

Development of porous Silica-Alumina glasses with enhanced hydrothermal stability for biomass conversion

University of Leipzig, Faculty of Chemistry and Mineralogy, Institute of Chemical Technology

Dr. Tovhowani I. Kwinda Ilmenau, 07.09.2023

Introduction | Background | Fossil Fuels – main hydrocarbon source

- Non-renewable feedstock
- Rising prices
- Greenhouse gases emissions

Introduction | Background |Biomass – alternative hydrocarbon source

- Sustainable carbon sources
- > Low (zero) carbon emissions, $AE = \sim 100\%$

Introduction | Background |Biomass – alternative hydrocarbon source

Uses of 1,4-sorbitan:

- Industrial yield: 58 %
- ➤ Catalyst: H₂SO₄

Brandi *et al*. ACS Sustainable Chem. Eng. 9 (2021) 927 - 935. Yabushita *et al*. Bulletin of the Chem. Soc. Japan 88 (2015) 996 – 1002.

Uses of isosorbide:

Introduction | Background | Explored catalysts

UNIVERSITÄT

LEIPZIG

- Chemical stability: 6 M HCL at 90°C
- > Adjustable shape: beads, rods etc
- Tunable textural properties:
 - ✓ Pore width: 0.6 1000 nm
 - ✓ Pore volume: $0.1 2 \text{ cm}^3 \text{ g}^{-1}$
 - ✓ Surface area: 20 500 m² g⁻¹

Glass structure:

Phase separation:

UNIVERSITÄT LEIPZIG Janowski *et al.* Handbook of Porous Solids, Wiley-VCH Verlag GmbH (2002) 1432 – 1542. Inayat *et al.* Chemical Society reviews 42 (2013) 3753 – 3764.

Porous glass surface:

Chemically modified porous glass:

Weak acidic silanol groups

- > Al in tetrahedral coordination
- Medium to strong acid sites

 Al_2O_3 containing $Na_2O-B_2O_3$ -SiO₂ glass:

Reduced microphase development

$$-B \stackrel{Na^{+}}{\longrightarrow} O \stackrel{I}{\longrightarrow} O \stackrel{I}{\longrightarrow} O \stackrel{Na^{+}}{\longrightarrow} O \stackrel{I}{\longrightarrow} O \stackrel{Na^{+}}{\longrightarrow} O \stackrel{I}{\longrightarrow} O \stackrel{Na^{+}}{\longrightarrow} O \stackrel{I}{\longrightarrow} O \stackrel$$

Aim and objectives

1. Post synthetic surface modification

Porous glass surface

Experimental | 1. Post synthetic surface modification

1. VYCOR Process: $4Li_2O-29B_2O_3-61SiO_2-6AI_2O_3$ (wt%):

13

Experimental | 1. Post synthetic surface modification

2. Post synthetic surface modification:

Calcination: 600 – 700°C/8 h

ICP-OES: 6 $(NH_2)_2CO + 3H_2O \rightarrow 2NH_4^+ + CO_{2(q)} + 2OH^-$ Modified 5 OH 4 HO-A Al₂O₃ / wt.-% ЭH 3 OH OH OH 2 **HOH** HO-Si-O-Si-O-Pristine 1 Porous glass surface 0 0.05 M 0.08 M 0.16 M 0 M Condensation reaction \triangleright $AI(NO_3)_3 / M$

Multilayers alumina

- Ultrathin alumina layer (<< 1 nm)</p>
- Preserved textural properties

>
$$D_p = 36 \text{ nm}, \text{BET}_{SA} = 75 - 85 \text{ m}^2 \text{ g}^{-1}$$

Kwinda et al. Mater. Chem. and Phys. 289 (2022) 126504.

- Medium acid strength: 200 400 °C
- > $[AIO_4]^-$ in the glass network
- ➤ Acid sites density: 100 170 µmol g⁻¹

2. Hydrothermal stability evaluation

Experimental | 2. Hydrothermal stability evaluation

- ➢ 0.30 g modified PG
- ➤ 10 ml H₂O

≻ T = 200°C

≻ t = 24 h

Characterization:

- ➢ ICP-OES
- Nitrogen sorption
- Mercury intrusion
- > SEM
- > ²⁷AI-MAS-NMR

➢ NH₃-TPD

Results | 2. Hydrothermal stability evaluation

 \succ Preserved Al₂O₃ composition

Preserved pore structure

Results | 2. Hydrothermal stability evaluation

Experimental | 3. Catalytic applications

Batch Reactor:

Berghof BR-100 Teflon: V = 170 ml H = 165 mm W = 42 mm Conditions:

- Sorbitol = 0.05 M/60 ml
- ➤ T = 208°C
- ➤ t = 25 to 50 h
- Catalysts = 2.0 g

Characterization:

- > HPLC
- Nitrogen sorption
- Elemental analysis
- > XRD

Catalytic activity:

Results | 3. Catalytic applications | Post characterizations (50 h)

Modified porous glass catalyst:

Industrial catalyst:

- Low crystallinity (H-MFI-55)
- High coking degree

Conclusions

Surface modification:

Increased acid sites density

Hydrothermal stability:

Preserved porous structure

Outlook

One-pot synthesis of 1,4-sorbitan:

Ni supported porous silica-alumina glasses

Bifunctional catalyst:

- Acid sites
- Hydrogenation

Outlook

Control of pore width using AI_2O_3 in NBS:

- Pore Width gradients monoliths
- Sintering (Conventional/SLS)
- Multi-step enzyme support
- Other biomass conversion

Aknowledgements

Prof. Dr. Dirk Enke
Dr. Sharon Koppka
Prof. DrIng Edda Rädleir
Current group members
Dr. Susan Wasserleben
M.Sc. Theresa Paul
M.Sc. Louisa Eckert
M.Sc. Antonia Hoppe
M.Sc. Bassam Hallak
M.Sc. Tim Jähnichen
M.Sc. Stephan Feser

Former group members
Dr. Bastian Oberleiter
Dr. Maximilian Münzner
Dr. Alexander Grimm
Dr. Richard Kohns
Dr. Christian Splith
Dr. Stephan A.H. Sander
Dr. Simon Carstens
Dr. Ralf Meyer
Dr. Denise Schneider
Dr. Shewaye Yismaw
M.Sc. Felix Meyerhöfer
M.Sc. Maximilian Franz

Collaborations and measurements

PD. Dr. Marko Bertmer

Dipl.-Ing. Heike Rudzik

Dr. Majd Al-Naji

Dr. Tom Münster

M.Sc. Elisa Brade

M.Sc. Hieronymus Hölzig

Funding

National Research Foundation (NRF)

UNIVERSITÄT LEIPZIG

