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a b s t r a c t

We study the influence of thermal boundary conditions on large aspect ratio Rayleigh–Bénard
convection by a joint analysis of experimental and numerical data sets for a Prandtl number Pr = 7 and
Rayleigh numbers Ra = 105

− 106. The spatio-temporal experimental data are obtained by combined
Particle Image Velocimetry and Particle Image Thermometry measurements in a cuboid cell filled with
water at an aspect ratio Γ = 25. In addition, numerical data are generated by Direct Numerical
Simulations (DNS) in domains with Γ = 25 and Γ = 60 subject to different idealized thermal
boundary conditions. Our experimental data show an increased characteristic horizontal extension
scale λ̃ of the flow structures for increasing Ra , which due to an increase of the convective heat
transfer also leads to an increase of the Biot number (Bi) at the cooling plate. However, we find the
experimental flow structure size to range in any case in between the ones observed for the idealized
thermal boundary conditions captured by the simulations: On the one hand, they are larger than in
the numerical case with applied uniform temperatures at the plates. On the other hand, they are
smaller than in the case of an applied constant heat flux, the latter of which leads to a structure that
grows gradually up to the horizontal domain size. We are able to link this observation qualitatively to
theoretical predictions for the onset of convection. Furthermore, we study the effect of the asymmetric
boundary conditions on the heat transfer. Contrasting experimental and numerical data reveals an
increased probability of far-tail events of reversed heat transfer. The successive decomposition of
the local Nusselt number Nuloc traces this effect back to the sign of the temperature deviation Θ̃ ,
eventually revealing asymmetries of the heating and cooling plate on the thermal variance of the
generated thermal plumes.

© 2023 The Author(s). Published by ElsevierMasson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Thermal convection drives many natural flow phenomena
uch as convection in the Earth’s outer core [1,2], mantle [3,4],
cean [5,6], or atmosphere [7,8]. Beside its presence throughout
he layers of Earth, convection can also be found, e.g., in the
un and other planets of our solar system [9–12]. Characteristic
o all of these systems is a typically large aspect ratio Γ =

/H [13,14], i.e., the height of the flow domain H in the direction
f gravity is typically much smaller compared to the width W
erpendicular to it.
Albeit thermal convection has meanwhile been studied for

ore than 100 years [15,16], the exploration of convection in
arge aspect ratios intensified just recently [17–20]. Thereby,
he formation of long-living large-scale flow structures – in this
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4.0/).
case, the so-called turbulent superstructures, see also Section 2 –
was discovered by numerical investigations of large aspect ratio
Rayleigh–Bénard convection (RBC) [17,18]. Since their discovery,
these flow structures are subject of intense research due to
their clear distinction from small-scale turbulence, which acts
on much smaller time scales. Besides the effect of the thermal
boundary condition, which we discuss in a general sense in
Section 2 and specifically for the case of mixed and asymmetric
boundary conditions in the remainder of this paper, further as-
pects of the turbulent superstructures have been investigated. For
example, the coherence of velocity and temperature structures
was shown by analysis of the temperature and velocity co-
spectra [19]. Other studies focused on the interaction between
small-scale fluctuations and turbulent superstructures [21,22],
underlining the richness of large aspect ratio convection.

As a complement to these studies in the Eulerian frame of ref-
erence, the role of large-scale flow structures on the Lagrangian
or material transport has been revealed by means of spectral
access article under the CC BY license (http://creativecommons.org/licenses/by/
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clustering of Lagrangian trajectories [23–25]. Theoretical and nu-
merical studies are supported and extended by experimental
analyses of the long-term behavior of turbulent superstructures
together with their local convective heat transfer based on spa-
tially and temporally resolved temperature and velocity measure-
ments [26,27].

Contrasting experimental and numerical results, Moller et al.
27] observed two striking disagreements given our present ex-
erimental setup: (i) The overall heat transport across the fluid
ayer is decreased compared to numerical results with perfect
sothermal boundary conditions at comparable Ra, and (ii) the
low structures are significantly larger in the experimental setup
ompared to the numerical results. Interestingly, these discrep-
ncies increase once the Rayleigh number Ra – a measure of the
trength of the thermal driving, see Eq. (8) – is increased. As the
randtl number Pr – characterizing the working fluid, see again
q. (8) – is constant and these two control parameters specify
he entire dynamical system, this suggests that these observa-
ions are features of the experiment, which are not captured by
dealized simulations. Considering the experimental setup, Moller
t al. [27] attributed these disagreements to the non-ideal ther-
al boundary condition at the cooling plate made from glass. In

he present work, we pick up these observations and analyze the
nfluence of the present asymmetric thermal boundary conditions
n more detail.

The impact of thermal boundary conditions on the heat trans-
ort across the fluid layer – as quantified by the Nusselt number
u, see Eqs. (9), (10) and (12) – was investigated in several
tudies [20,28–32] and led, on the one hand, to suggestions
f corrections for the influence of the plates’ materials [28,29],
hereas, on the other hand, deviations from isothermal con-
itions seemed to accelerate the convective heat transport at
east up to Ra ∼ 107 [20,31,32]. However, except for Vieweg
t al. [20], none of these studies provided a horizontally suf-
iciently extended domain such that turbulent superstructures
r equivalent structures could form [33–35]. This circumstance
ecomes crucial, given the fact that the large-scale flow structures
ransport most of the heat across the fluid layer [19].

These reasons underline the relevance of further investiga-
ions of the influence of mixed or asymmetric thermal boundary
onditions on the heat transfer and large-scale flow structure
ormation in large aspect ratio domains. First, we contextualize
he experimentally present conditions, investigate the size and
volution of the large-scale flow structures by extracting the
haracteristic wavelength from the power spectrum, and com-
are our observation with theoretical predictions for the onset
f convection. Second, we analyze the local heat transfer and
ompare the corresponding experimental and numerical proba-
ility density functions (PDFs). We observe higher probabilities
f a reversed heat transfer for experimental data. The successive
ecomposition of the local Nusselt number Nuloc eventually un-

veils the underlying effect of the asymmetric thermal boundary
conditions.

The remainder of this manuscript is organized as follows. We
start by outlining large-scale flow structures and their formation
in Section 2 and, thereupon, briefly describe the experimental
and numerical methods in Section 3. We then address the large-
scale flow structure size in Section 4, whereas the heat transfer
is analyzed in Section 5. We conclude with a discussion of our
results in Section 6.

2. Large-scale flow structures in thermal convection

As briefly introduced above, Rayleigh–Bénard convection ex-
hibits characteristic long-living large-scale flow structures (LLFSs)
that set themselves apart from smaller-scale turbulence acting on
 t
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Fig. 1. Thermal boundary conditions govern the formation of long-living large-
scale flow structures, the latter of which are termed supergranules or turbulent
superstructures in the case of Neumann or Dirichlet conditions, respectively.
The panels visualize exemplary either the temperature or negative temperature
gradient fields in horizontal cross-sections at either the midplane (z̃ = 0.5, a and
) or the top plane (z̃ = 1, c and d) in horizontally periodic domains of aspect
atio Γ = 60. Note that the only difference between these two simulations is
he thermal boundary condition. The data is adopted from Vieweg et al. [20]
ith Pr = 1, RaD = 3.8 × 105 , RaN = 3.9 × 106 (comparable to the given RaD),
nd free-slip boundary conditions.

ignificantly shorter time scales. While the latter capture smaller
ddies that might be as small as the Kolmogorov scale ηK ≪ H
nd correspond to rapid temporal fluctuations, the former offer
haracteristic horizontal extensions with typical length scales of
t least O (H) and time scales τLLFSs ≫ τf (with τf representing the
onvective time unit, see also Section 3.2). Due to this clear scale
eparation, these different processes or flow structures can be
eparated by a Reynolds decomposition, or temporal filter [17,20].
Considering the simplest configuration of Rayleigh–Bénard

onvection without additional physical mechanisms such as rota-
ion [36–39], magnetohydrodynamic effects [40–42], or complex
luid property dependencies [43–45], the nature of these long-
iving large-scale flow structures have recently been found to
epend decisively on the aspect ratio [13,17,18,32,42,46,47] and
hermal boundary conditions [20,32]. If the aspect ratio is small
ith Γ ≈ 1, a so-called large-scale circulation or mean wind
ith a characteristic horizontal extension of about H forms [13]
in this case, the large-scale flow structure is (independently

f the thermal boundary conditions [32]) clearly dictated by
he lateral boundaries. This changes once the flow is released
rom the impact of the latter. Their importance decreases with(

Γ −2
)
[33–35], so domains with Γ ≳ 20 ≫ 1 can be consid-

red being “large” and fairly close approximations of infinitely
xtended fluid layers [18,19,35]. As the impact of the lateral
oundaries vanishes, so arise new dependencies that govern the
ature of the establishing long-living large-scale flow structures
albeit discovered just recently [20], the thermal boundary

onditions offer the perhaps most striking effect.
In the classical Dirichlet case of applied uniform tempera-

ures at the plates, so-called turbulent superstructures form with
ime-independent characteristic horizontal extensions of order
(H) [17,20] — these structures are in clear contrast to the time-
ependent gradual supergranule aggregation that takes place in

he opposite Neumann case of an applied uniform temperature
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gradient (or heat flux) at the plates [20]. More details on the
mathematical aspects of these choices are provided in Section 3.2,
whereas Section 4 will highlight that the particular choice is
physically related to the propagation or relaxation of thermal
perturbations in the plates and the fluid. Interestingly, this latter
process leads (if not controlled by rotation [38]) to a growth
of the structures until the horizontal domain size is reached,
i.e., their characteristic length λ̃ ∼ Γ ≫ O (H), exceeding thus
the turbulent superstructures clearly in terms of their length
scale. Fig. 1(a, b) compares these turbulent long-living large-
scale flow structures in a Γ = 60 domain for an equivalent
heat transfer through the fluid layer. Crucially, other aspects
such as the Rayleigh number, Prandtl number, or mechanical
boundary conditions [17,20] become secondary once compared to
this dominant effect of thermal boundary conditions. As these ob-
servations in the turbulent regime are qualitatively in accordance
with the behavior at and slightly above the onset of convection,
this highlights the importance of primary and secondary instabili-
ties for the dynamical system in general. We will thus address the
transition from Dirichlet to Neumann conditions in more detail in
Section 4.

Additional physical mechanisms, such as rotation around the
vertical axis, may additionally influence the long-living large-
scale flow structures. Vieweg et al. [38] showed that the impact
of rotation depends quite differently on the choice of the ther-
mal boundary condition or nature of the latter. However, such
additional effects are beyond the scope of the present manuscript
with its focus on the thermal boundary conditions.

Experimental studies are the method of choice for long-time
studies of turbulent superstructures since the expenses for direct
numerical simulations in horizontally extended domains scale
with ∼ Γ 2 [48] and ∼ t , restricting numerical studies of the long-
term behavior of these long-living large-scale flow structures
seriously. Given the slow reorganization of the turbulent super-
structures over time [17,27], this represents a significant limita-
tion for their studies by numerical approaches. However, the large
aspect ratio requires the design of novel experimental setups
and the adaption and development of advanced temporally and
spatially resolved velocity and temperature measurements. These
are briefly discussed in 3.1.

3. Methods

3.1. Experimental setup and measurements

All experiments that are considered in this report were con-
ducted in a cuboid Rayleigh–Bénard convection cell with aspect
ratio Γ = 25 and a width W = 700 mm and height
H = 28 mm. The cell is filled with water at a mean temper-
ature Tref ≈ 19.5 ◦C exhibiting a Prandtl number Pr = 7.1.
This cell design, with its large aspect ratio, allows the turbulent
superstructures to form and is sketched in Fig. 2. The fluid layer
is confined by glass side walls, a heating plate at the bottom
made from an aluminum alloy coated in a thin, matte black plastic
foil (plate thickness dp,h = 18.5 mm as half of the total plate
hickness, thermal conductivity Kp,h = 150 W/mK, specific heat
capacity cp,h = 900 J/WK, density ρp,h = 2670 kg/m3) and
cooling plate assembly at the top made of two parallel glass

heets with a horizontal gap in between to allow cooling water
o flow through (thickness of the lower glass sheet dp,c = 8 mm,
hermal conductivity Kp,c = 0.78 W/mK, specific heat capacity
p,c = 800 J/WK, density ρp,c = 2700 kg/m3). The temperature
f both plates can be controlled independently by thermostats.
he temperature at the cooling and heating plate is measured
y four Pt-100 with an individual maximum deviation of 0.13 K
t room temperature. The sensors are positioned at a distance of
285
Fig. 2. Sketch of the experimental setup for the simultaneous measurements of
all three velocity components and the temperature in a wide horizontal plane
through a transparent cooling plate.

approximately 10 cm to the cell corners at or close to the inner
surface of the cooling and heating plate, respectively. During
the experiment, a deviation in the average temperature between
sensors at the same plate of ≈ 0.2 K at the cooling plate and
≈ 0.1 K at the heating plate was measured. These deviations
include the measurement accuracy of the sensors and the varying
impact of the superstructures on the sensors as well as a slight
increase of the cooling water temperature in flow direction at the
cooling plate.

Note here, in particular, that the transparent cooling plate
arrangement is required to grant optical access to the flow do-
main from the top, and enables the large field of view (FOV)
inevitable for the investigation of the large-scale flow structures
or turbulent superstructures. Moreover, a comparably detailed
study of the latter would not be possible in a vertical plane due
to the small cell height [49]. To measure the fluid velocity and
temperature simultaneously, a combined stereoscopic Particle
Image Velocimetry (PIV) and Particle Image Thermometry (PIT)
approach with polymer-encapsulated thermochromic liquid crys-
tals (TLCs) as seeding particles is employed. The unique property
of a temperature-related wavelength change of the reflected light
of the TLCs is leveraged to quantify the temperature. Hence, a
light source with a continuous illumination spectrum is required
since the TLCs can reflect only spectral components of light that
are part of the original illumination spectrum. To achieve optimal
illumination, a custom-made light source was designed, which
consists of an LED array combined with light sheet optics to focus
the light into a sheet of thickness ≈ 3–4 mm across the entire
FOV.

Three cameras observe the flow domain with an observation
angle of Φ ≈ 55◦–65◦. Two are monochrome cameras in a
stereoscopic arrangement. Those cameras allow us to measure all
three velocity components in a horizontal plane [50,51]. Due to
the stereo angle of ≈ 35◦, the uncertainty is approximately evenly
distributed across all velocity components. Based on the assump-
tion of an uncertainty of 0.1 pixels in determining the correlation
peak [52], we obtain relative uncertainty for all velocity compo-
nents of approximately 10%. The third one is a color camera to
capture the color of the light reflected by the TLCs. Subsequently,
the temperature in the light sheet can be inferred by means of
PIT [53]. In more detail, the color image is sliced into sub-images
or interrogation windows, and the red, green and blue color
values inside the interrogation windows are averaged. Those
averages are subsequently transformed into the hue, saturation
and value (HSV) color space. To determine the temperature, the
hue is compared to a calibration curve. As the TLC reflection
properties depend on the angle between the light source and
observation, calibration curves are obtained during the calibration
process for each interrogation window individually. Since the un-
certainty of the TLC-based temperature measurement increases
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Table 1
Overview of the global parameters for the different experimental runs. The individual columns include the Rayleigh number Ra
to which we will refer in the following, the exact experimental Rayleigh number Raexact (based on the exact physical properties),
the global Nusselt number Nu (as the spatial and temporal average of the experimentally accessible local Nusselt number defined
by Eq. (14)), the temperatures of the heating and cooling plate Th and Tc , the field of view x̃ × ỹ (in non-dimensional units based
on the cell height H), the free-fall time scale τf , and the total experimental runtime t̃total (in non-dimensional units based on the
free-fall time). Data are adopted from [58].
Ra Raexact Nu Th Tc x̃ × ỹ τf t̃total
2 × 105 2.07 × 105 4.00 19.78 ◦C 19.08 ◦C 16.1 × 16.7 4.51 s 5.39 × 103

4 × 105 4.34 × 105 5.31 20.22 ◦C 18.76 ◦C 16.1 × 16.7 3.12 s 7.79 × 103

7 × 105 7.34 × 105 5.58 20.87 ◦C 18.43 ◦C 16.2 × 16.6 2.40 s 1.01 × 104
a
H
a
w
l
N
t

for higher temperatures, we estimate the relative uncertainty
for all considered Ra to be ≈ 10% even though the measured
temperature range increases with Ra . Details on this technique
can be found in Moller et al. [54]. Alternatively, a neural network
can be trained to replace these local calibration functions [55,56].
The extension towards fully volumetric temperature and veloc-
ity measurements for wide observation regions, currently only
available for low-aspect ratio setups [57], is still ongoing.

In this paper, we consider three experimental runs at Ra =

× 105, 4 × 105, and 7 × 105 with measurements performed
in the horizontal midplane. To reduce the amount of data and
the required processing time, the temperature and velocity fields
are measured in bursts of 200 seconds and inter-burst-breaks of
1000 seconds. For each experiment, 19 bursts with 200 snapshots
each are utilized. The dimensional data is subsequently non-
dimensionalized as explained in Section 3.2 for the Dirichlet case
and Ra ≡ RaD. Further details on the experimental runs are
provided in Table 1.

3.2. Numerical simulations

To compare the experimental setup with numerically obtained
results, we consider the simplest turbulent convection configu-
ration — three-dimensional, turbulent Rayleigh–Bénard convec-
tion in the Oberbeck–Boussinesq approximation. In this setup,
buoyancy drives the flow by coupling the scalar temperature
field T (x, t) with the incompressible velocity vector field u (x, t)
where x = (x, y, z) and u = (ux, uy, uz). In more detail, the mass
ensity varies in this approximation only in the buoyancy forcing
erm, and thus only at first order with the temperature deviation
rom some reference value.

Similar to the experimental setup, see again Fig. 2, we consider
Cartesian domain V = W ×W ×H with the vertical coordinate
tarting at the bottom plane and pointing against the direction
f gravity towards the top plane. The confining bottom and top
lanes at z ∈ {0,H} obey either no-slip (ns) or free-slip (fs)
echanical boundary conditions (mbcs),

x = uy = uz = 0 or uz =
∂ux

∂z
=

∂uy

∂z
= 0, (1)

respectively. The lateral boundaries (lbs) are either closed and
insulating – in the case of which they exhibit again no-slip bound-
ary conditions –, or periodic. In the case of the latter, any quantity
Φ is repeated after the periodic length W = Wx = Wy such that

Φ (x, t) = Φ
(
x + ixWxex + iyWyey, t

)
with i ∈ Z. (2)

In accordance with the scientific objective of the present
study, we vary the thermal boundary conditions (tbcs) at the
plates to correspond mathematically either to a Dirichlet (D) or
a Neumann (N) condition. In the case of Dirichlet conditions, the
top and bottom planes exhibit constant temperatures

T z = 0 = T and T z = H = T , (3)
( ) bot ( ) top
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whereas in the Neumann case the temperature is allowed to vary
locally — all that is fixed is the applied constant heat flux through
the spatially constant temperature gradient

∂T
∂z

⏐⏐⏐⏐
z=0

=
∂T
∂z

⏐⏐⏐⏐
z=H

= −β with β > 0. (4)

The equations of motion are made dimensionless based on
characteristic quantities of the system. We adopt the layer height
H as unit of length and the so-called free-fall time τf = H/Uf
s the unit of time with the free-fall velocity Uf =

√
αgTcharH .

ere, α represents the isobaric expansion coefficient and g the
cceleration due to gravity. Tchar is a characteristic temperature
hich depends on the thermal boundary condition. In the Dirich-

et case Tchar = ∆T = Tbot − Ttop > 0, whereas in the
eumann case Tchar = βH . The governing equations follow in
heir non-dimensional description as

∇̃ · ũ = 0, (5)

∂ũ
∂ t̃

+ (ũ · ∇̃) ũ = −∇̃p̃ +

√
Pr

RaD,N
∇̃

2ũ + T̃ez, (6)

∂ T̃
∂ t̃

+ (ũ · ∇̃) T̃ =
1√

RaD,NPr
∇̃

2T̃ , (7)

where p is the pressure field, and tildes indicate dimensionless
quantities. Two dimensionless parameters – the Prandtl number
Pr and the Rayleigh number Ra – control the entire dynamics and
summarize all the dimensional coefficients and parameters. These
numbers are defined as

Pr =
ν

κ
, RaD =

gα∆TH3

νκ
, and RaN =

gαβH4

νκ
(8)

with the kinematic viscosity and temperature diffusivity of the
fluid, ν and κ , respectively. Note that due to the
non-dimensionalization, e.g., the vertical coordinate 0 ≤ z̃ ≤ 1.

We solve the equations of motion using the spectral element
solver nek5000 [59,60] and resolve all dynamically relevant scales
down to the Kolmogorov scale ηK. All simulations start with the
fluid at rest and the linear conduction temperature profile, which
is randomly and infinitesimally perturbed. Note that the global
mean temperature is ⟨T̃ ⟩Ṽ = 0.5 independently of the thermal
boundary conditions. More information on numerical details can
be found in our previous works [17,20,24,60,61].

Finally, the global turbulent heat transfer across the fluid layer
is quantified by the Nusselt number Nu, which is given for the
Dirichlet case by

NuD = −

⟨
∂ T̃
∂ z̃

⏐⏐⏐⏐⏐
z̃=0

⟩
Ã

= −

⟨
∂ T̃
∂ z̃

⏐⏐⏐⏐⏐
z̃=1

⟩
Ã

(9)

where Ã is the non-dimensional horizontal cross-section Ã =

Γ × Γ , and for the Neumann case by

NuN =
1

˜
( )

˜
( ) . (10)
⟨T z̃ = 0 ⟩Ã − ⟨T z̃ = 1 ⟩Ã
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Table 2
Table of the parameters of the different numerical runs. Including the Rayleigh
number Ra, the Prandtl number Pr, the aspect ratio Γ , the mechanical and
hermal boundary condition, the lateral boundaries and the characteristic large-
cale flow structure size λ̃. In [20] Vieweg et al. showed that the size of the
uperstructures is predominantly affected by the thermal boundary conditions.

Ra Pr Γ mbc tbc lb λ̃

1 × 105 7 25 ns D closed 6.26
1 × 106 7 25 ns D closed 6.26
2 × 105 7 60 fs N periodic ≤ 60

This allows eventually to connect the different definitions of the
Rayleigh numbers via RaD = RaN/NuN [62]. In total, we consider
hree numerical data sets with various boundary conditions —
etails are summarized in Table 2. Note that this present study
s limited on the numerical side to the idealized cases of either
onstant heat flux or constant temperature boundary conditions
s more realistic constellations – that include the solid plates [32]
n the numerical model – are still limited to small aspect ratios.

. The influence of the thermal boundary conditions on the
arge-scale flow structure size

As highlighted in the introduction, one of the disagreements
bserved by Moller et al. [27] concerned the size of the large-scale
low structures — in particular, the experimental data exhibited
tructures with an increased horizontal extent compared to
NS data with isothermal boundary conditions at similar Ra.
he authors attributed this observation to the thermal boundary
onditions at the cooling plate. Due to the low thermal conduc-
ivity of glass, the cooling plate cannot be considered as perfectly
sothermal.

Such a connection between the convective structure size and
hermal boundary condition is actually already supported by
he linear stability at the onset of convection. The key idea of
uch an analytical linear stability analysis is to study the time-
ependence of tiny perturbations that are added onto the non-
onvective (i.e., purely conducting) base state — as these per-
urbations are small, only their leading (linear) contribution is
aintained. The resulting neutral stability curves mark the onset
f convection [16,63,64] and are visualized in Fig. 3 for various
hermal boundary conditions, the latter of which are determined
y the ratio of thermal diffusivities of the fluid κf and solid plates
p. While the Dirichlet case with κf/κp → 0 is the most stable
ne, the opposing Neumann case in the limit κf/κp → ∞ is
he least stable one. Between these two extreme cases, infinitely
any other neutral curves can be drawn depending on the ratio
f thermal diffusivities of the fluid and the solid plate κf/κp.
nterestingly, even the critical convective structure size seems to
hange gradually from one limit to the other, see Fig. 3.
As convection sets in, heat conduction is complemented by

onvective heat transfer. While the latter’s strength is quantified
y the Nusselt number Nu, a meaningful amendment to the ratio
f thermal diffusivities is provided by the effective ratio κfNu/κp.
hysically, the latter controls the propagation or relaxation of
hermal perturbations [64]. An additional measure to categorize
he thermal boundary condition is the Biot number Bi, which
escribes the ratio of convective heat transfer at the surface of
body to the heat transfer inside the body due to pure heat con-
uction [65]. Translated to our experimental setup, this quantity
s given by

i = Nu
Kfdp
KpH

(11)

with the plate thickness dp, the thermal conductivity of water
K = 0.6 W/mK and thermal conductivity of the plates K .
f p

287
Fig. 3. Linear stability of Rayleigh–Bénard convection subjected to different ther-
mal boundary conditions. Mechanical no-slip boundary conditions are assumed
throughout. As the ratio of thermal diffusivities deviates stronger from the
Dirichlet scenario, the primary instability changes and thus the critical structures
at the onset of convection become less stable and horizontally increasingly
extended. The curve corresponding to the Dirichlet case is precisely computed
according to [63], whereas the remaining ones are interpolated from [64].

Table 3
Table of the Biot number at the cooling and heating plate Bic and Bih , the ratio
f the effective thermal diffusivities of the fluid and the plate material at the
ooling and heating plate κfNu/κp,c and κfNu/κp,h , and the average characteristic
ize of the temperature patterns λ̃ for the experiments at varying Ra.

Ra Bic Bih κfNu/κp, c κfNu/κp,h λ̃

2 × 105 0.88 0.01 1.67 0.01 9.36
4 × 105 1.16 0.01 2.21 0.01 10.53
7 × 105 1.22 0.01 2.32 0.01 11.50

Differently to simulations, perfect thermal boundary condi-
tions cannot be achieved in any experiment. However, when the
ratio of the effective thermal diffusivities κfNu/κp ≪ 1 and
Bi ≪ 1, isothermal conditions can be well approximated. We
summarize the corresponding ratios or values for all experiments
presented in this paper in Table 3. As can be seen, both char-
acteristics depend crucially on the choice of the plate. On the
one hand, the heating plate can be considered isothermal since
Bih and κfNu/κp, h are both of the order O

(
10−2

)
. On the other

hand, at the cooling plate, both 0.88 ≲ Bic ≲ 1.22 and 1.67 ≲
κfNu/κp, c ≲ 2.32 — depending on the particular Rayleigh number
— indicate that the thermal boundary conditions can neither be
considered as constant temperature nor constant heat flux, but
instead only as mixed boundary condition. Recalling the stability
behavior at the onset of convection — see again Fig. 3 —, these
numbers also imply larger most unstable convective length scales.
Recent numerical studies, combined with a leading Lyapunov
vector (stability) analysis [66,67], showed that the underlying
stability at and slightly above the onset of convection is not
forgotten by the dynamical system even when significantly larger
Rayleigh numbers are reached [20,38]. For instance, the gradual
supergranule aggregation (taking place far beyond the onset of
convection) is found to be driven by instability mechanisms that
match analytically accessible ones slightly above the onset of
convection [20,68]. Transferring this consideration to the present
context suggests the cooling plate as an important factor in-
fluencing the formation of large-scale flow structures. In other
words, the primary stability behavior implies the formation of
larger convective flow patterns even in the turbulent regime,
particularly for the top plate. This agrees, in fact, with our ex-
perimental observations. As the Rayleigh number Ra is increased,
so is the effective ratio due to the larger Nusselt number, and the
experimentally observed patterns become successively larger —
see again Table 3.
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Fig. 4. Temperature field in the horizontal midplane obtained from measurements at Ra = 2× 105 (top row) and from simulations with thermal Neumann boundary
onditions and mechanical free-slip boundary conditions at RaN = 2× 105 (bottom row) at five exemplary time instances. To remove noise which is induced by the
measurements, the experimental temperature fields are time-averaged over 33τf .
Fig. 5. Plot of the temporal development of the superstructure size. The horizontal axis shows the time in free-fall units τf , and the vertical axis shows the structure
ize. The dashed line indicates an aspect ratio Γ = 25, which is the domain size of the experiment and the numerical simulation in the Dirichlet configuration.
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The size of the large-scale flow structures seems to manifest
ased on a balance between almost perfect Dirichlet boundary
onditions at the bottom plate and conditions closer to the Neu-
ann case at the top plate. A significantly height-dependent flow
tructure size should, however, not be expected as λ̃ ≫ H .
As outlined in Section 2, different thermal boundary condi-

ions result furthermore in different temporal behavior of the
arge-scale flow structures. We compare this aspect in Fig. 4 for
umerical and experimental data. Note that the experimental
ata visualize an over 33 τf slightly time-averaged temperature
ield (to reduce the influence of noise on the shape of the su-
erstructures), whereas the numerical data shows instantaneous
napshots throughout the gradual supergranule aggregation for
he Neumann case. The temporal behavior of both flows differs
ignificantly. While the structures observed in the experiment
how a rather slow reorganization over time, the numerical Neu-
ann case shows an intense gradual aggregation process. The

undamental difference concerning the long-term behavior or
ynamics of the large-scale flow structures suggests to term the
xperimentally observed patterns still turbulent superstructures
ather than supergranules.
 T

288
This is supported by an even more comprehensive comparison
f the temporal evolution of the large-scale flow structure size for
ll in this work considered experimental and numerical data. We
ompute, therefore, the two-dimensional power spectrum of the
emperature field, average it in azimuthal direction, determine
he wave number k̂ of the spectral peak, and eventually calculate
he corresponding characteristic wavelength via λ̃ = 2π/k̂. Note
ere that, as already above, the experimental temperature fields
re again averaged over 33τf and zero-padded to reduce the
nfluence of noise and increase the spectral resolution, respec-
ively. The results of this analysis are summarized in Fig. 5. Note
lso that the discrete nature of this evolution is nothing but the
onsequence of the discrete wave numbers corresponding to the
iscrete Fourier Transform (DFT). Here, we want to point out
hat the mentioned structure size appears larger than reported
n previous publications. This is exclusively related to a different
inning scheme of the azimuthally averaged spectra required
o capture the structure size in the Neumann case correctly.
hen looking at this Figure from the bottom to the top, the

urbulent superstructures observed in the constant temperature
imulations exhibit no variation in the structure size over time.

he situation changes for the experimental runs, in which the
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structure size is significantly larger and fluctuates slightly over
time. This fluctuation can be related to the rearrangement of
the turbulent superstructures and the horizontally not entirely
captured flow domain. Unlike the Dirichlet simulations, the struc-
ture size in the experiments clearly depends on the Rayleigh
number Ra. We attribute this circumstance to the Ra-dependent
thermal boundary conditions at the top plate, as explained above.
Although the structure size fluctuates over time in the experi-
ment, this is in clear contrast to the case of thermal Neumann
boundary conditions that are applied at both plates in the re-
maining numerical simulation. Here, the gradual aggregation of
the flow structures results in a temporal evolution that stops only
artificially once the domain size of Γ = 60 is reached.

These comparisons of the temporal evolution of the large-scale
flow structures underline the different natures of flow structures
subject to different thermal boundary conditions. In a nutshell,
the experimentally observed patterns are unambiguously more
similar to the turbulent superstructures known from Dirichlet
conditions than to those found for Neumann conditions. Again,
this is in accordance with the still finite critical convective struc-
ture size at the onset of convection for κf/κp = 2, recall Fig. 3.

5. The influence of the thermal boundary conditions on the
heat transfer

Likewise to the difference in structure size, Moller et al. [27]
reported differences in the heat transfer between their experi-
ments and numerical simulations. In particular, the former
showed a reduced global heat transport as well as higher prob-
abilities of negative local Nusselt numbers Nuloc (which will
e defined in Eq. (14)) compared to the latter. First, we want
o understand in more detail how the global and local Nusselt
umber is altered by the experimental measurements and its
efinition, respectively.
As the global Nusselt number Nu is inferred from local mea-

urements, we start by defining the local Nusselt number Nuloc,T
imilar to [24]

uloc,T
(
x̃, t̃

)
=

√
RaPr ũz

(
x̃, t̃

)
T̃

(
x̃, t̃

)
−

∂ T̃
(
x̃, t̃

)
∂ z̃

(12)

hich is proportional to the vertical component of the heat cur-
ent vector. However, this local Nusselt number is a combination
f several effects of heat transport, some of which can not be
easured in our experimental setup. For this reason, we de-
ompose the temperature field into the linear conduction profile
˜lin and its fluctuating part or deviation Θ̃ such that T̃

(
x̃, t̃

)
=

˜lin
(
z̃
)
+Θ̃

(
x̃, t̃

)
with T̃lin = 1− z̃. Consequently, the local Nusselt

umber is the combination of 4 separate contributions such that
uloc,T =

∑4
i=1 Nuloc,i with

uloc,1 :=
√
RaPr ũz T̃lin, (13)

uloc,2 :=
√
RaPr ũzΘ̃ ≡ Nuloc, (14)

Nuloc,3 := −
∂ T̃lin
∂ z̃

= 1, (15)

Nuloc,4 := −
∂Θ̃

∂ z̃
. (16)

Due to the nature of the experimental setup, we are cur-
ently not able to measure vertical temperature gradients and
ractically limited to the local Nusselt number contribution Nuloc
efined in Eq. (14). To demonstrate that this Nuloc is neverthe-
ess a valuable measure, one may consider (i) horizontal aver-
ges across the entire cross-section and (ii) an analysis at mid-
lane z = 0.5. In this case, ⟨ũz⟩Ã = 0 due to continuity and
∂Θ̃/∂ z̃

(
z̃ = 0.5

)
⟩ = 1, so ⟨Nu ⟩ = 0 and ⟨Nu ⟩ +
Ã loc,1 Ã loc,3 Ã
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Fig. 6. Local Nusselt number analysis at or around the horizontal midplane for
the numerical data at RaD = 1×105 .

Nuloc,4⟩Ã = 0 follows at midplane, respectively. Given these
onsiderations, one ends up with

Nuloc,T
(
z̃ = 0.5

)
⟩Ã = ⟨Nuloc

(
z̃ = 0.5

)
⟩Ã. (17)

In other words, this equation implies that the average across the
entire midplane from both of these two local Nusselt numbers co-
incides — hence, the global Nusselt number Nu =

⟨Nuloc
(
z̃ = 0.5

)
⟩Ã is accessible even without measurements of

the temperature gradient. Moreover, Nuloc allows for insights on
inverted convective heat transfer (e.g., hot down-welling fluid)
which will be used later in this section.

Clearly, the experimental measurements do not meet the two
assumptions or considerations from above perfectly due to the
limited field of view and the light sheet thickness, respectively.
Besides the circumstance of not being able to measure the vertical
gradient of the temperature field, the statistics of Nuloc in the ex-
periment is further altered by a coarser measurement resolution.
In more detail, the experimental measurements cannot resolve
the Kolmogorov scale, which in turn affects the statistics. Thus,
there are effects of the experimental measurement on both the
global and local Nusselt number.

In order to investigate the impact of these experimental effects
on the statistics, we compute the probability density functions
(PDFs) of descendants of Nuloc,T for the well-resolved numerical
data at Ra = 1 × 105 with different pre-processing. For a more
concise representation, we omit here the effect of Nuloc,1 as its
distribution is symmetric around zero when evaluated across the
entire cross-section. We start with Nuloc, fine, which represents the
PDF of Nuloc,T − Nuloc,1 based on high-resolution data at z = 0.5.
Starting from this quantity, we additionally neglect the effect of
heat conduction via Nuloc,3 and Nuloc,4, so only Nuloc,2 remains on
the high-resolution grid.

In the next step, we add the effect of the light sheet thickness
by vertically averaging ũz and Θ̃ over the light sheet thickness ≈

0.14H centered around the midplane. We designate the resulting
local Nusselt number as Nulst

loc. As a final step and in addition
to the averaging over the light sheet thickness, we perform an
in-plane binning from the high resolution down to a spatial
resolution that matches experimental conditions — we denote
this final quantity by Nuexp

loc . Fig. 6 summarizes the PDFs for these
four introduced quantities.



T. Käufer, P.P. Vieweg, J. Schumacher et al. European Journal of Mechanics / B Fluids 101 (2023) 283–293

c

z
h
o
n
e
d
e
t
s
d

c
e

a
d
i
i
t
R
t
t

d
e
7

Fig. 7. Instantaneous Nuexp
loc field at the horizontal midplane. The data

orresponds to RaD = 1 × 105 .

We find that the PDFs collapse quite well as long as no hori-
ontal binning is performed. On the one hand, this underlines that
eat conduction is not important in the bulk region, while, on the
ther hand, it judges the influence of the light sheet thickness as
egligible. In contrast, in-plane binning shows the largest influ-
nce on the statistics. In essence, this averaging leads to an un-
erestimation of the probability of small-scale, large-magnitude
vents – thus, this effect concerns the positive Nuloc range more
han its negative counterpart. As the effect is not overwhelmingly
trong, this underlines that the measurements are well suited to
etermine Nuloc ≡ Nuloc,2 ≈ Nuexp

loc experimentally.
Yet, this sparser in-plane resolution must be taken into ac-

ount when comparing experimental and numerical data. An
xemplary snapshot of the resulting Nuexp

loc is shown in Fig. 7 for
numerically generated data. As can be seen, the superstructures
can – together with their increased heat transfer at the ridges,
see also Fonda et al. [61] – easily be recognized despite the spatial
binning. Note that deviations caused by this binning mostly affect
the large-magnitude ridges but can practically not be recognized
in such a plot. Hence, the binning does not distort the general
picture of the superstructures and may also be applied in our
subsequent data analysis.

We contrast Nuexp
loc statistics from experimental and numerical

data in Fig. 8, indicating two interesting aspects. First, we observe
that the positive tails of the PDF of the experimental data with
the exception of Ra = 7 × 105 is confined by the positive tails of
the DNS at Ra = 105 and Ra = 106 for lower and higher Nuexp

loc ,
respectively. This is in line with the increased convective heat
transfer with increased Ra with the exception of the experimental
data at Ra = 7 × 105. Based on an estimate of the relative
uncertainty of the temperature and velocity of about 10% each,
the combined relative uncertainty in the determination of the
individual Nuexp

loc is expected to be about 20%. These uncertainties
inevitably lead to wider PDFs. Hence, we see qualitative agree-
ment in the positive tails and the increasing Ra between DNS
and the experiment. This first aspect is in clear contrast to the
second one, the latter of which represents a clear discrepancy for
the negative tails. More precisely, we observe an increase towards
more frequent and extreme negative Nuloc events with increasing
Ra exceeding the negative tail of the DNS data at Ra = 106 already
for the lowest experimental Ra. This cannot be explained by the
effect of measurement uncertainties from above, asking clearly
for a more detailed analysis in the following.

Recalling Eq. (14) (to which Nuexp
loc is directly related), negative

Nuexp
loc can either be caused by up-welling cold fluid or by down-

welling hot fluid — thus, we disentangle Nuexp subsequently
loc

290
Fig. 8. PDF of the Nuexp
loc for the experiments and the Dirichlet DNS.

based on the sign of the temperature deviation field. We con-
trast the resulting conditioned PDFs of Nuexp

loc |Θ̃<0 (black) and
Nuexp

loc |Θ̃>0 (red) for the entire range of Ra in Fig. 9. First, we notice
perfect match of both PDFs for the numerically obtained data
ue to the top-down symmetry as a consequence of the underly-
ng Oberbeck–Boussinesq approximation. In contrast, we find an
ncreasing probability of (negative and positive) far-tail events in
he case of hot fluid for experimental data and successively larger
a. This observation confirms an incapability of the cooling plate
o generate comparable localized thermal variance – that leads
o high-magnitude Nuexp

loc events – due to the smaller thermal
conductivity of the glass plate. In other words, the cooling plate
cannot transfer the heat out of up-welling thermal plumes fast
enough. As a consequence, hot fluid that rose upwards is not
sufficiently cooled in a region close to the top plate and is subse-
quently pulled down again by down-welling thermal plumes due
to viscosity. Fig. 10 visualizes this concept in a sketch.

In order to validate this thought, we turn our attention to
the entire Nuexp

loc fields. Here, we decompose them into the four
ifferent possible combinations of ũz and Θ̃ , and visualize ex-
mplary fields averaged over 33tf for Ra = 2 × 105 and Ra =

× 105 in Fig. 11(a) and (b), respectively. Note the indica-
tion of these different combinations via different colors, whereas
their corresponding intensity encodes the magnitude of Nuexp

loc . As
down-welling hot fluid (green) occurs mostly between hot up-
welling (red) and cold down-welling (blue) regions, we find our
concept of dragged-down hot fluid due to the limited thermal
conductivity of the glass plate supported. Since we visualize time-
averaged fields, we find these regions of reversed heat transfer to
be persistent over at least 33 tf rather than spontaneous.

Having a closer look at these two panels, we exclusively find
ridges of hot up-welling fluid which are mostly connected with
each other together with regions of cold down-welling fluid that
are surrounded by the former. As outlined by Fonda et al. [61],
such an arrangement also impacts the heat transfer. The authors
categorized the convection pattern based on a deep-learning ap-
proach into ridges, trisectors (connection points of ridges) and
wedges (endpoints of ridges). Interestingly, the individual struc-
ture classes affect also heat transfer — for instance, they at-
tributed twice as much heat transfer to trisectors compared to

5
wedges at RaD = 10 . Adopting their terminology to our present
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Fig. 9. PDFs of the decomposed Nuexp
loc . The black and red lines correspond to contribution to Nuexp

loc caused by Θ̃ < 0 and Θ̃z > 0, respectively.
Fig. 10. Sketch of a negative Nuloc event. A hot thermal plume rises towards
he cooling plate. Due to the lower thermal conductivity of the cooling plate,
he heat of the hot thermal plumes is only slowly transferred through the plate.
eanwhile, detaching cold thermal plumes drag warm fluid with them, leading

o negative Nuloc events.

onfiguration, we find several trisectors for hot up-welling fluid
ut none for cold down-welling fluid — instead, we only observe
edges for the latter. One might thus expect extended regions of
he latter to account for the increased or localized heat transfer of
he former. As this is confirmed by our observations, it simultane-
usly explains why reversed heat transfer due to dragged-down
egions appears closer to the hot up-welling regions.

Our conceptual sketch explains the far negative tails — how-
ver, returning to Fig. 9, one might wonder why the experimental
ositive tails obtained from Θ̃ < 0 and Θ̃ > 0 agree well only up

to Ra = 4 × 105 but do not coincide anymore for Ra = 7 × 105.
ig. 9(d) shows that these positive far-tail events are dominantly
aused by hot (up-welling) fluid. In turn, this implies that cold
down-welling) fluid cannot account for a similar inverse transfer
f heat. In fact, this underlines once more the limits that the
ooling plate sets on the heat transfer of the entire system and
he resulting broader extent of down-welling fluid regions, as
laborated above.
Lastly, we turn our focus from the local to the global heat

ransfer by computing ⟨Nuexp
loc ⟩Ã,t̃ as summarized in Table 4 for

oth the simulations and experiments across the entire Ra-range.
ote here that an average across the horizontal plane Ã is re-
tricted in the experiment to the limited field of view. Looking
t the global Nusselt number of the experiments, we observe
hat the increase of the Nu between Ra = 2 × 105 and Ra =

× 105 is disproportionately larger than between Ra = 4 × 105

nd Ra = 7 × 105 as higher Ra result in successively stronger
on-Dirichlet effects at the top plate, as explained in Section 4.
ence, these effects are likely to explain the mismatch of the
291
Table 4
Global Nusselt numbers as inferred from their local measurements. The time
average is taken across the entire corresponding evolution time provided in
Fig. 5. In contrast to the simulations, the latter of which analyze the entire
horizontal cross-section, the average across the horizontal plane Ã is restricted
in the experiment to the limited field of view.
Run ⟨Nuexp

loc ⟩Ã,t̃

DNS RaD = 1 × 105 4.04
Exp. Ra = 2 × 105 4.00
Exp. Ra = 4 × 105 5.31
Exp. Ra = 7 × 105 5.58
DNS RaD = 1 × 106 7.55

global Nusselt number when comparing the experiments with
numerically obtained results.

6. Discussion and perspectives

In this work, we first investigated the effect of mixed and
asymmetric boundary conditions on the size of long-living large-
scale flow structures in thermal convection. A comparison of
the experimentally observed patterns with numerically obtained
patterns for Dirichlet conditions showed an increasing deviation
of the size of the former from the latter with increasing Ra. We re-
lated this trend to a gradual change in the thermal boundary con-
dition at the cooling plate. Despite this difference in the structure
size compared to perfect Dirichlet conditions, we confirmed that
the patterns in the case of complementary Neumann conditions
offered fundamentally different long-term dynamics. In this case,
the large-scale flow structures grow gradually until domain size,
being in contrast to the fluctuation around a time-independent
mean value as observed in the experiments. This confirmed the
experimentally obtained structures to be categorized as turbu-
lent superstructures. We underlined our observations based on
considerations concerning the linear stability at the onset of
convection.

As the thermal boundary conditions vary between the top
and bottom plate – and change in the case of the former even
with Ra –, the primary instability is similarly affected. However,
the final flow establishes a balance between both conditions. To
investigate the effect of potential slight variations of the patterns
over the layer height, further experiments are necessary. These
would need to incorporate a simultaneous and fully volumetric
temperature and velocity measurement across the entire height
since the temperature gradients must not be neglected within
the thermal boundary layers. Motivated by the infinite growth of
critical patterns at the onset of convection in the Neumann case,
it would further be of interest at which critical ratio of thermal
diffusivities such behavior sets in.
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Fig. 11. Decomposition of Nuexp
loc for experimental data at (a) Ra = 2 × 105 and (b) Ra = 7 × 105 depending on the signs of ũz and Θ̃ . Both red and blue regions

mply Nuexp
loc > 0, whereas green and purple regions correspond to Nuexp

loc < 0. The intensity indicates the magnitude — note here the different scalings for positive
nd negative Nuexp

loc . The fields are averaged over 33 tf , which indicates a certain persistence of the inverted heat transfer events.
The second part of our work addressed the influence of the
experimentally asymmetric boundary conditions on local and
global heat transfer. From a systematic derivation based on high-
resolution numerical data, we found that the coarser horizontal
resolution of the experimental measurement affects the statis-
tics of the local Nusselt number most strongly. Contrasting the
probability density functions of the local Nusselt number Nuexp

loc
from experimental and numerical data showed higher probabil-
ities of inverted heat transfer for the experiment. A subsequent
decomposition of Nuexp

loc depending on the sign of the temperature
deviation Θ unveiled an asymmetry due to the limited ther-
mal conductivity of the cooling plate. In other words, the cool-
ing plate falls short of generating large magnitude Nuloc events
r pronounced cold plumes. We confirm this interpretation by
etailed horizontal cross-sections of the local Nusselt number,
hich exhibits extended regions of hot down-welling fluid lo-
ated between regions of hot up-welling and cold down-welling
luid.

Our study emphasizes the importance of systematic investiga-
ions of convection with mixed or asymmetric boundary condi-
ions beyond the linear stability. On the one hand, this highlights
hat engineers and scientists are asked to develop advanced mea-
urement techniques for combined volumetric temperature and
elocity measurements in laboratory experiments — this would
ventually allow for long-term investigations of the slow dynam-
cs of long-living large-scale flow structures and the influence of
symmetric thermal boundary conditions on them. On the other
and, our results stress the importance of complementing this
ffort by numerical studies that model the solid plates [28,30,32]
ven beyond small aspect ratios.
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