Command Dependencies in Heuristic Safety
Analysis of Access Control Models

Peter Amthor and Martin Rabe

Technische Universitat Ilmenau, P.O. Box 100565, 98684 Ilmenau, Germany
{peter.amthor ,martin.rabe}@tu-ilmenau.de

Abstract. The principle merits of access control models lie in the abil-
ity to precisely reason about their security properties in lineage of the
safety problem. It formalizes the question if future changes in a model’s
protection state may eventually violate a security requirement, thereby
falsifying model correctness. One fundamental problem of safety analysis
is that, as proven in the seminal HRU model calculus, this property is
undecidable for the most expressive class of models. To tackle this prob-
lem in practical security engineering, a heuristic approach has proven
useful that exploits the fact that model commands share dependencies,
which are assumed to be (1) one-dimensional and (2) static. In complex
models for modern application domains, such as type enforcement in op-
erating systems, both assumptions cannot be made. This paper studies
both problems and provides a heuristic solution approach for the prob-
lem of dynamic dependencies. Based on our heuristic, we demonstrate
the practical impact of this analysis problem and discuss the general
implications on model design and analysis strategies.

Keywords: Security policy - security model - access control - model
safety - heuristic analysis - operating systems security - security engi-
neering.

1 Introduction

Satisfying security properties of critical software systems relies on a correct se-
curity policy. A security policy precisely describes strategies that realize these
properties, which makes it an extremely critical engineering artifact. To this end
security models are used to guarantee policy correctness.

For decades, such guarantees are based on formal analyses of security mod-
els [8,10, 14, 16,15,5,13,11] (model-based security engineering). Model analysis
aims at confirming formal policy properties, some of which are tractable by static
methods, while others require to reason about the dynamic evolution of a system.
In the domain of access control (AC) models, such dynamic properties concern
the authorization to execute security-critical operations (commands in model
terms). Analyzing these properties has been termed security analysis [16], which
can be subdivided in two classes of questions: Given some AC model at a given
moment in time (in model terms, a protection state to analyze), is it possible
(1) that some (desired) property will ever become false; or (2) that some (un-
desired) property will ever become true? While the first question mainly deals

2 Peter Amthor and Martin Rabe

with availability, the intention of the second question is to validate restrictions
on authorized commands which are, for example, demanded by confidentiality
or integrity goals of the security policy. For historical reasons, this second family
of questions is called safety properties.

As has been proven in the seminal HRU model [8], safety properties are
generally undecidable for models of unrestricted computational power. To nev-
ertheless take advantage of the high expressiveness of such models, simulative
analysis approaches are used, which leverage the semi-decidability of the prob-
lem [5,6,2]: The dynamic model behavior is implemented, simulated and every
protection state change is tested for a possible safety violation. Once any such
violation has been found, it can be demonstrated that the given model is unsafe
for the given protection state. The practical value of such results for security
engineers is to provide hints at possible errors in the security policy, by repro-
ducing a sequence of legitimate operations in the underlying system (command
sequence in the model) which ultimately leads to a safety violation.

In order to efficiently find such errors, simulative analysis is controlled by a
heuristic algorithms. It makes assumptions about critical command sequences
such that chances of a safety violation as an effect of one of these commands are
maximal. For a promising class of heuristics used to date, called DEPSEARCH
[5,2], these assumptions are quite restrictive: they demand a model to be spec-
ified in such a manner that only certain classes of causal dependencies between
commands may occur. This makes the analysis approach inflexible and, as a
consequence, impractical to use for more complex model semantics. Examples
for such models are the SELX model for the SELinux operating system [1] or
the RePM¢ model for an online social network [11]: to cover the complexity of
these AC policies, some amount of errors is introduced by rewriting them as a
model that is heuristically analyzable. These errors must be balanced against
those errors potentially eliminated through formal analysis. Even worse, the in-
terpretation of simulative analysis results — a command sequence in the rewritten
model — is hampered by semantical gaps, making it even more burdensome to
identify the source of errors in the first place. Hence the goal of this paper is
to study the idea of DEPSEARCH heuristics for models in which possible depen-
dencies between commands are less restricted. As a first step we will address the
subproblem of dynamic dependencies. We study the costs introduced in terms
of runtime overhead and demonstrate their practical impact.

The contributions of this work are (1) a formal generalization of command de-
pendency, including a classification in static/dynamic and one-/multi-dimensional;
(2) a formalism to represent dynamic dependencies for general access control
models; (3) a heuristic strategy and the specification of an extended heuristic
algorithm to analyze models with dynamic dependencies; (4) a study of heuristic
runtime properties and generalizable model properties that follow from dynamic
dependencies, based on a study of both a synthetic and a practical model.

Paper Organization After discussing related work in the next section, Sec. 3
introduces formalisms and presents the DEPSEARCH heuristic. In Section 4, we
theoretically define the generalization of command dependencies and adapt the
idea of DEPSEARCH to handle the class of dynamic dependencies. Sec. 5 then
discusses the practical impact of this approach on analysis performance, includ-

Command Dependencies in Heuristic Safety Analysis of AC Models 3

ing implications on model design. We conclude with a summary of our findings
and resulting goals of ongoing and future work in Section 6.

2 Related Work

This work is closely related to both model calculi for safety analysis as well as
analysis approaches for tackling the potential undecidability of this problem.
Both fields are tightly coupled, as is expressed in the literature: A large body of
work related to safety analysis focuses on restricting the computational power of
AC models in a non-harmful way w.r.t. some application domains, e.g. fixed-
operations Take-Grant models [10], acyclic, ternary MTAM models [14], finite
attribute domains in the PrelUCON'""¢ model [13], or trusted administration
in the RePM¢ model [11]. All these restrictions lead to models with a less-
than-Turing-complete computational power, yet retaining the expressive power
sufficient to being useful in their respective application domain.

A fundamentally different, approximative approach is followed by [15, 5, 6, 2].
Here, the goal is to reason about safety without restricting the computational
power of a model, thus merely strengthening assumptions about the correct-
ness of policies based on the absence of errors found, while accepting possi-
ble non-termination of analysis algorithms. In [7,4-6, 2], the motivation behind
this approach is to deliberately avoid restricting model semantics (and thus
analysis strategies) to some application domain, but to provide a pattern for
naturally expressing and analyzing arbitrary security policies — including differ-
ent paradigms for authorization semantics (such as access control, information
flow, and non-interference) as well as for model abstractions (such as identity-
based, roles-based, attribute-based, or relationship-based access control). Since
this motivation aims at a less application-dependent model engineering method,
an according formal calculus is needed such as core-based modeling [9, 6, 12] or
aspect-oriented modeling [1-3]. Consequently, this model calculus must not as-
sume any restrictions in expressive nor computational power, and so must any
safety analysis approach general enough to tackle such models.

This paper describes a semi-decision approach for this which is based on the
idea of trading precision for tractability. We build on previous work in the area
of heuristic safety analysis by model simulation [5,6,2] which aims at falsifying
some definition of safety for a given model of a security policy. More precisely, we
scrutinize the DEPSEARCH heuristic algorithm introduced there based on a more
precise definition of “dependency” and point out its limitations w.r.t. certain
properties of a security policy. Our notation for generic access control models is
roughly based on similar, conventional notations from [8], [16] and [3].

3 Heuristic Safety Analysis

Before discussing dependency-based heuristic safety analysis, we agree upon a
formalism for representing both AC models and their analysis questions in the
first part of this section. After this, our existing approach for simulative analysis
of HRU safety, called DEPSEARCH, is sketched on a principal level.

Models and Queries To formally express AC policies, a set of formal model
components is defined. These typically are either sets of atomic identifiers,

4 Peter Amthor and Martin Rabe

or mappings/relations’ that associate them with each other in a meaningful
way (e.g. to specify authorization rules). We will refer to such components as
A;...A,. An HRU model [8] e.g. contains the components A; = S (subjects
set), A2 = O (objects set), A3 = R (access rights set), and Ay = acm : S x O —
27 (access control matrix). As a more complex example, a SELX model [1] con-
tains components such as A; = E (entities set), Ao = T (types set), Az = cl
(entity classification function), A4 = con (security context function), As =<,
(role transition relation), or Ag == (type transition relation).

For reasoning about dynamic model properties, the definition of components
is not sufficient. Instead, we consider these components as a specific view on
model engineering, tailored to find the most appropriate and natural formal
definitions for the semantics used in an AC policy. Another view, more tailored
towards dynamic analysis, has been introduced by [9,6,12] and treats an AC
system as a deterministic state machine, based on the original idea of [8].

Definition 1 (Dynamic AC Model). A dynamic access control model is a
state machine defined by a tuple (I", X, A), where

— the state space I is a set of protection states;

— the input set X = Yo x X5 defines possible inputs that may trigger state
transitions, where Yo is a set of command identifiers used to represent
operations a policy may authorize and Xy is a set of values that may be
used as actual parameters of commands;?

— the state transition scheme (STS) A C X x X% X @ x & defines state
transition pre- and post-conditions for any input of a command and formal
parameters, where Xx denotes a set of variables to identify such parameters.

We use @ to represent the set of boolean expressions in first-order logic (with-
out implying any specific language) and T as a shortcut for boolean true.

For defining each (c¢md, x, ¢, ¢') € A, a notation borrowed from the classical
HRU authorization scheme is used: emd(z) ::= PRE : ¢; POST : ¢/. We call
the boolean term ¢ the pre-condition (abbreviated ¢md.PRE) and ¢’ the post-
condition (abbreviated ¢md.POST) of any state transition to be authorized via
cmd. On a state machine level, this means that ¢md.PRE restricts which states ~
to legally transition from, while cmd.POST defines any differences between v and
the state 7' reachable by any input word (c¢md,z). This matches the intention
of the conditions part (indicated by the if keyword) and the body (indicated
by then) of a command in the HRU authorization scheme. Since our goal is to
reason about possible state transitions, we adopt the principle of only modeling
commands ¢md that modify v, expressed by ¢md.POST # T.

To distinguish between the value domains of individual variables in x, we use
a refined definition of X'y to reflect distinct namespaces of variable identifiers for
each model component. These are denoted by sets X4, so that J;.,., Xa, =
Y'x for a model with n components. For example, an HRU model for an exem-
plary information system policy may be defined as follows: I" = 2% x 20 x ACM ,
where v = (S,,0,,acm,) € I' is a single protection state; ¥ = { createRe-
cord, delegateRead, ... }; Xy = SUO; Yx = Xs U Xp; A is defined by a set of
definitions as illustrated in Fig. 1a by the example of delegateRead.

1 To formally comply with set algebra, we treat mappings equally to relations.
2 We use the Kleene operator to indicate that multiple parameters may be passed.

Command Dependencies in Heuristic Safety Analysis of AC Models 5

» delegateRead (Scaller, Sdeleg, Orec) ::= » relabel(e, 7', t') =
PRE: own € acm~(Scaller, Orec) PRE: e € E, A cl(e) = process
A read € acmy (Scaller; Orec) ; A con~(€e) = (u,r,t)
POST: acm.,s = acm[(Sdeleg, Orec) AT —=pr Nt t';
> acM (Sdeleg, Orec) U {read}] POST: con., = conyle — (u,r’,t")]
(a) delegateRead in HRU (b) relabel in SELX

Fig. 1: Exemplary command definitions.

To define our analysis goal, we express a safety question related to a dynamic
AC model as a safety analysis query (or just query):

Definition 2 (Safety Analysis Query). A safety analysis query q for a given
dynamic AC model (I', X, A) is a tuple {yo,T), where vo € I' is a model state
and T € A; is a value of some component A;.

The goal of heuristic analysis is to detect a leakage of 7. We define this as a
necessary condition for reaching a state 7/ that falsifies safety: Any input leading
to a successful state transition from ~ to 7’ as defined by A is called leaking T
if 7 appears in some model component in 4/, where it not also appears in . In
case such state transition exists, we say ' contains a leakage of T.

In contrast to a mere leakage, our definition of safety adheres to the widespread
interpretation that any state v, reachable from 7 renders the former unsafe iff
T was entered into a set, matrix, relation etc., which did not already have this
value in vy (also called simple-safety [17,2]). In particular, if an input sequence
re-enters 7 into the same component that already contained 7 in ~yq, safety is not
violated. The reason why we nevertheless aim at a leakage in heuristic analysis is
that it can be easily detected (by comparing 4" with ~ after any state transition),
though we still need to subsequently falsify safety with respect to ~q.

Heuristic Strategies The objective of a heuristic safety analysis strategy is
to demonstrate the occurrence of a leakage. When the strategy finds an input
sequence that eventually leaks 7 in a state 7,, we may prove 7y to be unsafe
with respect to 7; as long as no ~, is found, the search continues. Therefore, the
chances of any single input to contribute to such a sequence must be maximized.

When simulating model behavior, test inputs are generated and the states
reached via them are tested for a leakage of 7. For generating each input, a
heuristic has to choose a command to execute and value assignments for its
variables. In our previous work, we have identified command dependencies as a
promising model property to maximize chances for a successful input sequence.
This is the basis of the DEPSEARCH strategy for HRU safety analysis [5].

DEPSEARCH was developed based on the insight that in the hardest case,
right leakages appear only after long state transition sequences where each com-
mand executed depends exactly on the execution of its predecessor. Essentially,
the algorithm consists of two phases: In the first phase, a static analysis of the
STS is performed. It yields a formal description of command dependencies, con-
stituted by entering (as a part of POST) and requiring (part of PRE) the same
right in two different commands. These dependencies are encoded in a command
dependency graph (CDG) whose nodes are commands, and any edge from ¢ to
¢’ denotes that ¢’ depends on the execution c:

6 Peter Amthor and Martin Rabe

Definition 3 (HRU CDG). A command dependency graph (CDG) of an HRU
model (I", X2, A) is an edge-weighted, directed multigraph (V,E), E CV xV X R,
such that V' C X¢ is the set of command identifiers and {c,c,r) € E if a term
in ¢.POST enters r in acm and a term in ¢ .PRE requires r in acm..

The CDG is assembled such that all paths from nodes without incoming
edges to nodes without outgoing edges indicate input sequences for reaching -,
from ~y. To achieve this, two virtual commands ¢y and ¢, are generated: cg
is the source of all paths in the CDG@G, since it mimics the state vy to analyze,
represented by a virtual command specification in A such that ¢o.POST requires
all subjects in S, all objects in O.,, and all rights in acm.,. In a similar manner,
cr is the destination of all paths, which represents all possible states v,; ¢,.PRE
hence requires the presence of the target right 7 in some matrix cell of acm.:

> col) ::= » c.(s,0) =

PRE: T; PRE: 7 € acm,(s,0);

POST: S,y = Sy AOy = Oy A acm = acm,, POST: T

In the second, simulative analysis phase, the CDG is used to generate input
sequences. The commands in each sequence correspond to different paths from
cp to ¢, which we expect to leak 7 once completely executed. In case a sequence
fails because of an unsatisfiable PRE, another path is selected based on the last
successfully reached state. This strategy is based on the assumption that even a
partially executed command sequence contributes to pre-conditions of any next
sequence generated. Each effected state transition is simulated by the algorithm,
and once a CDG path is completed, the falsification of safety is checked.

4 Command Dependencies

To heuristically analyze more complex model semantics such as for the SELinux
AC model SELX [1], rewriting the STS to HRU syntax is impractical, error-
prone, and the results of the analysis may not be interpretable w.r. t. the under-
lying system. To this end, we generalize the definition of command dependency
beyond entering and requiring access rights in an ACM cell. We then adapt the
DEPSEARCH idea to handle the more general class of dynamic dependencies.

4.1 Problem Analysis

HRYU has two distinct properties that enable the static pre-analysis of STS com-
mands in DEPSEARCH: (1) dependencies are created solely by entering or re-
quiring a right, (2) all rights are fixed by command definitions, i.e. static val-
ues during model simulation. Both properties enable DEPSEARCH to create the
CDG (Def. 3) as a representation of static command dependencies. Assume a
model where dependencies between commands originate from multiple model
components, represented in the STS by variables whose values are dynamically
assigned during runtime. Since this model violates above properties, the static
dependency analysis in DEPSEARCH does no longer produce significant results.

To clarify these differences consider our exemplary HRU command dele-
gateRead (Fig. 1a) and the command relabel of a SELX model (Fig. 1b): As
becomes evident in delegateRead, PRE depends only on the presence of the right
values “own” and “read” in some matrix cell, since a conjunction of such condi-
tions is the only allowed PRE in HRU. In relabel however, a conjunction of more

Command Dependencies in Heuristic Safety Analysis of AC Models 7

heterogeneous conditions relate to different components of a SELX model: first,
a set IV, and a mapping cl, are checked for the presence of a process, second, a
mapping con., is used to lookup security attributes, third, two relations <, and
<, are checked to validate the requested relabeling.® The fact that values from
a total of five different model components (entities, classes, three attributes) are
checked violates property 1, the fact that all these values but one are represented
by variables violates property 2.

Intuitively, applying a dependency analysis approach such as DEPSEARCH to
a model such as SELX raises both formal and semantical issues, notably related
to how dependencies are formalized through a CDG. We will discuss these issues
in the following based on an exemplary HRU STS:

PCl(Sl,SQ,O) = >C2(51782,0) =
PRE: read € acm~(s1,0); PRE: read € acm~(s1,0);
POST: acm, = acm[(s2, 0) POST: acm, = acmy[(s2,0)
— acmy(s2,0) U {read}] — acm(s2,0) U {write}]

If DEPSEARCH would use this STS to create a CDG with the target right
“write”, the result would be a CDG as shown in Fig. 2a. In case the STS violates
property 2, e.g. it contains only right variables, this would result in the graph
in Fig. 2b. It is important to note that, despite showing dependencies in both
cases, these graphs differ in edge semantics: the edges of the CDG in Fig. 2a rep-
resent actual dependencies, the edges in the graph in Fig. 2b represent potential
dependencies. This explains why the graph in Fig. 2b contains more edges and
thus more potential paths from cq to c;.

@ @

(a) static (b) dynamic
Fig. 2: Graphs for different types of dependencies.

Assume a ST'S that violates property 1 as follows: It contains a command that
creates a certain subject in POST but does not enter any rights. Assume further
that the only command that leaks our target right requires (aside from certain
rights) the existence of the aforementioned subject in PRE. A CDG created by
DEPSEARCH would not contain the first command since DEPSEARCH only checks
dependencies regarding rights. The result would be that the command leaking
our target right could never be executed since the command that would create
the needed subject is not part of the CDG and thus also never part of any path
generated.

4.2 Classes of Dependencies

We now generalize our observations regarding HRU made in the previous exam-
ples. On a more formal level, both properties mentioned there may be used in a

3 For the sake of a more concise discussion, we ignore the SELinux-concept of entry-
points.

8 Peter Amthor and Martin Rabe

heuristic to recognize different types of dependency. This intention is reflected in
the following definitions, which express mnecessary conditions for one command
to require a previous execution of another command. We assume that any single
value or variable used in a PRE or POST term is significant for its boolean value,
as e.g. achieved by canonical CNF.

Definition 4 (Static Dependency). Let ¢1,co € X be two commands in a
dynamic AC model. If co statically depends on ¢y, then there is a model compo-
nent A; such that a value y € A; occurs in both ¢1.POST and cs.PRE.

This type of dependency is attributed static since actual values must be
matched to identify a dependency relationship. Likewise, we may also observe
dynamic dependency based on variables that potentially match, depending on
their dynamically assigned values:

Definition 5 (Dynamic Dependency). Let ¢1,co € X be two commands in
a dynamic AC model. If co dynamically depends on ci, then there is a model
component A; such that a variable 1 € X4, occurs in ¢1.POST and a variable
x2 € X4, occurs in c2.PRE.

If more than one distinct model component A; satisfies Def. 4 or Def. 5, we
speak of multi-dimensional dependencies (one-dimensional otherwise).

These definitions basically yield four classes of possible models, each with
different implications on a correct and efficient representation of dependencies
as a heuristic criterion for safety analysis: such where (1) only static and one-
dimensional, (2) only static but both one- and multi-dimensional, (3) static and
dynamic, but only one-dimensional, and (4) all types of dependencies may occur.

It should be highlighted that HRU is already a model from the last class:
the presence of a subject s € S, is a necessary condition for satisfying a PRE
expression r € acm~(s,0). As a simple example, consider a special case of HRU
whose STS features solely static values for subjects. In this case, executing any
command that requires a right r assigned to a subject s depends both on any
command that enters r and on any command that creates s. We hence ob-
serve multi-dimensional dependencies, which are — in case of general HRU mod-
els — also partially dynamic. However, DEPSEARCH makes implicit assumptions
about model semantics that allow the CDG to ignore both dynamic and multi-
dimensional dependencies: PRE terms in HRU do not allow to directly check for
the presence of subjects or objects, but only indirectly as having some rights
assigned via acm. Based on this observation, DEPSEARCH interprets the ma-
trix as a more fine-grained rights set, which is therefore considered the only
dependency-relevant model component. Only subject and object variables are
allowed, while rights are always static in an HRU STS.

To this end, our existing heuristic algorithm is only capable to correctly han-
dle static, one-dimensional command dependencies. To get a first understanding
of the implications of these classes for models where they cannot be neglected,
we focus on dynamic dependencies in the following, which are commonly found
in todays AC policies (cf. Sec. 5.2).

4.3 Dealing with Dynamic Dependencies

To isolate the problem of dynamic dependencies, we start with a more concise
model notation: we modify the original HRU syntax in a way that only dynamic,

Command Dependencies in Heuristic Safety Analysis of AC Models 9

one-dimensional dependencies can be expressed. Based on this model we address
dependencies with a generalized CDG, termed PCDG, which is an overapproxi-
mation of any possible CDG. A CDG created from this graph, which we call a
PCDG instance, may then be analyzed using DEPSEARCH |7, 2].

As discussed in the last section, dynamic dependencies are observable in
HRU. To make them more explicit however, we define a very simple calculus for
dynamic AC models, which is used to isolate the relevant phenomena of one-
dimensional, yet dynamic dependencies. The goal here is to have this type of
dependency, as defined in Sec. 4.2, directly reflected in command definitions,
while eliminating any syntax and semantics beyond it (e.g. the ACM).

Despite the discussion is based on HRU terminology, we are only interested
in the impact of rights on establishing dynamic dependencies. This leads to the
class of HRU* models defined as follows:

Definition 6 (HRU*). An HRU* model is a dynamic AC model (I', X, A) with
a single component Ay =R and ' =28, ¥y =R, ¥x = X&.
Note that HRU* may be expressed by an access control matrix consisting of
a single cell, but not in an HRU model due to the difference in X'x. In the
following we use HRU* models for different sets Xc. Consequently, for the sake
of readability, we abbreviate the notation of A by only listing right values and
right variables in PRE and POST, respectively:
Ezample 1. For an HRU* model with R = {spam, ham, eggs, beans} and Y¢ =
{c1,ca,c3}, A is defined as

» C1(7’1,7”2) = » C2(’f‘1,7’2) = » C3(7“1,7’2) =

PRE: r1,712; PRE: r1; PRE: r1;

POST: spam POST: 71,712 POST: 7o
For globally unique variable identifies, we will write ¢;.r; for variable r1 in com-
mand c¢;. We then write ¢1. Xpre = {c1.71, ¢1.72} for the set of all variables in pre-
conditions of ¢; and likewise ¢;. Xpost = 0 for its post-conditions.* The global set
of right variable identifiers is denoted by Xp = {c1.71,¢1.72, C2.71, €272, C3.71, C3.72 }.

Based on the DEPSEARCH idea, dynamic dependencies are encoded in a
graph. For this we introduce the abstraction of dependency variables:

Definition 7 (pCDG). A potential command dependency graph (PCDG) of a
dynamic AC model (I', X, A) is an edge-weighted, directed multigraph (V,, Ep) ,
E, CV, xV, x VAR, such that V,, = X¢ is the set of command identifiers and
VAR is a set of dependency variables based on X'x.

A PCDG is constructed just as an HRU CDG, with the only difference that
the original dependency condition (cf. Def. 3) is modified according to Def. 5:
Any edge (u, v, Tyy = (Tu,x,)) now means that assigning some value to variable
Ty € u.Xpost implies that command v potentially satisfies its pre-condition
based on some value assigned to variable x, € v.Xpre. This means that for any
CDG containing this edge, both values must be the same. We call the tuple z,,, a
dependency variable (an alias for two variable identifiers, i.e. VAR C X x Xg).

Due to the abstraction of potential dependency represented in a PCDG,
static dependencies according to Def. 4 cannot be captured by its edges. How-
ever, our approach is to first model potential dependency in the PCDG, which

4 Note that “spam” is a right value, not a variable.

10 Peter Amthor and Martin Rabe

are mapped to actual dependencies in a CDG in the next step. To this end,
static dependencies have to be considered in PCDG creation as if it were poten-
tial dependencies: By substituting each value used in command definitions by a
unique synthetic variable, such as rypam for “spam” in the example. When later
assigning values to variables, we require that those synthetically introduced may
only be assigned one fixed value (we henceforth call them fized-value variables).
This approach enables us to deal with an STS containing mixed dynamic and
static dependencies. For the above Example 1, this leads to VAR = {x}, =
(€1-Tspam, c1.71), 3 = (€1.Tspam, €1.72) , Ty = (€1.7spam, €2.71) ,Tiy = (€1.-Tspam,
c3.11), 78 = {co.r1, c1.71) , 03 = (ca.ro,c1.71) ... }.

The resulting graph is designed to contain every possible edge of any CDG
that may be built from the STS, hence the attribute “potential”. This implies
that a PCDG is always a complete graph, additionally including all possible
self-loops. Fig. 3 shows the PCDG resulting from the STS in Example 1.

1
T12

1 2 1 2
T11, %11 T22, T22

1 2
T31,T31
1
T33

Fig.3: pCDG for Example 1. Multi-edges are denoted by the union of their
dependency variables.

By Def. 7, PCDG creation is independent from any analysis query ¢ = (7o, 7).
However, for answering such queries, we first need to break down its semantics to
solely represent actual dependencies which we are able to heuristically analyze.
This step is called instantiation.

The goal of PCDG instantiation is to enable heuristic search strategies to
infer command sequences (paths in this graph) just as with a regular CDG. As a
consequence, the resulting graph needs to satisfy necessary properties of a CDG.
From these requirements, we derive the approach of instantiation: first, nodes for
co and ¢, are added and connected to ensure the presence of paths significant for
q; second, a variable assignment function is found that substitutes dependency
variables by specific values; third, validity rules for a CDG are applied to restrict
E, based on this assignment. The result is called an instance of a PCDG:

Definition 8 (pCDG Instance). A PCDG instance is an edge-weighted, di-
rected multigraph (V,E) ,E CV x V x R created from a PCDG (V,,, E,) via a
query (o, T) and an assignment function T : VAR — R, where V. = V,U{co, ¢, }.

To meet the base assumption of our heuristics, that traversing certain paths
in a CDG subsequently establishes necessary conditions for a right leakage, we
define the nodes ¢y and c; as source and destination of any such path. This is
done based on 7 and 7, in a similar manner as with an HRU CDG (cf. Def. 3).
Ezample 2. Given the STS in Example 1, a state 7o = {ham, beans} and a target
7 = eggs. We then need to add two commands ¢y and ¢, defined as:

» co() == PRE: T; POST: ham, beans » c-() ::= PRE: eggs; POST: T

Note that, before performing the variable assignment, fixed-value variables
(€0-Tham, €0-Tbeans, Cr-Teges 1N the example) have to be introduced as already done
for those commands in Y. Because of its significance in terminating any CDG

Command Dependencies in Heuristic Safety Analysis of AC Models 11

path, we will refer to the single variable in ¢,.Xprg as r,.. We eventually connect
both additional nodes with those in V}, using the same dependency condition as
during PCDG construction: By introducing edges and dependency variables for
co.Xpost and any c.Xprg, and any c.Xpost and c¢..Xprg, respectively.

Then, for assigning values to dependency variables, an Z is defined such that
any variable 2, = (z,, x,) mapped to some right value Z(z,,) = y implies that
both x, and z, are assigned y. This leads to an edges set F annotated with rights
instead of variables. Since for any PCDG, a multitude of assignment functions
may produce different instances, care must be taken in handling fixed-value
variables. Since their assignment is constant over all Z, we model it through
an auxiliary alias function: Any Z is from a function space; any fixed-value
variable is from an identifier set X", We require for all Z and z*v" € YY"
that Z((@y,z%")) = Z((z", x,)) = C(x*¥") where C : X" — R is the alias
function, independent from any Z, which assigns constant values to fixed-value
variable identifiers. To ensure variable assigment validity, Z must satisfy three
validation rules:

(U, cr, I(xyr)) € E = T(xyr) =T (1)
(co,v, Z({xp, x,))) € E = Z({xq,z,)) = C(x0) (2)
(u, 0, Z(Tn)) , (0,0, I(2,,)) € B,

<U,’U,(£uv> ~n <’U/,'Ul,$;ﬂ]> = I(ZL’uv) = I(x;v)

where ~,C E, x E, is the edge neighborship relation. Two PCDG edges are
neighbors iff they represent the same variable of an incident node:
(U, 0, (T, o)) 22 (W0 (2, 20))) & (u=u'ANzYy =2)) V(u=20" Az = 7))
Viv=u ANz, =2,)V (=20 ANz, =2).
Validation rule 1 ensures that the target value is leaked after executing a
path from ¢g to ¢,; rule 2 ensures that pre-conditions of commands on any such
path can be satisfied by values already present in ~y. Note that by design of
the instantiation approach — through the definitions of ¢y, ¢, and C — we have
already satisfied both rules. Rule 3 ensures that any two different dependency
variables representing the same variable in the STS are assigned the same value.

Ezample 3. In the PCDG in Fig. 3, the dependency variable 1, is an alias for
C1.Tspam and cp.71. Likewise, xég is an alias for ¢o.r; and c3.71. Let Z be an
assignment function that instantiates this PCDG, then Z(x1,) = C(c1.7spam) =
spam since c;.7spam is a synthetic variable for the static right “spam”. Assume
that Z(x35) = beans: from rule 3, we now infer that not both edges (c1, c2,21,)
and <CQ, c3, x%3> must be present in E since otherwise, 7 is contradictory w.r.t.
the value assigned to cg.r1.

Any edge that violates assignment validity must be removed from E. In
case there are multiple candidates for removal, such as in Example 3, this offers
room for heuristically optimizing CDG properties that are more prospective for
efficiently producing a leak; this problem is subject to ongoing work.

After removing invalid edges, the resulting graph may become partitioned —
in the worst case with cg and ¢, in separate partitions. To exclude such cases
from the analysis, any PCDG instance must be validated against a connectivity

12 Peter Amthor and Martin Rabe

rule in order to be analyzable in the same manner as a traditional CDG: A
PCDG instance (V, E) is a CDG iff
v €V \{co,cr} = v is on a path from ¢ to ¢;. (4)

After the CDG is validated, any further pre-processing may be performed
before running DEPSEARCH. Especially, efficiency optimizations through stati-
cally analyzable leakage properties as we have described in [2] may be applied
after this step.

4.4 Path Search

The original idea of DEPSEARCH is to simulate a sequence of commands where
each command creates a necessary condition for the execution of the next, to
ultimately cause a right leakage. This sequence is created by searching a path
from ¢g to ¢, in the CDG.

The PCDG introduced in Def. 7 represents potential dependencies. The ap-
proach described above is to instantiate it in a manner that results in a CDG,
which may then be analyzed using DEPSEARCH. This approach has the draw-
back that paths used for the analysis always stem from the same CDG, which
can be mitigated by creating different CDGs and switching between them dur-
ing simulation. As already mentioned, a criterion for comparing CDGs to decide
which is more prospective for leaking the target right is subject to ongoing work.

We therefore decided to perform a path search directly in the PCDG. For
this, co and ¢, are added to the graph (the result is referred to as PCDG™). Then
all dependency variables of this path are assigned in such a way that assignment
validity is satisfied.® Afterwards the corresponding command sequence can be
used to analyze the model for a right leakage. This approach allows to evaluate
the path in terms of its prospects of success during the runtime of the analysis.
Fig. 4a shows a possible path of the PCDG™ created from the PCDG in Fig. 3.

0L 0= OO NNO 0= 0='0

(a) path from co to ¢, (b) instance of the path from co to ¢
Fig. 4: Path instantiation examples.

The dependency variables of this path are now assigned in such a way that the
assignment validity is satisfied, e.g. Z(z};) = ham, Z(21;) = spam and Z(z3) =
eggs. With this assignment, the path shown in Fig. 4a can be instantiated which
results in the path shown in Fig. 4b. This path can then be used by existing
analysis tools [6]. If no right leakage is found using this path, we may either
change the assignment function or search a new path in the PCDG™.

5 Impact on Safety Analysis

In this section we study the implications of dynamic dependencies on the effi-
ciency of safety analyses. To this end, in Sec. 5.1, we discuss both properties of
the heuristic algorithm and representative model properties of HRU*. In Sec. 5.2
we then show that the latter are indeed properties of practical models, which
supports their significance. This will be done in the context of SELX, a model
designed to enable safety analyses of SELinux operation systems.

5 All right variables not assigned in this step may be randomly assigned with values.

Command Dependencies in Heuristic Safety Analysis of AC Models 13

5.1 HRU*

This section determines model properties relevant for analysis efficiency. Based
on the runtime complexity of the algorithms and the influence of command
definitions a worst-case STS is specified, which we then use to demonstrate the
actual impact on analysis runtime.

Runtime Complexity The generation of the PCDG™ has a runtime complex-
ity of O(n?), where n = |Y¢|.5 The path search runs in O(m), where m is
the number of edges in the PCDG™. Since m depends on |¥¢|?, the runtime
complexity is O(n?). The edge neighborship check has a runtime complexity of
O(m?) = O(n*) and the creation of the assignment function has a runtime com-
plexity of O(m) = O(n?). This confirms that the number of commands |¥¢| has
the greatest impact on analysis runtime.

STS Specification We now discuss how the definition of commands affects anal-
ysis efficiency. To this end we examine relevant types of commands in HRU*.
First of all, consider an STS without static dependencies. From this STS, com-
mands that only have T in PRE can be ignored, since they always lead to a right
leakage and can be found statically. Thus, for the evaluation model, only com-
mands with both PRE and POST other than T are of interest. Such commands
can be divided into two classes: (1) every right variable that occurs in POST is
also checked in PRE, and (2) at least one right variable in POST does not occur
in PRE. Examples for both classes are the following ¢ (class 1) and ¢’ (class 2):

» c(r):= PRE: r; POST: r » c'(r1,72)::= PRE: 71 ; POST: ro

Commands of class 1 cannot cause a right leakage, since they always enter the
same rights in POST that were checked in PRE. Thus, if the variable r is assigned
with 7, the target right must already exist in the current state for this command
to be executable. This in turn means that another command must already have
entered 7 and the analysis is thus already terminated.” This is the reason why
these commands can be ignored for this evaluation. Commands of class 2 however
may immediately lead to a right leakage, since all variables are freely assignable:
a variable in POST can be assigned with 7 and all variables in PRE can be
assigned with rights that exist in the current state. In this respect, commands of
class 2 resemble commands that have only T in PRE. This illustrates a property
of models which have a command of class 2 that makes it possible to circumvent
the simulative analysis, since these commands can be found with a static pre-
analysis.

Because of this we use a model with both static and dynamic dependencies
for the runtime measurements:

> c1()i= »c2()i= »ce3()u= » cs(r):=
PRE: 1; PRE: 2; PRE: 3; ... PRE: 8;
POST: 2 POST: 3 POST: 4 POST: ro

5 The runtime is also influenced by the number of right variables (|Xpre U Xpost|)-
However for a static set R this means that: Vc € X, : |c.Xpre| < |R]| (analogous for
¢.Xpost). Therefore this impact can be assumed as constant.

” Note that this implication of the command classification holds for HRU* only.

14 Peter Amthor and Martin Rabe

|¥c| Runtime Class 10* e

0,0001 s
0,0007 s
0,0124s
0,3335s

19,1985
1451,4652s (=~ 24 min)

g
runtime in seconds
=
o
o

T
—e
!

107 e .

N | OO W N =

6133,83s (=~ 102min) C number of commands
(a) (b)

Fig.5: Evaluation results (error bars: standard deviation).

To perform the simulative analysis the definition of the component R and the
query (o, 7) are required: R = {1,2,3,4,5,6,7,8,42},v9 = {1} and 7 = 42.

Model Simulation This model was analyzed for right leakages. In order to be
able to represent the runtime behavior with increasing number of commands, we
performed analyses of models with one through eight commands. These models
fulfill the same assumptions as the one specified above, i. e. they have both static
and dynamic dependencies. Fig. ba shows the runtime measurements of these
analyses. For models with |X¢| < 5 the specified values are averaged from 100
runs, for [X¢| = 6 from 10 runs, and for |¥¢| = 7 one run was performed. The
models were divided into runtime classes (class A for < 1s, class B for < 1h and
class C for > 1h). Fig. 5b illustrates these results. The runtime was measured
from the generation of the PCDG™ to the successful finding of a right leakage.®

Discussion of Results As becomes evident from Fig. 5, analyzing models with
both dynamic and static dependencies drastically increases the runtime. While
for classes A and B a sensible runtime may be achieved, the time required for
class C exceeds one hour, already at |X¥¢| = 7. This demands an alternative
approach for such models e. g. via the static classification introduced above.

5.2 SELX

In this section, a practical system will be used to demonstrate that the model
property discussed above, i.e. the existence of commands with no static depen-
dencies and different variables in PRE and POST, is in fact a property of practical
models. To this end we specify a model SELX* which mimics the behavior of a
type transition in a SELX model. In SELX the safety property is not focused on
whether a right is leaked, but whether a type is leaked ((1)-simple-unsafety [3,
Def. 5.5]). This is due to the fact that e.g. processes have no rights, but types
directly assigned while access rights are assigned to these types. Processes are
represented in the entities set F and the types in the types set T'. The association
of entities to types is the so called security context, which is modeled via the
function con : E — T. We define the SELX* model as follows:

Definition 9 (SELX*). A SELX* model is a dynamic AC model (I', X, A)
with the components Ay = E, Ao, = T and A3 = acm : ExX E — T. It is
defined as follows: I' = 2¥ x ACM, where for any v = (E., acm~) € I', acm., :
.E,y XE,Y—)T, Yy =FUT and Xx = Xg U X7.

8 A machine with an Intel i5 CPU at 2.90GHz and 8GB RAM was used.

Command Dependencies in Heuristic Safety Analysis of AC Models 15

‘ sh usr_t admin_t » relabel(pi,t1,t2) 1=
sh |usr_t PRE: t1 € acm~(p1,p1)
usr_t T AT € acmy(t1,t2);
admin_t T POST: acm. = acm~[(p1,p1) — {t2}]
(a) acm, (b) relabel basic command

Fig. 6: SELX* model specifications.

E and T are encoded in acm. as follows: p1 € E,,t; € T : acm~(p1,p1) =
{t1} & con,(p1) = t1 specifies which type is the active type of a process and
t1,to € T : acm(t1,t2) = {T} & t1 <> t2 specifies which type transitions are
allowed. Fig. 6a shows an example matrix containing the entity sh € E, with
usr_t € T assigned as the active type. There is another type admin_t € T and a
transition is allowed from usr_t to admin_t, but not from each type to itself.

There are fixed basic commands in the SELX model for describing protec-
tion state changes. When adapted to SELX*, only the basic command relabel
(Fig. 6b) may fulfill (t)-simple-unsafety, since it allows a process to transition
to a new type. As becomes evident, this command has a right variable in POST
that does not occur in PRE, so it has the same properties as commands of class
2 in HRU*. As established in the last section, such a definition always leads to
a right leakage, or in this context to the model being (t)-simple-unsafe and can
be found statically. The conclusion is that practical models may indeed have
commands that have the same properties as class 2 commands of HRU*.

6 Conclusions and Future Work

We studied command dependencies in AC models, focused on the class of dy-
namic dependencies, for which we presented a safety analysis algorithm. The
definition of dependency was generalized and formalized, resulting in a graph
abstraction which enables a heuristic search to steer a simulation.

This heuristic serves as a basis to study the practical impact of dynamic de-
pendencies. Our findings show that (1) the runtime complexity mainly depends
on the number of commands in the STS, (2) the generalized dependency defini-
tion increases runtime complexity of the simulation to O(n*) compare to O(n) in
DEPSEARCH. The severe increase demonstrates that dynamic dependencies are a
serious obstacle to heuristic safety analysis. To mitigate this conclusion in prac-
tice, we have identified model properties that circumvent the need for simulation,
since they can be found statically. While this result in principle strengthens the
semi-decision approach, it might as well indicate that traditional safety proper-
ties to describe an undesired model state are too unspecific. As a consequence,
general queries like “leaking of a certain right” might not be significant in mod-
els featuring dynamic dependencies. In models where dependency based analysis
turns out to be fundamentally inefficient due to dynamic dependencies, we may
now at least identify such cases based on a formal criterion.

Our immediate ongoing work extends this study to multi-dimensional de-
pendencies, as well as to explore more fine-grained safety queries and additional
heuristic information that allow for efficient analyses of well-defined cases of
command dependencies.

References

1. Amthor, P.: The Entity Labeling Pattern for Modeling Operating Systems Access
Control. In: Obaidat, S.M., Lorenz, P. (eds.) E-Business and Telecommunications:

16

10.

11.

12.

13.

14.

15.

16.

17.

Peter Amthor and Martin Rabe

12th International Joint Conference, ICETE 2015, Colmar, France, July 2022,
2015, Revised Selected Papers, pp. 270-292. Springer International Publishing,
Cham (2016), http://dx.doi.org/10.1007/978-3-319-30222-5_13

Amthor, P.: Efficient Heuristic Safety Analysis of Core-based Security Policies. In:
Proc. 14th International Conference on Security and Cryptography. pp. 384-392.
SECRYPT 2017 (2017), http://dx.doi.org/10.5220/0006477103840392
Amthor, P.: Aspect-oriented Security Engineering. Cuvillier Verlag, Gottingen,
Germany (2019), iISBN 978-3-7369-9980-0

Amthor, P., Kithnhauser, W.E., Polck, A.: Model-based Safety Analysis of SELinux
Security Policies. In: Samarati, P., Foresti, S., Hu, J., Livraga, G. (eds.) In Proc.
of 5th Int. Conference on Network and System Security. pp. 208-215. IEEE (2011)
Amthor, P., Kithnhauser, W.E., Polck, A.: Heuristic Safety Analysis of Access
Control Models. In: Proc. 18th ACM Symposium on Access Control Models and
Technologies. pp. 137-148. SACMAT ’13, ACM, New York, NY, USA (2013), http:
//doi.acm.org/10.1145/2462410.2462413

Amthor, P., Kiithnhauser, W.E., P&lck, A.: WorSE: A Workbench for
Model-based Security Engineering. Computers & Security 42(0), 40—
55 (2014). https://doi.org/http://dx.doi.org/10.1016/j.cose.2014.01.002,
http://www.sciencedirect.com/science/article/pii/S0167404814000066
Fischer, A., Kithnhauser, W.E.: Efficient Algorithmic Safety Analysis of HRU Se-
curity Models. In: Katsikas, S., Samarati, P. (eds.) Proc. International Conference
on Security and Cryptography (SECRYPT 2010). pp. 49-58. SciTePress (2010)
Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in Operating Systems.
Communications of the ACM 19(8), 461-471 (Aug 1976), http://doi.acm.org/
10.1145/360303.360333

Kiithnhauser, W.E., Polck, A.: Towards Access Control Model Engineering.
In: Proc. 7th Int. Conf. on Information Systems Security. pp. 379-382.
ICISS’11, Springer-Verlag, Berlin, Heidelberg (2011), http://dx.doi.org/10.
1007/978-3-642-25560-1_27

Lipton, R.J., Snyder, L.: A Linear Time Algorithm for Deciding Subject Security.
Journal of the ACM 24(3), 455—464 (1977)

Masoumzadeh, A.: Security Analysis of Relationship-Based Access Control Poli-
cies. In: Proc. 8th ACM Conference on Data and Application Security and Pri-
vacy. pp. 186-195. CODASPY ’18, ACM, New York, NY, USA (2018), http:
//doi.acm.org/10.1145/3176258.3176323

Polck, A.: Small TCBs of Policy-controlled Operating Systems. Universitéitsverlag
Ilmenau (May 2014)

Rajkumar, P.V., Sandhu, R.: Safety Decidability for Pre-Authorization
Usage Control with Finite Attribute Domains. IEEE Transactions
on Dependable and Secure Computing 13(5), 582-590 (Sept 2016).
https://doi.org/10.1109/TDSC.2015.2427834

Sandhu, R.S.: The Typed Access Matrix Model. In: Proc. 1992 IEEE Symposium
on Security and Privacy. pp. 122-136. SP ’92, IEEE Computer Society, Washington,
DC, USA (1992), http://dl.acm.org/citation.cfm?id=882488.884182

Stoller, S.D.; Yang, P., Gofman, M., Ramakrishnan, C.R.: Symbolic Reachability
Analysis for Parameterized Administrative Role Based Access Control. Computers
& Security 30(2-3), 148-164 (2011)

Tripunitara, M.V., Li, N.: A theory for comparing the expressive power of access
control models. J. Comput. Secur. 15(2), 231-272 (Apr 2007), http://d1l.acm.
org/citation.cfm?id=1370659.1370662

Tripunitara, M.V., Li, N.: The Foundational Work of Harrison-Ruzzo-Ullman
Revisited. IEEE Trans. Dependable Secur. Comput. 10(1), 28-39 (Jan 2013),
http://dx.doi.org/10.1109/TDSC.2012.77

