

FOOTPRINT OF POLISHING PROCESSES INSTITUT FÜR PRÄZISIONSBEARBEITUNG UND HOCH-FREQUENZTECHNIK

CHRISTINE WÜNSCHE AND TEAM OF TC TEISNACH OPTICS

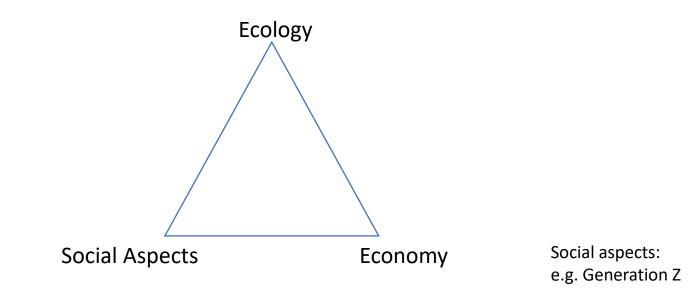
Agenda

- **1** Introduction to Sustainability
- **2** Motivation: Sustainable (Polishing) Processes

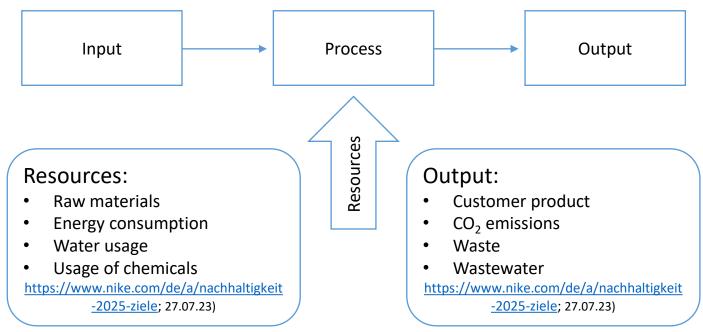
3 bbb

4 ccc

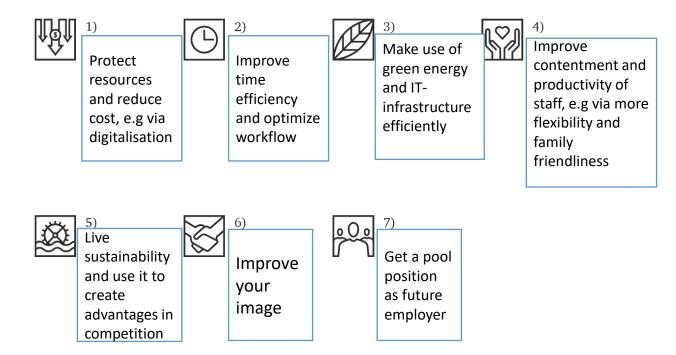
5 ddd



Sustainability


https://www.un.org/sustainabledevelopment/news/communications-material/ © IPH

Sustainability triangle



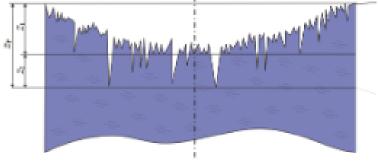
Sustainable (business) processes

Technology enabled sustainability

https://www.pwc.de/de/nachhaltigkeit/sustainable-transformation.html; PwC: technology enabled sustainability

Polishing of precision optics

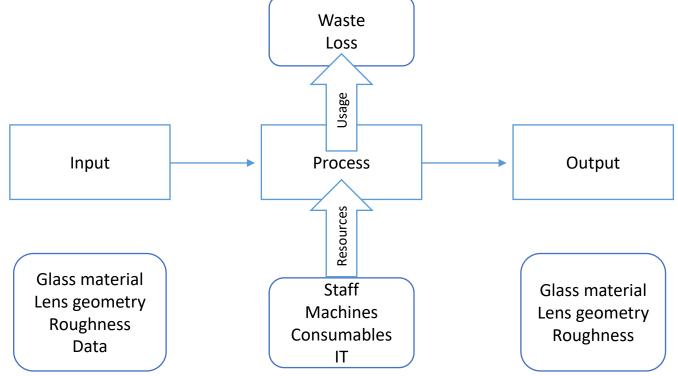
Polishing is the final step in surfacing of optics.

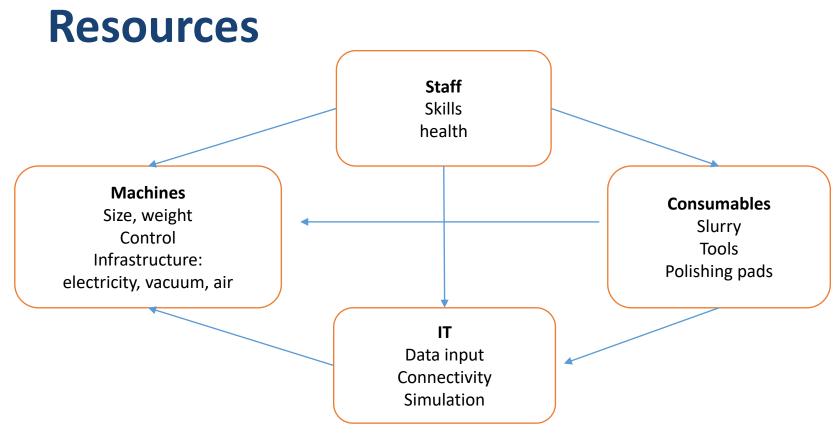

Purposes of Polishing:

- remove roughness
- remove subsurface damages(z2)
- Improve shape (z1)

Challenges:

- Wide variety of available processes
- Complex process
- Limited control of process
- Limited predictability of process


How to rate "sustainability"?


J.Bliedner: Optiktechnologie (2022)

Model of Polishing process

Polishing Processes at TC Teisnach

Overarm polishing Leico (1995)

RPS40, (syncro-speed) Stock (2018)

Syncro-speed polishing, Loh (1989,)

Polishing processes TC Teisnach cont.

MCP250, Optotech, 2010

MRF, QED, 2008

IBF, Opteg, 2015

Comparison of machines

Machine		year	Width [cm]	Length [cm]	Height [cm]	Weight (guess) [kg]	Additional remarks
Overarm 2-spindle	Leico	1985	75	75	170	325	
Syncro- speed	Loh	1989	110 100*	65 160*	165 210*	Ca. 1000 2290*	*latest model
RSP 40	Stock	2018	130	90	170	452	
МСР	Optotech	2010	220	280	270	Ca.5000	-0,7 bar; 6 bar
MRF	QED	2003	150 167*	140 137*	210 229*	1588*	6 bar air *Q-flex100
IBF	Opteg	2015	340	270	280	Ca. 6000	Clean room advisable

Machine infrastructure

Machine	electricity	Vacuum	air	tool	control
Overarm 2- spindle	400V/ 50Hz	-	-	Shape depending tool	Manual
Syncro-speed	400V/ 50Hz	yes	-	Shape depending tool	manual
RSP 40	400V/50Hz/ 1,2 kW / 10 A	yes	no	Shape depending tool	CNC
МСР	400V/50Hz/52a /36kVA	-0,7 bar	6 bar	Ball bonnet	CNC
MRF	400V/50Hz/20 A		6 bar, 85l/min	Wheel	CNC
IBF		yes	Self-produced	Beam	CNC

Consumables

Machine	Tool	Slurry	Polishing pad	Preparation of tool	Waste
Overarm 2-spindle	Re-use	5/20 I	PU pitch	Cut to shape + glue + dressing Melting, shaping, cutting	Slurry, abrasion pad + glass, glue
Syncro- speed	Re-use	5/201	PU	Cut to shape + glue + dressing	Slurry, abrasion pad + glass, glue
RSP 40	Re-use	5/201	PU	Cut to shape + glue + dressing	Slurry, abrasion pad + glass, glue
МСР	Ball bonnet	5/201	PU	Ready made Cut to shape + glue + dressing	Tool + Slurry, abrasion pad + glass, glue
MRF	wheel	1	No	Choose wheel size	Abrasion glass, slurry
IBF	no	No	Graphite grills for beam shaping		Abrasion graphite grills
			© IPH		14

Economics

Machine	Price	MRR/10min	Skills of staff	Expected quality
Overarm 2- spindle	500€ (second hand)	Ρ:2,0 μm PU: 1,3 μm	Experience, manual adjustments	λ/10
Syncro-speed	3500€ (second hand)	4,9µm	Experience, manual adjustments	λ/10
RSP 40	25.000€	30µm	Numerical control	λ/10
MCP **	250.000€		CNC, programming offline possible *	λ/10
MRF **	250.000€		CNC, Simulation*	λ/40
IBF **	600.000€		CNC, Simulation*	λ/60

*highly qualified staff / engineer required **freeforms possible

Quality of lenses, reliability

Test run on several machines: overarm polisher, RSP, Synchro, MCP

Material: N-BK7, 40 mm diameter, plano, 3 samples per test Input: grinded on SPM, tool D18, 80 mm diameter

 \rightarrow was comparable for all samples used Consumables:

tool as necessary: if PU then LD66

for overarm polishing: pitch and PU LD66,

slurry: based on Ceria, density 1,025; if possible 5l

Measurements

roughness: New View 7200, whitelight interferometer shape: SSI Interferometer

Process time 10 minutes

The process was not optimized for each machine.

Results of test run

Overarm pitch MRR: 7 mg / 2,2μm Roughness Ra 5,6 nm Shape (in fringes)(SAG/IRR) 2,1/5 OverarmPU MRR: 4 mg, 1,3μm Roughness Ra 260 nm Shape (in fringes)(SAG/IRR) 7/5

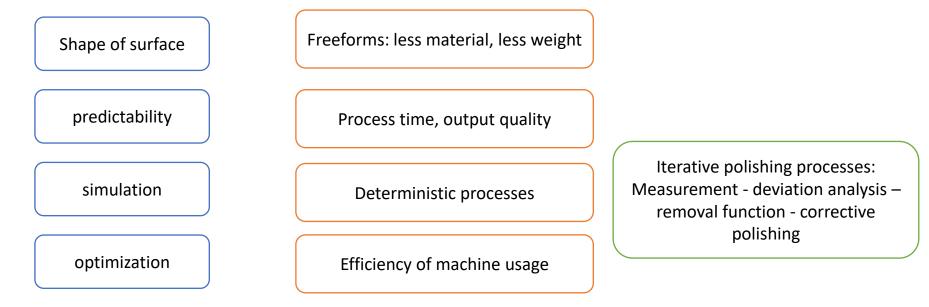
RSP

MRR: 96mg / 30µm Roughness Ra 0,34 nm Shape (in fringes)(SAG/IRR) 7,6/0,6 Synchro MRR: 15mg / 4,5μm Roughness Ra 0,37 nm Shape (in fringes)(SAG/IRR) 7,3 /2,2

MCP MRR: 12 mg / 3,8μm Roughness Ra 0,95nm* Shape (in fringes)(SAG/IRR) not available *(0,35 nm after 10 minutes more)

Social

Skills Precisions optics CNC usage Measuring Apply simulation develop simulation

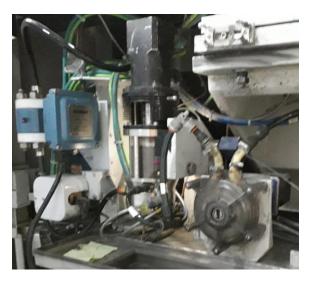


Health Dust from dry ceria Weight of lenses Cleaning Air-conditioning

Technology enabled sustainability

Waste in bonnet polishing

First generation Bonnet: Membrane + polishing pad glued → dismount polishing pad with solvent Quality and reliability limited →less amount of waste Second generation Bonnet: Membrane + polishing pad as one premounted unit Good quality, high reliability → huge amount of waste


Third generation Bonnet: No membrane, dressed "moos-gummi" support, polishing pad clamped → polishing pad used for days; moos-gummi for months / years Good quality, high reliability → No solvents, little volume and weight of waste

Slurry supply

Slurry supply 20 l, Leico

Slurry supply 5 l, homemade

Slurry supply 1 l, QED

Summary

- Economy, Ecology, Social Aspects: First collection of facts
- Rating? Up to your priorities
- Shareholders focus on "sustainable investments".
- Sustainability starts in your head, with your values and convictions.
- Optics is one of the so-called enabling technologies. Integrators are keen to prove they act responsible with regards to sustainability. That builds up pressure for suppliers to prove they act responsible as well.
- Optics and therefor glass are hidden in many products.

Let's get started.

• https://www.un.org/sustainabledevelopment/news/communications-material/