 kbps to 10 Mbps (100%)
for FTP traffic. The results show that dAQM1 reduces the
PLR by at least 25% as compared to the state-of-the-art AQM
algorithms. All AQM algorithms have been programmed for
maximum throughput. COBALT shows high throughput but it
provides high PLR at heavy traffic loads. High PLR makes its
deployment infeasible for traffic classes demanding low PLR.
Among other protocols, RED has the highest QL and sojourn
time that also increase the end-to-end delay. A comparison



Saad Saleh, Sunny Shu, and Boris Koldehofe. Adaptive In-Network Queue Management using Derivatives of Sojourn Time and Buffer Size. In
Proceedings of the 37th Network Operations and Management Symposium (NOMS 2024), IEEE, 6 pages, 2024.

Fig. 3: Performance of dAQM with an increase in load for
FTP traffic with CBR distribution model.

shows that all dAQM configurations have minimal QL and
sojourn time. Moreover, dAQM provides the capability of
multiple configurations that can handle different traffic classes
for improving the QoS of end users.

Decreasing the packet sizes. The packet sizes of network
traffic vary depending on the applications. In order to under-
stand the impact of variation in packet sizes, the performance
of dAQM was analyzed for packet sizes from 50 B to 1500 B.
The performance analysis is shown in Fig. 4. The results show
that dAQM1 provides the lowest PLR as compared to all other
protocols. Since all AQM algorithms have been programmed
for maximum throughput, there is very minimal variation
in the throughput of various protocols except for COBALT.
COBALT provides high throughput for optimal load but its
PLR is higher than the dAQM. RED has the highest QL and
sojourn time which also increases the end-to-end delay.

Statistical Analysis of dAQM. Tab-III presents the sta-
tistical analysis of dAQM with prior AQM algorithms. The
results show that dAQM reduced the FCT from 39.7%-49.3%
as compared to the state-of-the-art protocols. dAQM2 has an
FCT of 15.3 s, while FCTs of traditional protocols vary from
25.4 s to 30.2 s. Moreover, dAQM also has the lowest PLR.
Only COBALT provides a lower delay than dAQM but it has
twice the PLR and a very large FCT (25.7 s). The statistical
analysis shows that dAQM can avoid excessive packet losses
and manage the congestion by providing the lowest FCT.

Fig. 4: Performance of dAQM with a decrease in packet size
for FTP traffic with CBR distribution model.

TABLE III: Performance statistics for FTP-based dAQM.

AQM Delay (ms) TP (kbps) QL (pkts) ST (ms) PLR % FCT (s)
RED 2403.5 263.6 677.5 13166.8 0.4 30.2
PIE 1908.4 225.9 94.5 809.9 0.6 29.2

CoDel 1349.2 221.2 103.8 593.5 0.5 27.8
FQ-CoDel 1955 206.7 303.7 2911.1 0.6 25.4
COBALT 668.2 302.3 67.2 78.7 0.6 25.7
dAQM1 1082.5 292.7 122.9 394.5 0.3 15.4
dAQM2 1138.1 278.2 144.5 1191.8 0.5 15.3
dAQM3 1341 291.5 124.5 443.2 0.5 15.8

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel dAQM algorithm for
queue management in packet processors. dAQM uses the
sojourn time, buffer size, and the three higher-order derivatives
of sojourn time and buffer size for PDP computation. The
performance analysis showed that dAQM reduced the FCT and
PLR by up to 49.3% and 50%, respectively, as compared to
the traditional AQM algorithms. In the future, we will focus on
the understanding of the performance of dAQM by variation
in traffic distribution models and traffic classes. Moreover, we
will study the programmability of optimal features of dAQM.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support
of the CogniGron research center and the Ubbo Emmius Funds
(University of Groningen).



Saad Saleh, Sunny Shu, and Boris Koldehofe. Adaptive In-Network Queue Management using Derivatives of Sojourn Time and Buffer Size. In
Proceedings of the 37th Network Operations and Management Symposium (NOMS 2024), IEEE, 6 pages, 2024.

REFERENCES

[1] R. Adams, “Active Queue Management: A Survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 15, no. 3, pp. 1425–1476, 2013.

[2] S. Jung, J. Kim, and J.-H. Kim, “Intelligent Active Queue Management
for Stabilized QoS Guarantees in 5G Mobile Networks,” IEEE Systems
Journal, vol. 15, no. 3, pp. 4293–4302, 2020.

[3] S. Saleh, Z. Shah, and A. Baig, “Improving QoS of IPTV and VoIP over
IEEE 802.11n,” Elsevier Computers & Electrical Engineering, vol. 43,
pp. 92–111, 2015.

[4] S. Saleh, Z. Shah, and A. Baig, “Capacity Analysis of Combined IPTV
and VoIP over IEEE 802.11n,” in Proceedings of the Annual Conference
on Local Computer Networks. IEEE, 2013, pp. 785–792.

[5] S. Saleh, Z. Shah, and A. Baig, “IPTV Capacity Analysis using
DCCP over IEEE 802.11n,” in Proceedings of the Vehicular Technology
Conference. IEEE, 2013, pp. 1–5.

[6] J. Ye, K.-C. Leung, and S. H. Low, “Combating Bufferbloat in Multi-
Bottleneck Networks: Theory and Algorithms,” IEEE/ACM Transactions
on Networking, vol. 29, no. 4, pp. 1477–1493, 2021.

[7] J. Gettys, “Bufferbloat: Dark Buffers in the Internet,” IEEE Internet
Computing, vol. 15, no. 3, pp. 96–96, 2011.

[8] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet: Net-
works Without Effective AQM May Again be Vulnerable to Congestion
Collapse,” ACM Queue, vol. 9, no. 11, pp. 40–54, 2011.

[9] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, 1993.

[10] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled
Delay Active Queue Management,” RFC 8289, Jan. 2018. [Online].
Available: https://www.rfc-editor.org/info/rfc8289

[11] S. Das and R. Sankar, “Broadcom Smart-Buffer Technology in Data
Center Switches for Cost-Effective Performance Scaling of Cloud Ap-
plications,” Broadcom White Paper, 2012.

[12] M. Apostolaki, L. Vanbever, and M. Ghobadi, “FAB: Toward Flow-
Aware Buffer Sharing on Programmable Switches,” in Proceedings of
the Workshop on Buffer Sizing, 2019, pp. 1–6.

[13] A. K. Choudhury and E. L. Hahne, “Dynamic Queue Length Thresholds
for Shared-Memory Packet Switches,” IEEE/ACM Transactions On
Networking, vol. 6, no. 2, pp. 130–140, 1998.

[14] S. Krishnan, A. K. Choudhury, and F. M. Chiussi, “Dynamic Partition-
ing: A Mechanism for Shared Memory Management,” in Proceedings
of the International Conference on Computer Communications, vol. 1.
IEEE, 1999, pp. 144–152.

[15] S. Floyd, “TCP and Explicit Congestion Notification,” ACM SIGCOMM
Computer Communication Review, vol. 24, no. 5, pp. 8–23, 1994.

[16] B. Suter, T. Lakshman, D. Stiliadis, and A. K. Choudhury, “Design
Considerations for Supporting TCP with Per-Flow Queueing,” in Pro-
ceedings of the International Conference on Computer Communications,
vol. 1. IEEE, 1998, pp. 299–306.

[17] K. Nichols and V. Jacobson, “Controlling Queue Delay,” Communica-
tions of the ACM, vol. 55, no. 7, p. 42–50, jul 2012.

[18] T. Høiland-Jørgensen, P. McKenney, D. Taht, J. Gettys, and
E. Dumazet, “The Flow Queue CoDel Packet Scheduler and Active
Queue Management Algorithm,” RFC 8290, Jan. 2018. [Online].
Available: https://www.rfc-editor.org/info/rfc8290

[19] R. Pan, P. Natarajan, F. Baker, and G. White, “Proportional Integral
Controller Enhanced (PIE): A Lightweight Control Scheme to Address
the Bufferbloat Problem,” RFC 8033, Feb. 2017. [Online]. Available:
https://www.rfc-editor.org/info/rfc8033

[20] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg, “PIE: A Lightweight Control Scheme to
Address the Bufferbloat Problem,” in International Conference on High
Performance Switching and Routing. IEEE, 2013, pp. 148–155.

[21] W.-c. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “The BLUE
Active Queue Management Algorithms,” IEEE/ACM Transactions on
Networking, vol. 10, no. 4, pp. 513–528, 2002.

[22] J. Palmei, S. Gupta, P. Imputato, J. Morton, M. P. Tahiliani, S. Avallone,
and D. Täht, “Design and Evaluation of COBALT Queue Discipline,”
in International Symposium on Local and Metropolitan Area Networks.
IEEE, 2019, pp. 1–6.

[23] T. Høiland-Jørgensen, D. Täht, and J. Morton, “Piece of CAKE: A
Comprehensive Queue Management Solution for Home Gateways,” in
International Symposium on Local and Metropolitan Area Networks.
IEEE, 2018, pp. 37–42.

[24] A. Adamu, V. Shorgin, S. Melnikov, and Y. Gaidamaka, “Flexible
Random Early Detection Algorithm for Queue Management in Routers,”
in Proceedings of the International Conference on Distributed Computer
and Communication Networks. Springer, 2020, pp. 196–208.

[25] V. Addanki, M. Apostolaki, M. Ghobadi, S. Schmid, and L. Vanbever,
“ABM: Active Buffer Management in Datacenters,” in Proceedings of
the SIGCOMM Conference. ACM, 2022, pp. 36–52.

[26] G. White and D. Rice, “Active Queue Management in DOCSIS 3.x
Cable Modems,” Technical report, CableLabs, 2014.

[27] G. Park, B. Jeon, and G. M. Lee, “QoS Implementation with Triple-
Metric-Based Active Queue Management for Military Networks,” Elec-
tronics, vol. 12, no. 1, p. 23, 2022.

[28] R. Hotchi, H. Chibana, T. Iwai, and R. Kubo, “Active Queue Man-
agement Supporting TCP Flows using Disturbance Observer and Smith
Predictor,” IEEE Access, vol. 8, pp. 173 401–173 413, 2020.

[29] M. Kim, M. Jaseemuddin, and A. Anpalagan, “Deep Reinforcement
Learning based Active Queue Management for IoT Networks,” Journal
of Network and Systems Management, vol. 29, no. 3, p. 34, 2021.

[30] R. Bless, M. Hock, and M. Zitterbart, “Policy-oriented AQM Steering,”
in IFIP Networking Conference. IEEE, 2018, pp. 1–9.

[31] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, and T.-Y. Wang, “Fine-Grained Queue Measurement in the Data
Plane,” in Proceedings of the International Conference on Emerging
Networking Experiments And Technologies. ACM, 2019, pp. 15–29.

[32] D. A. Alwahab, G. Gombos, and S. Laki, “On a Deep Q-Network-based
Approach for Active Queue Management,” in Proceedings of the Joint
European Conference on Networks and Communications & 6G Summit.
IEEE, 2021, pp. 371–376.

[33] D. A. Alwahab and S. Laki, “A Simulation-based Survey of Active
Queue Management Algorithms,” in Proceedings of the International
Conference on Communications and Broadband Networking. ACM,
2018, pp. 71–77.

[34] Q. Xu, G. Ma, K. Ding, and B. Xu, “An Adaptive Active Queue
Management based on Model Predictive Control,” IEEE Access, vol. 8,
pp. 174 489–174 494, 2020.

[35] C. Kulatunga, N. Kuhn, G. Fairhurst, and D. Ros, “Tackling Bufferbloat
in Capacity-limited Networks,” in Proceedings of the European Confer-
ence on Networks and Communications. IEEE, 2015, pp. 381–385.

[36] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-Independent Packet Processors,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 3, pp. 87–95,
2014.

[37] R. Kundel, A. Rizk, J. Blendin, B. Koldehofe, R. Hark, and R. Stein-
metz, “P4-CoDel: Experiences on Programmable Data Plane Hardware,”
in Proceedings of the International Conference on Communications.
IEEE, 2021, pp. 1–6.

[38] S. Saleh, A. S. Goossens, S. Shu, T. Banerjee, and B. Koldehofe, “Analog
In-Network Computing through Memristor-based Match-Compute Pro-
cessing,” in Proceedings of the International Conference on Computer
Communications. IEEE, 2024, p. 10 pages.

[39] S. Saleh and B. Koldehofe, “The Future is Analog: Energy-Efficient
Cognitive Network Functions over Memristor-Based Analog Compu-
tations,” in Proceedings of the Workshop on Hot Topics in Networks.
ACM, 2023, p. 254–262.

[40] S. Saleh, A. S. Goossens, T. Banerjee, and B. Koldehofe,
“TCAmMCogniGron: Energy Efficient Memristor-Based TCAM for
Match-Action Processing,” in Proceedings of the International Confer-
ence on Rebooting Computing. IEEE, 2022, pp. 89–99.

[41] S. Saleh and B. Koldehofe, “Memristor-based Network Switching Ar-
chitecture for Energy Efficient Cognitive Computational Models,” in
Proceedings of the International Symposium on Nanoscale Architectures.
ACM, 2023, p. 4 pages.

[42] S. Saleh and B. Koldehofe, “On Memristors for Enabling Energy
Efficient and Enhanced Cognitive Network Functions,” IEEE Access,
vol. 10, pp. 129 279–129 312, 2022.

[43] S. Saleh, A. S. Goossens, T. Banerjee, and B. Koldehofe, “Towards
Energy Efficient Memristor-based TCAM for Match-Action Processing,”
in Proceedings of the International Green and Sustainable Computing
Conference. IEEE, 2022, pp. 1–4.

[44] S. Saleh, A. S. Goossens, T. Banerjee, and B. Koldehofe, “PAmM:
Memristor-based Probabilistic Associative Memory for Neuromorphic
Network Functions,” in Proceedings of the Non-Volatile Memory Tech-
nology Symposium. IEEE, 2023, pp. 1–5, in Press.

https://www.rfc-editor.org/info/rfc8289
https://www.rfc-editor.org/info/rfc8290
https://www.rfc-editor.org/info/rfc8033


Saad Saleh, Sunny Shu, and Boris Koldehofe. Adaptive In-Network Queue Management using Derivatives of Sojourn Time and Buffer Size. In
Proceedings of the 37th Network Operations and Management Symposium (NOMS 2024), IEEE, 6 pages, 2024.

[45] C. Li, C. E. Graves, X. Sheng, D. Miller, M. Foltin, G. Pedretti, and J. P.
Strachan, “Analog Content-Addressable Memories with Memristors,”
Nature Communications, vol. 11, no. 1, pp. 1–8, 2020.

[46] G. Pedretti, C. E. Graves, T. Van Vaerenbergh, S. Serebryakov, M. Foltin,
X. Sheng, R. Mao, C. Li, and J. P. Strachan, “Differentiable Content
Addressable Memory with Memristors,” Advanced Electronic Materials,
vol. 8, no. 8, p. 2101198, 2022.

[47] Ns3 network simulator. [Online]. Available: https://www.nsnam.org/
[48] P. L. Dorlan, An Introduction to Computer Networks, 2nd ed. Au-

toedición, 2020.
[49] J. Zheng, C. Wu, T. Lan, C. Tian, and G. Chen, “Revisiting Weighted

AIMD-based Congestion Control: A Comprehensive Perspective,” in
International Symposium on Quality of Service. IEEE, 2023, pp. 1–10.

[50] M. Hock, R. Bless, and M. Zitterbart, “Experimental Evaluation of BBR
Congestion Control,” in Proceedings of the International Conference on
Network Protocols. IEEE, 2017, pp. 1–10.

[51] X. Du, K. Xu, L. Xu, K. Zheng, M. Shen, B. Wu, and T. Li, “R-AQM:
Reverse ACK Active Queue Management in Multitenant Data Centers,”
IEEE/ACM Transactions on Networking, vol. 31, no. 2, pp. 526–541,
2023.

[52] A. Iqbal, U. Javed, S. Saleh, J. Kim, J. S. Alowibdi, and M. U.
Ilyas, “Analytical Modeling of End-to-End Delay in OpenFlow Based
Networks,” IEEE Access, vol. 5, pp. 6859–6871, 2016.

[53] U. Javed, A. Iqbal, S. Saleh, S. A. Haider, and M. U. Ilyas, “A Stochastic
Model for Transit Latency in OpenFlow SDNs,” Elsevier Computer
Networks, vol. 113, pp. 218–229, 2017.

https://www.nsnam.org/

	Introduction
	Literature Review
	Proposed dAQM Algorithm
	Modeling and Performance Analysis
	dAQM ns-3 model
	Performance analysis

	Conclusion and Future Work
	References

