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Für die lichttechnische Simulation in der Entwicklung von Leuchten und Scheinwerfern 
sind verschiedene Rechenmethoden verfügbar. Im Bereich der Darstellung optischer 
Oberflächen kann grundsätzlich zwischen exakten und approximativen Methoden 
unterschieden werden. Dieser Artikel soll einen Überblick verschaffen über drei 
verschiedene Verfahren zur Strahlverfolgung (genauer: non-sequential raytracing), die 
gegenwärtig u.a. in der Software LucidShape Verwendung finden. 
Spezielles Augenmerk liegt hierbei auf der leistungsfähigsten Methode, dem „GPUtrace“. 
Hierbei wird die Computerhardware eines Grafikbeschleunigers verwendet, um die 
Rechengeschwindigkeit - vor allem für hohe Strahlzahlen - um ein Vielfaches zu steigern. 
Anhand exemplarischer und anschaulicher Lichtmodelle werden Verfahren verglichen. 
 
 
 
For optical simulations in lighting development there are different mathematical methods 
available. Among procedures for the representation of optical surfaces for non-sequential 
raytracing we can distinguish between exact and approximative methods. In this paper, we 
will give a short summary on three methods which are currently applied in the LucidShape 
software package, with emphasis in the GPU trace feature. This powerful method allows 
the use of graphics hardware to speed up the simulation process drastically, especially for 
large numbers of rays to be traced. We discuss four examples of lighting solutions to 
demonstrate the improvements in simulation time. 
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A Short Introduction to Raytracing Simulations 
 
In raytracing simulations, there are certain processes that consume more time than others. 
Especially intersections do cost a lot of time. Intersections occur always when a ray is 
hitting an optically relevant component, i.e. a geometry that has been assigned an optical 
material property. The way, intersections are handled is directly linked to the way in which 
the surfaces are treated in a simulation experiment. Thus, most calculation time is spent 
on solving the intersections. Naturally, this leads to some conclusions about the impact of 
a model’s complexity on simulation time.  
The duration of a simulation is in the dimension of time, while the speed of a simulation is 
the amount of rays that are traced in this amount of time. Some experiments do not require 
a large number of rays (e.g. < ~107 rays), others intrinsically require a lot of “light” – 
sometimes very large ray numbers. The latter are typically considered “overnight” or 
“weekend” candidates for common off-the-shelf PC hardware. The complexity of a virtual 
lighting setup is defined by several factors, such as the outline of optical components, as 
well as the surface material types of the interfaces involved. Another factor which is 
directly influencing the calculation time of a simulation task is the average number of 
intersections for each ray.  
 
The most simple situation consist merely of a light source and a sensor, an example being 
a bulb in front of a wall. Ignoring the light source itself for now, we count just one single 
intersection: the one with the sensor. Let us call this the intersection No. 0 (zero). 
Adding a reflector to such a setup increases the intersection count to 1. Although very 
simple, this is a common situation in lighting development.  
The more components an experiment contains, the longer the trace will take for each ray 
to trace. Extreme examples with very long simulation times are those that either require 
many rays or those that expose the rays to a multitude of intersections. Prominent 
examples for complex and thus slow models are light pipes and backlighting applications 
in general. But also experiments that allow parasitic multiple internal reflections will suffer 
noticeably from increased simulation times.  
Simple reflector systems, single lens setups, or especially redundant systems which do not 
require the simulation of the complete lighting unit (such as multi LED with identical light 
engines) in contrast can be considered fast models. 
Raytracing speed is obviously important for complex and slow models, while a simple 
setup can already be solved in a couple of minutes (or even seconds) with a sufficiently 
large number of rays. 
 
Also, the focus of interest of the light engineer plays an important role. 
While designing a general outline of a lighting system, only a coarse sensor resolution may 
be sufficient. This results directly in a small number of rays required to achieve a decent 
signal to noise ratio (SNR) in the results: fast simulation! Fine details, small artefacts and 
all simulations in the final phase of development are generally executed with large 
numbers of rays, since fine sensor resolutions are being used (keep up a good SNR). 
Logical consequence: using a sensor with a resolution (inverse cellsize) that is too fine for 
the question at hand is a waste of precious (simulation) time. Using an insufficiently low 
sensor resolution of sacrificing the amount of rays traced for a speed up of the simulation 
on the other hand is very risky – results may be subject to statistical variations (noise) or 
similar deviations or may just be utterly wrong. 
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The perfect simulation parameters are always those that will clearly process a certain 
result within the minimum amount of time possible while achieving the required precision. 
 
It is mandatory to note that we discuss here only the principle methods of simulation. Still, 
differences between specific algorithms and individual implementations will account for a 
great deal of variations in precision and calculation time – even among programs that use 
the same methodological class of simulations methods. All results regarding actual 
simulation times in this paper solely refer to the LucidShape Software. 
 
NURBS grade precision 
 
The highest level of precision in determining the optical response from a surface is 
achieved only by calculating the exact position of an intersection as well as the exact 
normal of the surface hit in that particular location. In order to achieve this, an 
understanding of NURBS1 mathematics is required, as well as a some basic mathematical 
considerations. Once these problems have been solved, the results from any simulation 
are based on the highest possibly achievable precision. This method is sometimes 
referred to as “analytic” grade or “accurate” simulation. Unfortunately, the effort made to 
create this precision does cost a measurable share of calculation time, which makes all 
exact methods relatively slow in comparison with other raytracing methods.  
 
 
Tessellation / meshing / approximation methods 
 
The tessellation or meshing of the surfaces in a model is a 
common method in computer graphics and simulation. In a 
multitude of different applications, meshing is used to define 
the precision and resolution of a simulation in trade-off for 
calculation speed. The option to decide what to emphasize is 
the main feature of all approximation methods of this type.  
All geometric surfaces are broken down into a triangular 
mesh. This is done using different heuristic approaches and 
weighting algorithms to create a minimalistic yet sufficiently 
smooth mesh of all surfaces in a lighting model. Limiting the 
smallest building blocks and the largest deviations from the 
original NURBS surface define the precision of the meshed 
surface replica. The figure to the right shows a simple 
tessellation of a reflector surface. 
One very interesting aspect of efficient tessellation 
procedures is the relation between the actual number of 
triangles in which an experiment is divided and the resulting 
simulation time for the raytrace. This relation is non-linear 
but of logarithmic nature. Thus an increase in the number of 
triangles will result in a much smaller increase in simulation 
time - without further drawbacks on the gain in surface 
precision due to the finer meshing.  
It is helpful to calibrate any approximative method by comparison to a precise method. 
Tessellation parameters should be refined until the results meet the desired agreement 
with those light patterns obtained in a preliminary NURBS grade simulation run. 

                                            

1 NURBS: non-uniform rational B-spline 
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GPUtrace 
 
The latest simulation method “GPUtrace” is a special variant of the tessellation principle. 
The actual variation are not so much of systematic nature, but rather found in the interplay 
of software and hardware. 
GPUtrace method makes use of the graphics processors of modern graphics cards. These 

GPU (Graphics Processing Unit) in contrast to the CPU (Central 
Processing Unit) of a computer does not consist of a small number of 
powerful, flexible, and omnipotent workhorses (the cores), but of a 
large number of highly specialized graphic processors. These graphics 
cores (CUDA cores) for example on a state of the art nvidia card2 can 
be combined in clusters of 512 - a very large number when compared 
with 2, 4, or maybe 8 cores of a CPU. The specialty of these CUDA 

cores is their ability of massive parallel processing.  
A rather general command set allows more than the basic geometrical operations of older 
graphics card types. Clusters of CUDA cores can compute blocks of problems together, 
providing a large number of threads. GPU trace uses the CUDA core (or graphic 
processors in general) to execute the time consuming 
calculations on the graphics card. Additionally, the CPU 
still has to do some part of the work, including feeding 
the GPU with calculation jobs. Thus, only a combination 
of halfway decent CPU hardware with a fast graphics 
card is really efficient in the end. In comparison of two 
specific CPU and GPU, a state of the art GPU can 
provide about 15 times the computation power 
(switching processes per time) of a modern CPU. 
Since the GPU trace requires some preparation time in dependence of the number of 
triangles an other factors, relative speed increase is higher at large numbers of rays. 
 
 
GPUtrace examples – simulation time 
 
We have investigated four examples of lighting models with focus on their simulation 
times. To compare apples with apples, results from Tessellation and GPUtrace will be 
shown. 
 
Single reflector, macrofocal type 

 
The first example consists of a single reflector surface of MF 
(macrofocal) type, taking into account the physical extension of the 
light source using the edge-ray principle. This is an example for 
reflector-based front lighting situations, especially the low-beam 
with its precise cut-off line, as well as signal applications in 
automotive lighting. Classical reflector lights in general lighting also 
belong to this type of simulations. This model shows mostly single 
interactions for each ray (reflected only once).  

                                            

2 All NVIDIA gtx and tesla cards are fully compatible with GPUtrace and are being recommended  
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Macrofocal Reflector
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Less accurate meshing will show 
already relatively good results for 
the overall pattern evaluation.  
 
Number of triangles: ~ 6.4x104 
Max. acceleration measured: x17 
 
The GPUtrace will be able to speed 
up this type of simulation by a 
factor of about 17.  
The graph shows the simulation 
time as a function of the numbers 
of rays traced. The relation is 
linear, but with a bias for the 
preparation time of GPU trace.  
The CPU clearly needs more time, 
which will become dramatic for large ray numbers in ultra-precise simulations. 
 
 
Poly-Ellipsoid-System (PES), projector unit 
 

Another automotive frontlighting system, the PES is combining a 
poly-ellipsoidal reflector for light capture and for shaping the light 
pattern with an aspheric lens for projection onto the road and a 
shield for the creation of the cut off line. Thus, it exposes the 
rays to a minimum of 3 intersections (1x reflector, 2x lens). 
Additional parts, such as the housing are included to obtain a 
realistic optical output with all possible influences of stray light or 
multiple reflections. PES type headlamps are a unique class of 
lighting systems, closely related to other projector setups, such 
as beamers or gobo lights. 

 
Number of triangles: ~ 106. 
Max. acceleration measured: x34 
 
GPUtrace speeds up this type of 
simulation by a factor of about 30.  
The higher number of intersections 
allows for a greater speed 
advantage. This is to some extend 
compensated by the need for high 
precision. Especially the imaging 
properties of the lens have to be 
precise to correctly project the light 
pattern on the road. Surface errors 
(in terms of meshing artefacts) in 
the representation of the reflector 
and especially the A surface of the 
lens would otherwise add up. 
 
 
 
 
 

PES Model
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Tail lamp model, integrated 
 
Automotive lighting in the rear of the car is not so much 
focussed on the less demanding lighting function (when 
compared with frontlighting), but strongly emphasizes the lit 
appearance of the lights. Nevertheless, chromium-look parts 
and housing-integrated setups require a high depth of details 
in many cases. 
Number of triangles: ~ 1.6x106. 
Max. acceleration measured: x37 
 
 

GPUtrace speeds up this type of 
simulation by about x35 times. 
In this classic automotive tail lamp 
we find a halogen bulb, a reflector 
and a red PMMA lens. The model 
includes the optical parts, as well 
as a full geometric model of the 
light source and the relevant 
absorbing or diffusely reflecting 
parts of the housing. 
Accurate meshing was used to 
correctly shape the bulb and fine 
styling details. 
Large ray numbers are being used 
for luminance evaluation here. 
 
 
 
Lens for LED center high mounted stop light (CHMSL) 
 
LED CHMSL have been in use already for quite a while. Here, a cluster of 12 LEDS is 
using a single lens part with facetted surface to create the light pattern. This is an 
archetype of lens-based multi-LED setups without individual optics.  
 
Number of triangles: ~2x106 
maximum acceleration measured: x26 
 

GPUtrace typically speeds up this type of simulation by a factor of 
about x19. 
 
Rather sharp edges and variations in curvature require a fine 
meshing here. Cross-talk between the emitters and neighbouring 
lenses as well as the rear of the light (PCB etc.) suggest also rather 
large ray numbers here. Raytracing with up to 2x109 rays has been 
performed with this model.  
Especially investigations of luminance uniformity is being done with 
light of this type (see last images). Large numbers of rays allow for 
reliable results. 
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Geometric View into the CHMSL (top) and off axis Luminance image (bottom) with direct 
view on the LED emitters and very smooth and uniform light spread from the lens. 
 
 
Summary 
 
Among today’s simulation methods for lighting design, the best procedure for a certain 
task can be chosen. In terms of calculation speed however, the GPUtrace is the most 
powerful technique so far, allowing time saving factors of up to 30x, depending on 
hardware configurations. It can be run on low-cost hardware (off-the-shelf nvidia graphic 
cards for gaming) and thus compliments any existing hardware cost-effectively. 
This technique is constantly being improved and will of course take full advantage of all 
future developments in graphics hardware. 
 
 
 
 


	Proceesings

