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Prediction of multi-dimensional time-series data, which may represent such diverse phenomena as cli-
mate changes or financial markets, remains a challenging task in view of inherent nonlinearities and
non-periodic behavior. In contrast to other recurrent neural networks, echo state networks (ESNs) are
attractive for (online) learning due to lower requirements w.r.t. training data and computational power.
However, the randomly-generated reservoir renders the choice of suitable hyper-parameters as an open
research topic. We systematically derive and exemplarily demonstrate design guidelines for the hyper-
parameter optimization of ESNs. For the evaluation, we focus on the prediction of chaotic time series,
an especially challenging problem in machine learning. Our findings demonstrate the power of a
hyper-parameter-tuned ESN when auto-regressively predicting time series over several hundred steps.
We found that ESNs’ performance improved by 85:1%� 99:8% over an already wisely chosen default
parameter initialization. In addition, the fluctuation range is considerably reduced such that significantly
worse performance becomes very unlikely across random reservoir seeds. Moreover, we report individual
findings per hyper-parameter partly contradicting common knowledge to further, help researchers when
training new models.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Reservoir computing [87] aggregates two machine learning
methods independently and nearly contemporaneously introduced
as echo state network (ESN) by Jaeger [48] and as liquid state
machine (LSM) by Maass et al. [63]. Among recurrent neural net-
works (RNN), reservoir computing constitutes an especially light-
weight approach. An inexpensive training with comparatively
low data requirements allows for an efficient inference making
reservoir computing specifically suited for online learning. ESNs
have successfully proven their applicability in the fields of robotic
navigation [8], anomaly detection [23], time-series prediction
[53,103], and speech recognition [88].

The general idea of reservoir computing, also called the reser-
voir computing trick [18], is a neural network topology consisting
of three layers: input, reservoir, and output. The input layer maps
a, potentially multi-dimensional, input per time step into a high-
dimensional reservoir state space. The recurrently connected
reservoir layer combines this new input with the current state of
the reservoir thereby utilizing a randomly-initialized weight
matrix (the adjacency matrix of the reservoir’s internal processing
graph) and a nonlinear activation function. A purely linear output
layer transforms the reservoir state into the output. Since only
the weights of the output layer are adapted, training poses a linear
regression problem that can be solved with substantially less com-
putations than, e.g., a gradient descent optimization.

The ESN model comes with a number of hyper-parameters,
whose selection is a non-trivial task. On the one hand, we provide
a thorough overview of previous studies to substantiate this claim.
On the other hand, the randomness entering reservoir computing
through, e.g., the majority of the weights, further complicates the
derivation of meaningful guidelines. Guidance on choosing these
parameters is rarely available [28], especially in a way suitable to
reduce the influence of the randomness on the results shown by
Prokhorov [75]. Often, an additional optimization, e.g., an evolu-
tionary algorithm [47,62,32] or a Bayesian optimization [101,64],
is conducted. However, in our experience, this approach provides
hardly any (deeper) insight into the influence of hyper-
parameters and often fails in view of the highly-complex optimiza-
tion problem to be solved.

In this paper, we propose a systematical procedure for search-
ing ESNs’ hyper-parameters that specifically takes the influence
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of randomly generated weight parameters into account. We focus
on the ESN as proposed by Jaeger and his group [48,50,62] includ-
ing the leakage concept, a promising ESN evolution. We apply the
proposed optimization procedure on the challenging task of pre-
dicting chaotic time series, a benchmark problem in machine
learning, being representative for and of interest in such diverse
fields as financial analyses, weather forecasting, and climate
change modeling. Forecasting of time series in general is applied
for even more tasks, such as controlling [8,91], fault and signal
detection [23,68], and reservoir computing even in picture restora-
tion [27] and pattern recognition [28]. Based on our experimental
results, we derive a guideline for choosing initial hyper-parameters
to be used in training or to speed-up the hyper-parameter search,
depending on the characteristic features of the time-series in
consideration.

The contribution of our paper is threefold: Firstly, we provide an
overview on previous studies applying ESNs for predicting chaotic
time series with a particular focus on the choice of hyper-
parameters. Secondly, we propose a systematic hyper-parameter
grid-search algorithm tailored to the stochastic nature of ESNs.
Thereby, we propose a method for deriving reservoir weight matri-
ces of varying size and density from a static initially-seeded set to
ensure comparability of the conducted experiments despite the
stochastic model nature. Furthermore, we propose a sequential
search order that minimizes interactions among the optimized
parameters as much as possible. Repeating the optimization loop
several times stabilizes the obtained optimization results. Thirdly,
we conduct a systematic study with baseline problems in chaotic
time-series forecasting to derive guidelines for practical use of
the reservoir computing model. Overall, we study seven hyper-
parameters across four datasets and 100 randomly-initialized
ESNs. While many earlier studies solely evaluate single-step pre-
dictions, we investigate auto-regressive prediction scenarios with
up to several hundred time steps to make the task at hand even
more challenging. Fourth, we extensively analyze and discuss the
outcome of our study. On the one hand, we highlight clear trends.
On the other hand, we comment on the interplay of the hyper-
parameters and their dependence on the problem in consideration.
Doing so allows us to derive guidelines providing orientation on
the choice of hyper-parameters for other researchers when train-
ing new models. Hereby, we fill the gap in understanding ESNs
by not only optimizing the hyper-parameters but also showing
the reasoning of selecting their actual values in dependence to
the dataset. While not explicitly studied, our concepts may be
transferable to other randomly initialized neural networks, e.g.,
stochastic configuration networks in the future [21,20,19].

This paper is structured as follows. In Section 2, we introduce
the fundamentals of echo state networks and their training. In Sec-
tion 3, we briefly overview previous work on applying ESNs for
time series prediction including the choice of hyper-parameters.
Then, we briefly introduce four time series datasets to be utilized
in our systematic study. In Section 5, we discuss our experimental
setup and the grid search procedure applied in this study and
report its results in Section 6. In Section 7, we derive and discuss
design guidelines for ESNs based on our findings and eventually
conclude the paper in Section 8.
Fig. 1. Building blocks of an ESN: layered structure, core parameters, and their
dimensionality.
2. The Echo State Network

Reservoir Computing refers to the concept of mapping a model’s
input into a higher dimensional space, the reservoir [48]. This map-
ping differs from conventional RNNs, such as long short-term
memory (LSTM, see [44]) and gated recurrent unit (GRU, see
[25]), by training only the weights Wout connecting the reservoir

and the output. The weights Win mapping the input into the state
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space of the reservoir as well as those of Wr (connections edges in
within the reservoir) are set fixed for each realization according to
the current set hyper-parameter selection Nevertheless, using the
validation data similarly to other neural network structures, an
iterative training process – corresponding to a highly nonlinear
and, in general, non-convex optimization – needs to be conducted.
One major contribution of our work is to provide easy-to-
implement guidelines for this hyper-parameter tuning and an
excellent educated guess to drastically speed up the otherwise very
time-consuming optimization – supposing that the time-series
data of interest exhibits comparable key characteristics to one of
our four representative ones. Solely the weights mapping the
high-dimensional reservoir back to the lower-dimensional output
layer have to be determined using methods with low computa-
tional costs [90], e.g., linear regression, support-vector machines,
and multi-layer perceptrons [62,86].

Primarily, two flavors of reservoir computing have been studied
in the last two decades: ESNs and LSMs. While the biologically-
inspired LSMs use so-called spiking neurons and are mainly used
for modeling in neuroscience, we focus on ESNs as the reservoir-
computing prototype used in machine learning for time-series
prediction.

2.1. Reservoir dynamics and input layer

An ESN exhibits a recurrent neural network topology consisting
of three layers: input, hidden, and output, cp. Fig. 1.

The hidden state hðkÞ at time instant k; k 2 N0 (non-negative
integers), is determined by

hðkÞ ¼ tanh WinxðkÞ þWrsðk�1Þ
� �

; ð1Þ

where xðkÞ represents the data vector feed into the network aug-

mented by an additional entry, i.e. xðkÞ1 ¼ 1 holds to include a bias

term. Hence, in a slight abuse of notation (Nin denotes the incre-
mented input dimension to reflect this artificial augmentation),
the input xðkÞ is combinedwith the internal state sðk�1Þ of the network

using the matrices Win 2 RNr�Nin
and Wr 2 RNr�Nr

. The input weights

Win can, in general, be drawn from any random distribution, while
almost consistently a uniform distribution is used [80], i.e.

wðinÞ
ij � Uða; bÞ with a < 0 < b; ði; jÞ 2 f1; . . . ;NðresÞg� f1; . . . ;NðinÞg.

Furthermore, we sparsely initialize Wr , where the non-zero

entries satisfy wr
ij � Uð�1;1Þ; ði; jÞ 2 f1; . . . ;Nrg2. The result

WinxðkÞ þWrsðk�1Þ becomes the input to the activation function, i.e.
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an element-wise hyperbolic tangent. tanh is a typical choice and
applied by the majority of related work, cp. Table 1 below. Linear
activation functions have also been considered [89], mainly to facil-
itate themathematical analysis. However, nonlinear activation func-
tions consistently yield superior performance, see, e.g., Bollt [15].

The reservoir state s is updated within the hidden layer

sðtÞ ¼ csðt�1Þ þ ð1� cÞhðtÞ
; sð0Þ ¼ ~0; ð2Þ

which represents the dynamical reservoir. We consider a leakage as
proposed by Jaeger et al. [50] to allow a portion of the ESN’s last
state to directly determine its successor state with leakage rate c.
Table 1
Hyper-parameter selection in previous ESN studies.

ESNs’ h
Study X � F Nr dðWrÞ q

Lorenz ’63: ODE time-series (three dimensions)
[57] U 2;000 0:02 0:9

[58] + feedback U 400 0:05 1
[72] U 500 0:006 0:4
[6] U 800 0:0075 1:05
[81] – 500 – 0:95
[55] U 900 0:1 0:95

Lorenz ’63 (modified): ODE time-series (three dimensions)
[40] U 300 0:02 0:1

[39] U 200 0:05 0:17

Mackey–Glass: DDE time-series (one dimension)
[97] N 3;300 0:80 0:98
[14] U 100 0:25 ½0:01;2�
[85] – 50 – 0:8
[76] – 250 – 1
[32] U 82 ½0:1;1� 1:59

[83] U 100 0:1 –

[100] – 20 – –
[55] U 900 0:1 1

[54] U 200 – 0:8
[67] U 300 0:1 0:95

[81] – 500 – 0:85

NARMA: nonlinear autoregressive moving-average time ser
[80] Bð12Þ;U 100 – 0:95

[77] U 200 0:18 0:85
[32] U 174 ½0:1;1� 1:15

[104] N 300 1 0:9
[76] – 250 – 1
[87] N 180 – 1:4
[46] N 100 – –
[83] U 100 0:10 –

[26] – 400 – –
[69] – 200 – –
[35] – 100 – –
[78] – – – –
[100] – 15 – –
[29] – 50 – –
[6] U 800 0:0075 0:8
[30] U 1;000 0:01 0:9
[55] U 400 0:1 0:8

[33] cp. appendix U 300 0:89 1:1

[12] U 200 – –

[54] U 200 – 0:8

Santa Fe Laser: empirical time series (one dimension)
[77] U 200 – –
[46] N 100 – –
[83] U 100 0:1 –

[26] – 200 – –
[78] – – – –
[12] U 200 – –

We show hyper-parameters as intervals if a publication does not explicitly state an opt
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The matrix Wr 2 RNr�Nr
can be interpreted as a graph structure

connecting Nr nodes in graph G. The sparse initialization is inspired
by the following two ideas: (1) capturing different dynamics with a
less densely connected graph [48], and (2) reducing the computa-
tional costs [60]. We measure the density d of Wr by

dðWrÞ ¼

XNr

i;j¼1

vðwr
ijÞ

ðNrÞ2

8>>>><
>>>>:

9>>>>=
>>>>;
withvðwr

ijÞ ¼
1 if wr

ij – 0

0 otherwise

(
;

yper-parameters
c b SI ST SP

– 10�6 5;000 3;000 2;000

0 – – 2;600 1
0 – – 1;000 2;500
0 0:1 – 100 100
0 – 1;000 6;000 –
0:9 10�10 300 3;000 –

0 10�2 100 4;900 10;000

0 1:9 � 10�11 5;000 5;000 –

0 – 1;000 10;000 1;000
0 10�1 100 147:890 1

– – 5 1;000 200
0 – 1;000 2;000 –
½0;0:9� ½10�8;10�1� – – 1

0 2 � 10�3 1;000 2;000 168

– – 1;000 7;000 –
0:9 10�10 300 6;400 –

0 – – – –
0 10�7 – 4;000 300

0 – 1;000 3;000 –

ies (one dimension)
0 – 100 100;000 –

0 – 200 1;800 1
½0;0:9� ½10�8;10�1� – – 1

0 – – 1;000 1
0 – 5;000 5;000 –
0:8 – – 1;000 1
0 – – – 1
0 2 � 10�3 – – 1

– – 100 2;000 –
– – – – –
– – – 2;000 –
– – 200 2;000 –
– – 1;000 5;600 –
– – 100 1;000 –
0 0:1 – 900 100
0 – – 2;800 –
0:9 10�10 120 2;560 –

0 ½10�13;102� – 100;000 –

0 10�5 200 1;400 –

0 – – – –

0 – 200 1;800 1
0 – – – 1
0 2 � 10�3 100 1;000 1

– – 100 2;500 –
– – 200 2;000 –
0 10�3 10 499 –

imum. —X � F = universal distribution function [93].



Fig. 2. ESN’s computational graph: folded (left) and unfolded over time (right).

J. Viehweg, K. Worthmann and P. Mäder Neurocomputing 522 (2023) 214–228
that is, the number of edges with non-zero weight in relation to the
size of the reservoir Nr squared (possible number of edges).

2.2. The echo state property

A necessary condition for a well-performing ESN is the echo
state property, meaning that the current state of the reservoir suf-
ficiently reflects the inputs up to this point in time. Jaeger [48]
argues that a sufficient condition to achieve the echo state property
is scaling Wr so that its highest singular value is strictly less than
one. However, Jaeger also discusses the spectral radius q of the
matrix Wr , i.e., the eigenvalue with the maximal absolute value,
as a less strict condition for scaling that he found effective in exten-
sive experimentation. We observe that scaling Wr based on the
spectral radius is far more popular across previous studies applying
ESNs (cp. Table 1), albeit Lukoševičius and Jaeger [62] discuss that
q < 1 is neither necessary nor sufficient for achieving the echo
state property.

We apply spectral radius scaling due to its almost consistent
application in previous work. We determine the spectral radius
qo of Wr and use it to scale Wr in relation to a desired spectral
radius q. In conclusion, this yields the scaled reservoir matrix
qq�1

o �Wr instead of Wr .

2.3. Training of an ESN: Wout

We consider a supervised training with data tuples ðxðkÞ; yðkÞÞ of
input and (expected) output values xðkÞ and yðkÞ, respectively. For
predicting time series we can, w.l.o.g., further assume that
xðkþ1Þ ¼ yðkÞ holds for k 2 N0. We divide our data into initialization,
training, and prediction data such that we have SI; ST , and SP data
tuples, respectively. E.g., the data tuples ðxðkÞ; yðkÞÞ; k ¼ 0; . . . ;
SI � 1, are assigned to the initialization phase. The initialization
phase is used to washout a reservoir’s initial values adapting it to
the given dataset. Hereby, the necessary length of this washout
depends on the reservoir’s memory capacity, i.e., how long previ-
ous inputs influence the reservoir’s current state.

The network’s prediction ŷðkÞ at time k is the result of the

matrix–vector multiplication WoutsðkÞ, where Wout 2 Rð1þNr Þ�Nout

holds and the reservoir’s state sðkÞ is augmented with a bias; again
– in a slight abuse of notation – sðkÞ denotes this augmented state

with sðkÞ1 ¼ 1. The goal is to determine the weights of the matrix
Wout using the training data (k ¼ SI; . . . ; SI þ ST � 1) such that.

yðkÞ � ŷðkÞ ¼ WoutsðkÞ; k ¼ SI þ ST ; . . . ; SI þ ST þ SP � 1; ð3Þ
holds for the reservoir’s prediction ŷðkÞ. We measure the model’s
prediction quality, i.e., the similarity between predicted and actual
values, with a loss functionL. Multiple different evaluation metrics
are possible depending on a model’s task. Within this paper, we
restrict our focus to regression problems and measure mean-
squared-error (MSE) loss for the SP predicted values by

1
SP

XSIþSTþSP

k¼SIþSTþ1

WoutsðkÞ � yðkÞ
�� ��2

2: ð4Þ

Note that only the output layer’s weights, i.e. the matrix Wout , are
subject to an optimization. To this end, we employ the initialization
and training data to compose the matrices

S ¼ ½sðSIÞ sðSIþ1Þ . . . sðSIþST�1Þ�;
Y ¼ ½yðSIÞ yðSIþ1Þ . . . yðSIþST�1Þ�

and, then, assign the minimizer of the following optimization prob-
lem to the matrix Wout�, i.e.
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Wout� ¼ argminWout
1
ST

WoutS� Y
�� ��2

2: ð5Þ

The procedure is illustrated in Fig. 2.
Eq. 5 poses a linear regression problem that can, e.g., be solved

by multiplication with the inverse or pseudo-inverse. Lukoševičius
et al. discuss the instability of the inverse and possible over-fitting
of the pseudo-inverse as challenges in the optimization [59]. Aim-
ing for a more robust and better generalizing solution, we include a
Tikhonov regularization (aka ridge regression) to compute Wout� as

Wout ¼ YSTðSST þ bINr Þ�1
; ð6Þ

with b being the regularization coefficient and INr being a unity
matrix of size Nr � Nr . The additional regularization term is used
to penalize large values of Wout and, thus, to attain smaller, more
balanced values in the solution of the optimization problem.

ESNs are especially suitable for sequential tasks, such as
control [18], sequential classification [86], and time series
analysis and prediction [40]. We emphasize that we measure
the prediction performance in an auto-regressive manner,
i.e. x̂ðkþ1Þ ¼ ŷðkÞ; k ¼ SI þ ST ; . . . ; SI þ ST þ SP � 1, is fed back into the
reservoir.
3. ESNs’ Hyper-parameters

In this section, we review related work on time series forecast-
ing and related tasks using ESN models. Thereby, we specifically
focus on the hyper-parameter selection. Table 1 shows the
hyper-parameters introduced in the previous section as columns
and lists their selection across previous studies in rows grouped
by dataset. We restrict our focus to five prominently studied data
sets, which will be outlined in detail in Section 4.

Weight initialization. Given that the reservoir matrix is inter-
preted as an adjacency matrix of a graph G, authors study whether
an explicitly constructed graph topology w.r.t. a given dataset (aka
weight initialization) may yield better prediction results. Rodri-
guez et al. [79] study memory capacity in relation to explicitly con-
structed reservoir modularity and do not observe significant
difference to randomly initialized reservoirs for non-linear acti-
vated ESNs. Cernansky and Makula [22] observe decreasing perfor-
mance while explicitly modelling a feed-forward neural network
topology within an ESN’s reservoir. Similarly, Rodan and Tiňo
[77] did not observe a consistent effect when comparing a variety
of deterministic constructed reservoirs to randomly initialized
reservoirs. Consequently, we observe that a vast majority of previ-

ous studies initializes Win and Wr randomly, mainly using a uni-
form distribution. Exceptions are four studies that draw from a
normal distribution and argue that this yields even more non-
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linear reservoir dynamics [97] as well as one study drawing Win

from a Bernoulli distribution with weights 0:1 and �0:1. We
observe that studies typically use a zero-centered uniform distri-
bution, e.g., Uð�1;1Þ, that is sometimes scaled to adapt to non-
normalized datasets. Given that studies apply a fairly consistent

initialization ofWin andWr , we derived our guidelines for choosing
hyper-parameters assuming no prior knowledge about the meta
statistics of the time series under consideration. However, hyper-
parameter optimization based on prior knowledge, e.g., on the
meta statistics, is a very interesting avenue for future research.
Here, Cao et al.’s [20] results might be of great help for conducting
this task w.r.t. ESNs.

Size of the reservoir Nr .
All studies report the utilized size of the reservoir Nr , but exhibit

a large variation w.r.t. its selection. Furthermore, while in theory
the low computational cost of ESNs allows for a large reservoir,
the majority of studies applies comparably small reservoirs. This
observation contradicts Lukoševičius’ [59] proposition for using
the largest value for Nr , which is feasible from a computational
point of view. A reason might be that a small reservoir yields sat-
isfactory results on the trained benchmark problems. However, a
small reservoir size may also indicate that a large size did in fact
not yield better performance. This hypothesis is supported by a
study observing that for classification tasks the largest reservoir
did not yield best results [82]. Koryakin et al. [52] observe similar
results when choosing a reservoir size below the computable max-
imum. Partly contradicting this observation, Haluszczynski et al.
[39] observe that ESNs’ predictive capabilities decreased in case
of a shrinking reservoir size. We argue that theses observations
motivate a further study of this hyper-parameter.

Weight density dðWrÞ. Roughly half of the studies report the
selected density dðWrÞ of the reservoir. We observe a wide range
of values between 0:006 and 1 with a trend to sparser reservoirs.
Several studies choose density as a number of average connections
per node in the reservoir when interpreted as adjacency matrix
[40,39,58,72,6]. Song and Feng [81] propose choosing density from
½0:01;0:2�, albeit without further justification. In conclusion, we
found no discussion on how this parameter should be selected
depending on the characteristics of a dataset or in relation to the
size of the reservoir. In contrast, we did not further explore density

dðWinÞ since former studies consistently observed matrices of full
rank to yield better performing models [19] which is represented
in this work by the use of dense random matrices. Other
approaches to generate the weight matrices were studied in [74]
for the task of classification and compressed sensing.

Spectral radius q. Spectral radius q is reported by three quarter
of the studies. We observe a large variety of selected values, even
for the same problem. However, studies tend to favor higher values
between 0:8 and 1. Three studies even chose a spectral radius
beyond 1. We question the optimality of the chosen parameter
given its wide variety for training the same problem. The influence
of the spectral radius is also demonstrated in [74]. The authors
argue its necessity as a scaling parameter for Wr for their tested
cases of classification and compressed sensing.

Leakage rate c. A surprising observation is the rare application
of the leakage concept. Merely three studies consider the concept.
However, Ferreira et al. [32] propose the concept in a different
formmaking the leakage an additional input to the non-linear acti-
vation (cp. Eq. 1) rather than the traditional design of letting it
bypass the non-linearity (cp. Eq. 2). Only five studies
[58,87,26,55,32] considers a leakage as introduced in Eq. 2 and dis-
cuss it with mentioning of the used value, though, in case of [58]
only for one of their experiments with the Kuramoto–Sivashinsky
system not shown in Table 1. We argue that the leakage concept
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deserves more attention and study. Other studies used the concept
of a leakage rate but did not discuss the used value, e.g. in the case
of proposing a genetic algorithm for optimization as shown in [26].

Regularization coefficient b. Eleven studies apply L2-
regularization (aka ridge regression) with a regularization coeffi-
cient b influencing its strength chosen between zero and one. All
studied benchmark problems are synthetic and approximated from
mathematical models except for the experimental Santa Fe laser
dataset. This means that training as well as testing data stem from
the exact same distribution and are not influenced noise or context
shifts being a potential explanation for the overall ‘‘mild” regular-
ization applied by previous studies. Exceptions are studies adding
artificial noise [49,58,39,46,26,33,12] and those using the Santa
Fe laser dataset containing natural measurement noise. Other stud-
ies as [97] added noise to the state of the reservoir.

Initialization length (aka washout) SI. Seventeen previous
studies report the length SI of the utilized washout. Among those,
we observe a large variety even when training for the same task.
An optimization based on the evolutionary algorithm Differential
Evolution by Otte et al. [71] investigated the optimal length of SI
showing an influence on the generalizability of the ESN.

Training length ST . The length of the training interval substan-
tially varies across studies even when training on the same dataset.
We do not observe a correlation between a chosen reservoir size Nr

and training length as proposed by Lukoševičius [59], who argues
that ST should be chosen significantly larger than Nr .

Prediction length SP. Mostly, single-step predictions have been
chosen for the evaluation of trained models. We argue that training
and evaluating a model that performs well in predicting one single
step succeeding an initialization sequence is almost meaningless
when the actual task to solve is predicting multi-step time series.
However, seven studies evaluate their methods in multi-step, i.e.,
auto-regressive, evaluations up to the training length ST . Three of
these studies further qualitatively discuss their achieved predic-
tion performance. Thereby, studies found that they could predict
P 110 [72], 6 400 [40], and 6 500 [57] time steps with an ”accept-
able” accuracy. We argue that only the evaluation of multi-step
predictions can truly assess the performance of an ESN trained
for predicting time series with single-step predictions being an
implicitly included use case.

Prediction performance. We decided not to include models’
prediction performance in Table 1 since we found experiments
hardly comparable. More specifically, even studies that aim to pre-
dict the same system or dataset vary considerably in parameters of
the system, such as predicted dimensions and time step length, in
hyper-parameters of the training process and model, and in
reported evaluation metrics.

Conclusions for our study. Based on this survey of previous
work studying ESNs for time series analysis and prediction, we
argue that a systematic evaluation of ESNs’ hyper-parameters is
required to get a better understanding of their influence on predic-
tion performance, their relationship on the trained task and their
interplay. We found the hyper-parameters weight initialization
and activation function almost consistently used across previous
studies and decided to not explicitly explore them in our study.

4. Chaotic Time-series data

We study the influence of hyper-parameter choice on an ESN’s
prediction accuracy with a variety of benchmark problems in time
series prediction (Fig. 3). Specifically, we implicitly assume that the
time series is generated by a dynamical system iteratively defined
by the autonomous system dynamics

xðkþ1Þ ¼ f ðxðkÞ; xðk�1Þ; . . . ; xðk�
�kÞÞ; xð0Þ ¼ xð0Þ ð7Þ



Fig. 3. Overview of the four studied time series datasets with 2;450 time steps depicted per dataset.
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without an additional driving signal from an external source [38].
Here, xðkÞ and xð0Þ stand for the state at time k; k 2 N, and the initial
time k ¼ 0, resp. For systems without delay, �k ¼ 0 holds. Otherwise,
�k depends on the time delay. Overall, we consider multiple chaotic
systems to cover a wide range of potential, and quite different
application areas. The time-series data of the first three examples
are obtained from numerical approximations of continuous-time
systems governed by an ordinary differential equations (ODE), i.e.
the Lorenz system [56], a delayed differential equations (DDE),
i.e., the Mackey–Glass equation, and a neutral type DDE, while the
Santa Fe laser dataset stems from experimental data. Throughout
this section, each parameter value is denoted by �� in order to indi-
cate that these are no hyper-parameters used in the reservoir com-
puting model.

Since the first three examples are continuous-time systems, we
conduct a numerical approximation in order to generate the
respective time-series data. To this end, we approximate the Lor-
enz system with the Livermore solver for ODEs with automatic
mode selection (LSODA), see [1] for details, and generate training
as well as test data with a time step of width Dt ¼ 0:01. For the
Mackey–Glass and the neutral DDE, we use a time steps of width
Dt ¼ 1 and Dt ¼ 0:1, respectively, and use Ansmann’s DDE solver
[7]. In conclusion, we obtain a time-series dataset

x 2 RðSIþSTþSP Þ�ðNin�1Þ where the k-th row contains the data at time
step ðk� 1ÞDt for each system. Furthermore, we conduct a data
preprocessing for the reservoir computing model, i.e. the i-th com-
ponent of each dataset are normalized as

xi ¼ ðxi �meanðxÞÞ
stdðxÞ 8 i 2 ½0 : SI þ ST þ SP�; ð8Þ

where ½0 : SI þ ST þ SP � denotes the non-negative integers less or
equal SI þ ST þ SP ;meanð�Þ and stdð�Þ being the mean value and the
standard deviation over all time steps.

4.1. The Lorenz system

Lorenz is a well-known three-dimensional system described by
the ODE [56]

_x1ðtÞ ¼ �rðx3ðtÞ � x1ðtÞÞ
_x2ðtÞ ¼ x1ðtÞð�q� x3ðtÞÞ � x2ðtÞ ð9Þ
_x3ðtÞ ¼ x1ðtÞx2ðtÞ � �bx3ðtÞ
with �r ¼ 10; �q ¼ 28, and �b ¼ 8

3 and initial value xð0Þ ¼ ð1 1 0Þ>.

4.2. The Mackey–Glass equation

We argue that the recurrent nature of an ESN should well match
the behavior of DDEs and therefore enclose the Mackey–Glass
equation. From the two equations described by Mackey and Glass
[65], we consider the one exposing chaotic behavior, i.e.

_xðtÞ ¼
�b�h�n � xðt � �sÞ
�h�n þ xðt � �sÞ�n �

�cxðtÞ; ð10Þ
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for �b ¼ 0:2; �h ¼ 1; �n ¼ 10; �c ¼ 0:1, and �s ¼ 17 according to [37].
While xðtÞ is the state at the current time step, xðt � �sÞ represents
the (delayed) state at time t � �s. For the initialization, �s randomly
drawn values fxð0Þ; . . . ; xð�s� 1Þg � Uð0;1Þ are used. This was done
to achieve a trajectory of the attractor analogous to the results in
[37].

4.3. A neutral type DDE

Auvray et al. [9] propose a mathematical model describing non-
linear coupled oscillators being an instance of a neutral type DDE.
The dimensionless system is denoted as.

€xnðtÞ þ ��n�mn _xnðtÞ þ �m2nxnðtÞ ¼ �ln
d2 tanhðxðt � �sÞ � �x0Þ

dt2
� �fn

djxðtÞj2
dt

ð11Þ
with xðtÞ ¼ P

nxnðtÞ. We use the neutral dataset available at [3]
within our experiments and refer to this reference for the initializa-
tion and configuration of the neutral type DDE consisting of 14
parameter values in total.

4.4. The Santa Fe laser dataset

We also include the Santa Fe laser dataset, an experimental
dataset, which is a well-known benchmark for time series predic-
tion. The dataset consists of measured data from a NH3 laser exper-
iment without noise. Weiss et al. [95] discuss such data as being
comparable to the chaotic behavior of the Lorenz system and
explicitly demonstrate its chaoticity. We retrieved and used the
dataset as available at [2].

5. Methodology

Our goal is to systematically investigate the impact of the seven
hyper-parameters h defined by

h :¼ fSI;Nr;dðWrÞ;q; c;b; STg ð12Þ
introduced in Section 3. To this end, we train a reservoir-computing
model to assess its performance w.r.t. prediction based on the four
datasets discussed in Section 4. Contrary to many previous studies,
that often solely evaluate their approaches in a single-step predic-
tion scenario (cp. Section 3), we study the more realistic auto-
regressive, i.e. multi-step, prediction case. We schematically
depicted the procedure in 4.

5.1. Model inference and performance measures

After training, we use each model to predict a number of SP time
steps, where the value of SP depends on the dataset. For the Lorenz
system we predict four Lyapunov times, i.e., SP = 444 [41], while
for the Mackey–Glass equation we predict two Lyapunov times,
i.e., Sp = 286 [31]. Lyapunov times are dataset specific and refer
to the timescale on which the underlying dynamical system is



Fig. 4. Schematic overview of the optimization procedure.

Fig. 5. Difference DSI , cp. Eq. 16, between reservoir state at first training step sð0Þ

when initializing with a growing SI 2 ½0;1;000� and a baseline of SI ¼ 1;000 with
median over 100 reservoirs per dataset.
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chaotic. Hence, this should allow for more comparable results. For
the Santa Fe laser dataset, we set SP ¼ 100 time steps being the
prediction horizon of the original competition while we choose
SP ¼ 500 for the neutral type equation (cp. Table 2). The interval
SP starts at ST þ 1. All sequences are completely unseen and have
not been part of any training or optimization procedure. (See 5).

We measure the prediction performance of a trained model
using the normalized root mean square error (NRMSE)

NRMSE ¼
ffip 1
SP

XSP
i¼1

kyðiÞ � ŷðiÞk2

kmeanðyÞk2
; ð13Þ

which quantitatively assesses the fit between the predicted and
actual trajectory while penalizing outliers more heavily;

meanðyÞ ¼ meanSP ðyÞ stands for S�1
P

PSP
i¼1y

ðiÞ
j , i.e. the mean value cal-

culated over the test interval of SP time steps, and k � k for the Eucli-
dean norm. Moreover, we compute the R2-score

R2 ¼ 1�

XSP
i¼1

ðŷðiÞ � yðiÞÞ2

XSP
i¼0

kðyðiÞ � kmeanðyÞk1Þk2
ð14Þ
Table 2
Overview of length of SP for all tested systems.

System SP

Lorenz’63 444
Mackey–Glass 286
SantaFe Laser 100
Neutral DDE 500
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to additionally measure the correlation between the target and pre-
dicted values in SP , cp. [5,4].

5.2. Parameter search procedure and model initialization

We conduct each experiment (training process) with 100 ran-

domly drawn initializations of input and reservoir matrices Win

andWr (realizations) and analyse the results by reporting the med-
ian to increase reliability of the inferred guidelines for the design of
reservoir-computing models, i.e. w.r.t. the choice of suitable
hyper-parameters. We reuse the same 100 initializations per
experiment to gain maximum comparability across experimental
runs. In particular, we propose the following procedure to deal
with different reservoir sizes Nr: Firstly, we draw our 100 samples
of the randomly initialized reservoir matrix Wr at a size of
Nr ¼ 16;394 from a uniform distribution in the interval ½0;1�. Then,
we iteratively apply average pooling with a window size of two to
construct matrices of smaller size Nr to be applied across experi-
ments in order to increase comparability along the conducted
hyper-parameter study. After pooling, we set ð1� dðWrÞÞ � N2�r

randomly chosen weights of the reservoir matrix Wr to zero. It is
important to perform this step only after pooling to the desired
reservoir size, otherwise both operations would interfere making
a reservoir’s weights deviating from the initially seeded distribu-
tion. We then randomly set 50% of the values per reservoir nega-
tive aiming for a zero-centered input distribution to the ESN’s
activation function tanh. Eventually, we scale Wr with the given
spectral radius q.

Searching for an ESN’s best performing hyper-parameters poses
a highly non-linear and non-convex optimization problem and we
are aware of the fact that our proposed search procedure will likely
not terminate in a global optimum. However, we argue and
demonstrate that we indeed find increasingly well-performing
configurations and justify each step of the procedure. More specif-
ically, we propose an incremental and iterative search procedure
consisting of 34;300 trained ESNs (resulting from 100 repetitions
over seven parameters analyzed in three search iterations) for
exploring each hyper-parameter of h individually with initial value

�h ¼ fSI;Nr;dðWrÞ;q; c;b; STg
¼ f300;256;1;0:995;0;10�6;2000g: ð15Þ

To this end, we proceed in a sequential manner in the order defined
in h, (cp. Eq. 12). The only exception is that we consider the two
hyper-parameters Nr and dðWrÞ together. The initial values given
by Eq. (15) are inspired by the parametrization of previous studies
and are expected to yield satisfying performance.

Let us briefly outline our approach in more detail: In an initial
experiment, we study the length of the initialization interval SI .
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Next, since we expect larger and sparser reservoirs to yield better
performing models, we study Nr and dðWrÞ in combination moti-
vated by the fact that a reservoir, which is large and sparser at
the same time, requires an equal amount of multiplications as a
more dense and smaller one. An initial spectral radius of
q ¼ 0:995 follows Jaeger’s own choice and his claimed requirement
of selecting a value close to one [50]. Hence, a satisfactory perfor-
mance is expected for this choice. We argue that the reservoir is
the ESN’s core concept and therefore optimize its size, density
and weight scaling at the initial step of our (sequential) search pro-
cedure. In contrast, we consider the leakage concept a kind of
residual connection [42] or attention mechanism [11,84] that gives
the output layer direct access to the ESN’s previous state while by-
passing the reservoir’s non-linear and possibly saturating activa-
tion. In order to stimulate maximum utilization of the reservoir,
we only activate and optimize the concept once we have deter-
mined the best performing reservoir. Eventually, based on the
observation that previous studies often consider small regulariza-
tion coefficients, we apply it throughout the search but only opti-
mize it towards the end of the search procedure, cp. Table 1.
Based on a pre-study, we train each model for ST ¼ 2;000 time
steps being a compromise between computational cost and model
performance and study this choice at the end of the experimental
series.

We iteratively repeat the grid search three times per parameter
in the order described above, thereby, adjusting the search space in
two directions: (1) when finding that the best performing param-
eter value lies within the search interval, we increase search reso-
lution, i.e., centering the new search interval around this best
performing value from the previous iteration and reducing interval
width to a search step size DH of the previous iteration with l val-
ues to test dependent on the searched hyper-parameter hi; and (2)
when finding that the best performing parameter value lies at the
boundary of the search range, we increase the search range in this
direction if plausible. Within the grid search we explore three
parameters dðWrÞ;q, and c on a linear scale spanning a fixed inter-
val and two parameters Nr and b on a logarithmic scale aiming to
cover a larger search interval, i.e., towards large reservoir sizes and
small regularization coefficients. Once we have determined an
optimal value for one hyper-parameter and dataset combination,
we use this across all succeeding experiments.

6. Results and Discussion

In this section, we report our results per hyper-parameter and
discuss their implications in the order defined by h. In an initial
experiment, we study meaningful washout lengths SI per dataset.
Next, we systematically explore Nr; dðWrÞ;q; c, and b and show
the progress of the optimization process in Table 3 where the order
of columns from left to right corresponds to the order in which the
hyper-parameters were optimized. Gray-shaded cells refer to the
start value while green-shaded cells refer to the optimized value
per parameter and dataset. Additionally, Table 4 shows plots of
results across the relevant parts of the search interval of each com-
bination of hyper-parameter and dataset. Both tables report the
median across all 100 trained ESNs on the independent test set
in terms of NRMSE and R2-score, see Eqs. (13) and (14) resp.
Finally, we study the length of the training interval ST in an addi-
tional study.

6.1. Washout SI

We explore the influence of the washout SI in an initial experi-
ment where we aim to answer the question: When does a previous
input xð�SIÞ become insignificant for the current state sð0Þ of an ESN’s
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reservoir? We argue that this point determines a maximum mean-
ingful washout since any earlier inputs would be ‘‘forgotten” at this
point. We explore washouts up to SI ¼ 1;000 and initialize ESNs
per dataset with an increasing SI 2 ½0;1;000�. Similarly to the other
experiments, each datapoint is the result of 100 ESNs initialized
with default hyper-parameters �h and using the same reservoir
seeds (cp. Section 5). Based on how previous studies chose SI , we

use sð0ÞSI¼1;000, i.e., the reservoir state gained by a washout of 1;000

inputs, as a baseline and compare it to sð0ÞSI¼0; . . . ; s
ð0Þ
SI¼999 measured

as L1-norm of their differences:

DSI ¼ ksð0ÞSI¼1;000 � sð0ÞSI¼jk1; j ¼ 0 . . .999:

We observe that beyond a washout of SI ¼ 59 (Lorenz system),
SI ¼ 82 (Mackey–Glass equation), SI ¼ 74 (Santa Fe laser), and
SI ¼ 49 (neutral type DDE) initializing inputs, differences of the ini-
tialized ESN’s reservoir state sð0Þ at the time when the actual train-
ing would start become insignificant, i.e., smaller than 10�15. We
argue that a longer washout would not be relevant for the behavior
of the trained ESN. This is an interesting observation since we found
that the majority of previous studies uses substantially longer
washouts potentially wasting valuable training data (cp. Section 2).

6.2. Size of the reservoir Nr

We explore Nr 2 f256;512;1024;2048;4096g (cp. Section 5.2).
For the Lorenz system, the start configuration �h yields a NRMSE
of 0:66. This NRMSE decreases for an enlarged and dense reservoir
of Nr ¼ 512 to 0:45 being an improvement of 32:1%. Increasing the
reservoir size further does not yield a better NRMSE when remain-
ing at a dense reservoir. Since we consider reservoir size and den-
sity together, we found that the actual best performing
configuration lies at Nr ¼ 2;048 given that density is reduced. For
the Mackey–Glass equation, the start configuration yields a NRMSE
of 15:71. We observe a NRMSE of 0:44 being a decrease by 97:2%
when enlarging the reservoir to Nr ¼ 2;048 and a further enlarged
reservoir with Nr ¼ 4;096 would not yield better performance in
despite the chosen density. For the Santa Fe laser dataset, we
observe a NRMSE of 12:45 for the start Nr ¼ 256, which can be
decreased to 2:03 by 83:7% when increasing the reservoir to
Nr ¼ 1;024. For the neutral type DDE, the default configuration
yields a NRMSE of 0:37 which we also identify as the best perform-
ing size for this dataset. A reservoir enlarged to Nr ¼ 512 already
results in a NRMSE of 0:60, being an increase of 60:2%.

We explore reservoir size on a coarse grained five step logarith-
mic scale, being the result of aiming for comparable reservoirs
across all experiments. Therefore, we have to assume the best per-
forming reservoir size laying at or in between the sizes that we
evaluated. We observe 32� 100% performance gain by choosing
a more appropriate reservoir size. This size is dataset-specific, sug-
gesting that characteristics of a dataset impact optimal size. Con-
trary to previous studies [59,77], we found larger reservoirs not
to continuously perform better. Our findings suggest that each sys-
tem has an optimal reservoir size, where a further enlarged reser-
voir worsens results. Koryakin et al. [52] observe similar results for
smaller than maximal possible reservoirs and thereby justify our
observations.

6.3. Weight density dðWrÞ

We explore reservoirs’ weight density over the entire possible
interval of dðWrÞ 2 ½0;1�. For the Lorenz system, the start density
dðWrÞ ¼ 1 at best performing reservoir size Nr ¼ 2;048 yields a
NRMSE of 0:57. This NRMSE shrinks to 0:06, a reduction of



Table 3
Individual results of the parameter search procedure. Grey-shaded cells refer to initial default parameter, while green-shaded cells show the
discovered best performing parameter.
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89:5%, by choosing a density of dðWrÞ ¼ 0. This leads to the reser-
voir state being a mapping of the input in the higher dimensional
state space without influence of any former states. For the
Mackey–Glass equation, we observe a decrease of 22:1% in NRMSE,
from 0:44 to 0:34, by choosing a density of dðWrÞ ¼ 0:44 at
Nr ¼ 2;048. For the Santa Fe laser dataset, NRMSE can be reduced
by 13:3%, from 2:03 to 1:76, when choosing a density of
dðWrÞ ¼ 0:84 at Nr ¼ 1;024. For the neutral type DDE, the default
density yields a NRMSE of 0:37 for the best performing reservoir
size Nr ¼ 256. We observe the lowest NRMSE at a density of
dðWrÞ ¼ 0:91 yielding a NRMSE of 0:34 and being a reduction of
9:41%.

We observe 9� 90% performance gain by choosing an appro-
priate weight density. All identified density optima are less than
100%, with the Lorenz system and the neutral type DDE requiring
the lowest and highest density respectively. We observe weight
density to be indeed interwoven with reservoir size as suspected
when designing our parameter search, e.g., we would have selected
different optimal reservoir size and density for the Lorenz system
when optimizing both sequentially. Our results contradict earlier
assumptions, generally suggesting sparse matrices with a density
of dðWrÞ ¼ 10

Nr [59]. Surprisingly, the Lorenz system benefits most
from an empty reservoir, meaning that an input value is solely pro-
jected into a high-dimensional space of size Nr , while the recurrent
memory of old reservoir states becomes entirely ‘‘deactivated”.
This observation has not been reported before, but several previous
studies parametrize their ESNs with very sparse densities when
predicting the Lorenz system, e.g. [72,99,40]. Though often used
in ESN evaluations (cp. Table 1), our findings suggest that the Lor-
enz system is not an ideal benchmark for evaluating recurrent
ESNs. An alternative would be using so-called delay embeddings,
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see, e.g. Brunton et al. [16], which we have not pursued due to
comparability to the majority of previously conducted studies
based on the Lorenz system. Another interesting observation is
the rather high density discovered for the neutral type DDE. While
for the other three datasets, we find that model performance
improves when moving from a smaller very dense reservoir weight
matrix to a larger more sparse matrix, we seem not to observe this
behavior for the neutral type DDE. We argue that for the neutral
type DDE, as the least complex dataset in our study, the increase
from Nr ¼ 256 to Nr ¼ 512 might be too coarse to observe a similar
behavior as for the other datasets and that the true best performing
reservoir size may lay in between. Our findings are somewhat con-
trary to previous guidelines, e.g., [59], that suggest selecting a den-
sity based on the size of the reservoir as dðWrÞ ¼ w

Nr where w is a
fixed number. This guideline implies a linear relationship between
the decrease of density and the increase of the size of the reservoir.
Our study shows that an upper boundary on the optimal reservoir
size exists and it suggest that the combination of optimal reservoir
size and density are dataset-specific.
6.4. Spectral radius q

We explore weight scaling via the spectral radius q 2 ½0:0;1:5�.
For the Lorenz system, weight scaling is not applicable since we
discovered the best performing weight density at dðWrÞ ¼ 0, i.e.,
a weight matrix solely consisting of zeros. For the Mackey–Glass
equation, we observe a decrease of 44:5% in NRMSE from 0:34 to
0:19 by choosing a spectral radius of q ¼ 1:41 rather than the ini-
tial value q0 ¼ 0:995. For the Santa Fe laser dataset, the NRMSE
shrinks by 15:3% from 1:76 to 1:49 by choosing a spectral radius
of q ¼ 0:906. For the neutral type DDE, the default spectral radius



Table 4
Results of the parameter search across the four studied datasets and aggregated as median over 100 trained models per hyper-parametrization and evaluated in
terms of test set NRMSE (red) and R2 (blue). Green stars refer to the best performing value per hyper-parameter and dataset while red stars refer to the
performance of the start parametrization �h.
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of q0 ¼ 0:995 yields a NRMSE of 0:34 being also the best perform-
ing spectral radius.

We observe 0� 45% performance gain by varying the spectral
radius by choosing a dataset-specific one in comparison to the ini-
tial value given by �h, which had chosen based on Jaeger’s sugges-
tion [48]. Jaeger pointed out that q < 1 is neither necessary nor
sufficient, but his own configuration q ¼ 0:995 yields satisfactory
results in practice – at least for a lazy figure eight time series pre-
diction and Japanese vowel time series classification [50]. The dis-
covered best spectral radii for the Santa Fe laser dataset and the
neutral type DDE almost perfectly underline this rule. However,
we also found that the Mackey–Glass equation benefits from a
spectral radius substantially beyond one, i.e., q ¼ 1:41, thereby
contradicting Jaeger’s rule of thumb. We hypothesize that the
importance of earlier states for the prediction of this DDE explains
the more emphasized use of the reservoir. This observation seems
to be in contrast to Goodfellow et al. [38] that formally derive
q ¼ 1 as an upper bound. However, they restrict their focus to lin-
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ear activation functions that are of little practical relevance. We
argue that the enclosing nonlinearity, i.e., tanhð�Þ, prevents an
exponential growing of the reservoir state and that the zero-
centered weight seeding prevents a saturation of the non-
linearity. Our finding is supported by Ferreira et al.’s study [32]
that also reports q > 1 as beneficial for predicting the Mackey–
Glass equation. Since we found in the previous step that an ESN
predicts the Lorenz system best when neglecting the reservoir at
all, a spectral radius has no effect for this system. Haluszczynski
and Räth [40] report that their lowest tested q ¼ 0:1 performed
best for the Lorenz system, which has a similar effect as using an
empty reservoir. This dependence of the selection of q on the input
data is further encouraged by the findings in [14].

6.5. Leakage rate c

We explore leakage rate c 2 ½0;1:0�. For the Lorenz system, the
start leakage rate of c0 ¼ 0 yields a NRMSE of 0:06. This NRMSE



Fig. 6. Test error (NRMSE) over increasing training length ST measured as median
over 100 trained ESNs per dataset.
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shrinks to 6:24 � 10�3, a decrease of 89:7%, by adapting the leakage
rate of c ¼ 0:88. For the Mackey–Glass equation, we observe a
decrease of 86:2% in NRMSE, from 0:19 to 0:03, by choosing a leak-
age rate of c ¼ 0:68. For the Santa Fe laser dataset, we observe the
NRMSE being reduced by 20:8%, from 1:49 to 1:18, by choosing a
leakage rate of c ¼ 0:41. For the neutral type DDE, the start leakage
rate yields a NRMSE of 0:34. We found the lowest NRMSE at a leak-
age rate of c ¼ 0:84 yielding a NRMSE of 0:06 and being a reduction
of 81:5%.

We observe 21–90% performance gain by selecting a dataset-
specific leakage between 41� 88% by-passing the non-linear acti-
vation and constituting a residual connection for the reservoir’s
previous state. We observe the highest leakage for the Lorenz sys-
tem and argue that the explanation is that ODE’s succeeding state
solely depends on its previous state with only gradual changes in
between states. In contrast, the succeeding state of both DDEs,
the Mackey–Glass equation as well as the neutral type DDE,
depends on n former states putting more relevance on the acti-
vated reservoir state. We observe the lowest optimal leakage rate
for the Santa Fe laser dataset. This dataset is characterized by the
highest NRMSE and the lowest R2 in our evaluation indicating it
to be the hardest to predict. We hypothesize that the non-linear
activation acts as a filter reducing the propagation of error that
inherits the empirically measured data and a higher leakage con-
tradicts this effect. In conclusion, these results confirm Jaeger’s
[50] suggestions towards the concept being advantageous for
model performance but are in contradiction to ESNs state-of-the-
art that almost entirely neglects the concept (cp. Table 1). Lu
et al.’s study [58] is a rare exception but only considers leakage
for one experiment predicting the Kuramoto–Sivashinsky
equations.

6.6. Regularization coefficient b

We explored potential regularization coefficients with a loga-
rithmic step size in b 2 ½10�10;1�. For the Lorenz system, the start
regularization coefficient b0 ¼ 1 � 10�6 yields a NRMSE of
6:24 � 10�3. This NRMSE shrinks to 6:17 � 10�3, a reduction of
1:05%, by choosing a regularization coefficient of b ¼ 1:05 � 10�6.
For the Mackey–Glass equation, we observe a decrease of 3:37%
in NRMSE, from 2:62 � 10�2 to 2:54 � 10�2, by selecting a regulariza-
tion coefficient of 5:99 � 10�7. For the Santa Fe laser dataset, the
NRMSE decreases by 1:08%, from 1:18 to 1:17, when choosing a
regularization coefficient of b ¼ 8:13 � 10�7. For the neutral type
DDE, the start regularization coefficient yields a NRMSE of
6:25 � 10�2. We observe the lowest NRMSE at b ¼ 8:33 � 10�7 yield-
ing a NRMSE of 5:61 � 10�2 and being a reduction of 10:3%.

We observe a dataset-specific gain between 1� 10% by choos-
ing an appropriate regularization coefficient. That means all data-
sets benefit from a regularization, which might be at first
surprising given that three of them represent differential equations
and only the Santa Fe laser dataset represents empirical measure-
ments. However, also the differential equations are somewhat
noisy due to their approximation at discrete time steps. In conclu-
sion, we find that a weak regularization seems to be universally
beneficial.

6.7. Training length ST

We explore training length ST 2 f100;200;500;1;000;1;500;
2;000;2;500;3;000; 4;000;5;000g (Fig. 6). We train 100 ESNs
per dataset and training length with the best performing
parametrization determined before. When lowering training
length below a dataset-specific threshold, we observe a drastically
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increasing NRMSE, i.e., ST < 2; 000 (Lorenz system), ST < 1;000
(Mackey–Glass equation), ST < 1;000 (Santa Fe laser), and
ST < 100 (neutral type DDE) respectively. Beyond this training
length, model performance is not substantially improving any-
more. Our results are partly contradicting a rule of thumb that sug-
gests to choose ST > Nr [59] and underline that our start training
length of ST ¼ 2;000 was a good choice.

6.8. Variability across reservoir seeds

Since each datapoint of our hyper-parameter optimization is
the result of 100 trained ESNs being derived from the same 100
randomly seeded reservoir weight matrices (cp. Section 5), we can-
not only analyze their average performance but also their perfor-
mance variation across this set. We are specifically interested in
whether standard deviation of model performance across the
trained reservoirs changes over the course of the hyper-
parameter optimization. For the Lorenz system, we observe for
the start configuration a standard deviation of 232:9% relative to
the median, which decreases to 50:8% relative to the median once
all hyper-parameters are optimized. For the Mackey–Glass equa-
tion, we observe for the start configuration a standard deviation
of 438:0% relative to the median, which decreases to 88:9% rela-
tive to the median once the optimization is completed. For the
Santa Fe laser dataset we observe for the start configuration a stan-
dard deviation of 1701:5% relative to the median, which decreases
to 54:4% relative to the median once the optimization is com-
pleted. For the neutral type DDE we observe for the start configu-
ration a standard deviation of 3;592:0% relative to the median,
which decreases to 69:8% relative to the median once the opti-
mization is completed.

In conclusion, over the course of the hyper-parameter optimiza-
tion performance variance caused by the randomly seeded reser-
voir matrices substantially reduces. We argue that this is a very
impressive result illustrating the importance of well tuned
hyper-parameters but also indicates the influence of the reservoir
seed on the eventual performance.

6.9. Limitations of our study

Our observations are restricted to the common form of the ESN
as originally proposed by [48]. That means that we solely consider
a tanhð�Þ non-linearity as activation function, while individual
studies, e.g., also considered linear activation functions [89]. Fur-
thermore, alternative leakage concepts have been proposed using
the leakage rate inside the activation function [32] or calculating
the leakage rate from time step width Dt [18,87]. Other studies
proposed a dropout concept [10] and local plasticity [92] for ESNs,
propose and study ESNs as dynamical systems rather than pure
predictors of those [45] or propose input representation in quater-
nions H rather than real numbers [98]. Those and other existing
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concepts may have impacted our results and deserve additional
experimentation. Aiming for generalizable findings, we employ
four representative datasets with different characteristics for our
study. While a direct application to fundamentally different
time-series data of our findings might be difficult, the proposed
methodology of systematically conducting a grid search to identify
suitable hyperparameters is. In particular, we have shown the need
to take sufficiently many samples (realizations) into account when
deriving design guidelines based on key characteristics. Otherwise,
a transferability to other similar data sets cannot be expected.
However, this is still a restricted set and further studies would
be necessary to substantiate our results. In this regard, further tests
evaluating properties of the reservoir beyond evaluation metrics,
e.g., as shown in [74] or discussed in the context of infinite neural
networks [43] would be necessary. Neural networks typically suf-
fer from learning problems like catastrophic forgetting and concept
drift. Catastrophic forgetting is defined as ‘‘when a model initially
trained on task A is later trained on task B, its performance on task
A can decline calamitously” [13]. We argue that this problem can-
not occur for the ESNs that we study since they learn non-
iteratively from a single batch of training data. Would the same
ESN, learned with the inputs of task A, be used to learn with the
inputs of task B, instead of only calculating an alternate Wout , the
dynamics of the reservoir would be overwritten in the course of
the second washout and learning steps loosing the predictive capa-
bilities for the first problem. Concept drift refers to a change in the
distribution of the data [94] and is clearly a problem for ESNs. We
argue that their computationally lightweight nature allows a con-
tinuous retraining of the model given that the dataset is prone to
concept drift. Furthermore, we compared the variances of the
results over 100 seeds and used the median to reduce them. An
alternative approach, based on a bidirectional learning scheme
was proposed in [21], which we plan to include in future work
and adapt it to ESNs.
7. Design Guide

In this section, we unite our findings into a guideline for the
efficient training of ESNs. As a first step, we recommend drawing
a number of input and reservoirs matrices from a uniform distribu-
tion at a comparably large size Nr . These large reservoirs can easily
be scaled to smaller Nr by average pooling and ensure more com-
parable performance results. We suggest parameter optimization
with a set of seeds in parallel to gain more predictable results given
the stochasticity of reservoir and input weights.

The density of the reservoir dðWrÞ should be chosen in relation
to its size with a larger reservoir benefitting more from sparsity. A
spectral radius close to one, e.g., q ¼ 0:995, is supposed to yield
acceptable performance. If the system to predict is characterized
by a high dependence on former states, using a spectral radius
beyond one may further improve performance. If on the contrary
no dependence on the history of the time-series is of importance,
a high spectral radius can be a negative influence and can arguably
be seen as noise on the data, accordingly we suggest a spectral
radius of zero in cases of ODEs as in benchmarking problems like
the Lorenz system.

We found that leakage largely improves prediction performance
with leakage rates c between 40� 90%. Analogous to our study,
we suggest to only activate and optimize it once a satisfying reser-
voir in terms of size, density, and scaling has been determined.
Thereby, we argue based on the Lorenz system to choose a higher
leakage rate with a short term history dependence and a smaller
leakage rate in case of an already large deviation from the ground
truth to impede an accelerated increase of the training error. Alter-
natively, one may employ delay coordinates as, e.g., explored in
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[51]. A mild regularization with b � 10�7 has shown to be univer-
sally beneficial.

We argue that it is essential to evaluate prediction performance
in a multi-step auto-regressive setting if this shall be the later
application scenario. Finally, given that we suggest a parallel train-
ing of multiple ESNs, the whole set or a best performing selection
thereof could be used in a prediction ensemble given the low com-
putational requirements of the ESN concept.
8. Conclusion and future work

In this paper, we studied echo state networks’ (ESN) perfor-
mance for predicting time series. More specifically, we designed
a systematic study of their hyper-parameters. For our experimen-
tation, we used four different datasets representing one approxi-
mated ODE system, two approximated DDE systems, and one
empirically measured dataset allowing us to generalize our find-
ings to a wider population of (chaotic) dynamical systems. We
argue for the applicability of our results for further time series pro-
vided that the key characteristics are similar to the ones used
within this work. Furthermore, we expect to strengthen our
hypothesis as well to further extend the proposed design guideli-
nes for other types of time series in future work. Hyper-
parameter optimization of ESNs is not trivial due to their stochastic
nature arising from randomly seeded input and reservoir matrices.
We overcome this challenge by reusing a set of 100 seeded reser-
voirs and proposing an algorithm to derive smaller and sparser
instances of these matrices. Our findings impressively demonstrate
the power of a hyper-parameter-tuned ESN when auto-
regressively predicting time series over several hundred steps into
the future with minimal error. We found that ESNs’ performance
improved by 85:1%� 99:8% over an already wisely chosen default
parameter initialization while performance variability arising from
a reservoir’s seed is dramatically reduced. These results emphasize
the benefit of a careful hyper-parameter optimization. Apart from
these general observations we report individual findings per
hyper-parameter that partly contradict earlier findings and will
help researchers as a guideline when training new models.

In the future, we plan to extend our study to other problem
types and datasets as well as studying less prominent variations
of the ESN model focusing on more advanced topologies, e.g., neu-
ral hierarchies [61], sub-goal divided reservoirs [33], deep ESN
[73], next generation reservoir computing [36], long-short term
ESN [105], /-ESN [34] or Autoreservoirs [24]. We also aim to eval-
uate the influence of other metrics such as isometric properties
and separation between states as proposed in [74] in the field of
time-series prediction. Similar to the analysis of the currently very
popular extended Dynamic Mode Decomposition (eDMD, see
[96,17,66]), we want to consider reservoir computing as a (data-
driven) lifting technique for time-series prediction to derive per-
formance certificates using mass concentration inequalities, see,
e.g, the recent papers [102,70] on eDMD for ordinary and stochas-
tic differential equations, respectively. To this end, the original
highly-nonlinear dynamics is lifted into an infinite-dimensional
spaces of observables, which is – then – approximated by a high-
dimensional, but linear dynamics. For ESNs, the reservoir is predes-
tine to play the role of the high-dimensional, but easy to evaluate
surrogate model.
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