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Abstract
Microfluidic flows feature typically fully three-dimensional velocity fields. However, often the
optical access for measurements is limited. Astigmatism or defocus particle tracking
velocimetry is a technique that enables the 3D position determination of individual particles by
the analysis of astigmatic/defocused particle images. The classification and position
determination of particles is a task well suited to deep neural networks (DNNs). In this work,
two DNNs are used to extract the class and in-plane position (object detection) as well as the
depth position (regression). The performance of both DNNs is assessed by the position
uncertainties as well as the precision of the size classes and the amount of recalled particles. The
DNNs are evaluated on a synthetic dataset and establish a new benchmark of DNNs in defocus
tracking applications. The recall is higher than compared to classic methods and the in-plane
errors are always subpixel accurate. The relative uncertainty in the depth position is below 1%
for all examined particle seeding concentrations. Additionally, the performance on experimental
images, using four different particle sizes, ranging from 1.14 µm to 5.03 µm is analyzed. The
particle images are systematically rearranged to produce comprehensive datasets of varying
particle seeding concentrations. The distinction between particles of similar size is more
challenging but the DNNs still show very good results. A precision above 96% is reached with a
high recall above 95%. The error in the depth position remains below 1% and the in-plane errors
are subpixel accurate with respect to the labels. The work shows that first, DNNs can be trained
with artificially rearranged data sets based on individual experimental images and are therefore
easily adaptable to various experimental setups and applicable by non-experts. Second, the
DNNs can be successfully adapted to determine additional variables as in this case the size of
the suspended particles.
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1. Introduction

Flows with suspended particles of multiple sizes are important
for many industrial applications. Examples for this are mix-
ing or separation processes. In the case of microfluidics, this
includes the manufacturing of pharmaceutical products or the
analysis of chemical and biological samples [1]. To analyze
the underlying processes, multiple techniques were developed
that allow a classification of the individual particles based on
their size. However, this is always only achieved with addi-
tional efforts, either by an increased manufacturing cost of
the microchannels or additional equipment for the measure-
ment [2–6]. In recent years, the measurement methods were
extended to allow a classification of the particles based on their
particle image from flow measurements [7, 8].

In microfluidics, the separation or mixing of particles is of
common interest which is why all three components of the
three dimensional flow field are often measured. Due to the
limited optical access, methods usingmultiple perspectives for
the position reconstruction [9] do not work or have high uncer-
tainties [10]. Because of this, the astigmatism particle track-
ing velocimetry (APTV) was developed. It is a defocus based
particle tracking measurement technique which allows the
determination of all three velocity components in a volume.
For this, a cylindrical lens is utilized to introduce astigmatism
into the optical setup [11]. This lens distorts the particle image
from a circle to an ellipse. The shape of this ellipse depends on
the depth position of the particle, relative to the focal planes of
the optical system. After a segmentation algorithm is applied
to find potential candidates of particles, their center positions
are found by means of a 1D Gaussian fit along both axis which
results in a subpixel accurate detection [10]. The depth posi-
tion is found by matching the particle image shape to a calib-
ration function [12]. A common challenge of APTV measure-
ments are spherical aberrations caused in particular by the cyl-
indrical lens, which result in a further distortion of the intensity
profile based on the position of the particle image within the
image [13]. Hence, higher position uncertainties are expec-
ted that can only be compensated with more complex and
time consuming algorithms, e.g. a correlation based evaluation
approach [14].

This is a field in which deep learning can be applied
because it requires no specific knowledge about the setup
and the aberrations can be used if they are systematic. In
recent years, machine learning and especially deep learning
has received a surge of interest, starting with the ImageNet
challenge [15] which is a large dataset containing examples of
1000 different classes of objects. Through the availability of
stronger graphics processing units (GPUs) andmore sophistic-
ated algorithms, convolutional neural networks (CNNs) were

used to great effect. CNNs apply multiple convolutions in so-
called layers to extract features from the images and enhance
the semantic information. Deep neural networks (DNNs) have
since surpassed any classic image processing in classification
tasks [16]. Large annotated datasets were then used to develop
different architectures and training algorithms to achieve rapid
improvements [17]. Since then, state-of-the-art results were
achieved with deep learning in many other fields, such as the
complex game of Go [18] or lip reading [19].

Different machine learning algorithms have also been
applied to the field of defocus based particle tracking. For this,
characteristics of the segmented particle images, such as the
height and width of the semiaxes are extracted with classic
image processing and then fed into a shallow neural network
with few layers to extract the depth position [20, 21]. Another
approach uses a DNN into which the cropped, individual
images are fed to also obtain the depth position [22]. However,
the field of deep learning offers another opportunity. The clas-
sic segmentation and determination of the center position is a
task which is commonly known as object detection. Many dif-
ferent object detection pipelines have been developed, often
using a DNN for the extraction of features which are then
further processed. Object detection pipelines are commonly
benchmarked on the COCO dataset [23], which consists of
labeled images containing objects from 91 classes. Similarly,
the detection and classification of particle images consti-
tutes an object detection problem. Different object detection
pipelines have been successfully applied to defocus particle
tracking measurements as well [24, 25]. The depth position
of the particles is then again found by matching them to the
aforementioned calibration function. However, these investig-
ations only used a monomodal size distribution, meaning all
particles have the same size and no classification was done.

A different approach is to combine the deep learning
method for both the in-plane localization of the particles and
the determination of the depth position by cascading two
DNNs. First, the in-plane position of the particles is found by
means of an object detection network. Second, the individual
particles are cropped and their depth position is determined by
another DNN. This approach led to higher uncertainties in all
three axes compared to classic methods [13, 26]. From a ret-
rospective this is not surprising for the in-plane errors as the
resolution of feature maps in later layers is strongly reduced
compared to the original image. This downsampling leads to
a lower spatial resolution which causes higher uncertainties.
Regarding the uncertainty in the depth position, no definit-
ive reason can be given. However, one surprising result was
the fact that using particles of multiple different sizes did not
increase the uncertainty in the depth position although a nar-
rowmonomodal size distribution is one assumption for classic
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APTV [13]. A classification with DNNs was carried out in a
recent study by Sachs et al [8], where the DNNs outperformed
the classic methods in terms of size determination.

This work aims to improve the existing techniques for the
particle position determination based on APTVmeasurements
using two DNNs while also featuring a size classification of
individual particles. Therefore, an object detection network is
again used for the in-plane location and size classification of
the particles and a regression network is employed to determ-
ine the depth position. The existing methods are extended to
surpass the state-of-the-art results on synthetic images [26].
Furthermore, experimental images of particles of multiple dif-
ferent sizes are acquired to generate a feature-rich dataset
that is used for the training of the two DNNs. The individual
particle images are rearranged on synthetic images to gener-
ate comprehensive datasets with different particle seeding con-
centrations which present a complex task w.r.t. the localiza-
tion and classification of the particles. This approach allows on
the one hand a fast an flexible adaptation of the approach and
the training data for different size distributions. On the other
hand, limitations in terms of particle image density, signal-to-
noise ratio and other experimental parameters can be assessed
thoroughly.

The experimental setup used to acquire the images which
are used to generate the training images is described in
section 2. Section 3 is dedicated to the generation of the syn-
thetic and the experimental datasets. The results of the particle
localization and classification are given in section 4 and con-
clusions are drawn in section 5.

2. Experimental setup

As mentioned before, DNNs require lots of training examples
to achieve state-of-the-art results. In previous studies, the
training data was created with synthetically generated
images [25–27]. However, the synthetic particle images rely
on some model functions. Most often Gaussian intensity dis-
tribution [28] are assumed or ray-tracing is done using sim-
plified optical systems as the real optical systems are not
known in the case of proprietary lens design or complex
lens shapes or manual distance adjustments [29]. For these
reasons, the models often do not reflect the real images that
show a much greater variety of distortions which stem from
aberrations of the optical system. These distortions have to
be taken into account for position correction using classical
methods or even hinder classical approaches to be successfully
used [12, 26, 30]. For neural networks they can be considered
as features as they are not random noise but deterministic and
show some dependence on the position within the image. In
this respect the additional distortions even help to improve
the results by the network. Therefore, a dataset of experi-
mental particle images was acquired in addition to the syn-
thetic datasets, which is described in section 3.1. Spherical,
fluorescent particles (PS-FluoRed, MicroParticles GmbH)
of four different diameters dp were used; (1.14± 0.03)µm,
(2.47± 0.08)µm, (3.16± 0.07)µm and (5.03± 0.07)µm.

The particles were suspended and sedimented in deionized
water confined in a microfluidic chamber made of polydi-
methylsiloxane. The chamber was placed on a slide made
of 128◦ YX LiNbO3. This piezoelectric substrate is used
in applications where the separation of particle mixes is of
interest [4, 5, 31, 32]. The chamber was covered with a glass
slide to avoid evaporation during the sedimentation process
and the measurements.

For the image acquisition, the chamber was placed on top
of an inverted microscope (Axio Observer 7, Zeiss GmbH)
with a neofluar objective (M20x, NA = 0.4, Zeiss GmbH).
A modulatable OPSL laser (tarm laser technologies tlt GmbH
& Co. KG) was used to achieve a volumetric illumination of
the microfluidic chamber. Reflected laser light was suppressed
from the optical path to the camera with a dichroic mirror
(DMLP567T, Thorlabs Inc) and a long pass filter (FELH0550,
550 nm, Thorlabs Inc). The LiNbO3 substrate is birefringent,
meaning that two particle images exist for one given particle.
Thus, the second, undesired particle image was suppressed
with a polarization filter. Astigmatism was introduced into the
system with a cylindrical lens with a focal length of 250mm
that was placed approximately 40mm in front of an sCMOS
camera (LaVision GmbH, 16 bit, 2560× 2160 px). For further
details about the measurement setup, see [31].

The sedimentation process was carried out independently
for all particle sizes except the smallest one, meaning that only
one particle size is present in a given experimental image. In
the case of the 1 µm particles, the sedimentation happened
too slowly because the downward motion is superposed by
Brownian motion. This lead to some particles never reach-
ing the bottom of the chamber, which causes not well known
particle positions (see section 3.2). Instead, the particles were
dried off on the piezoelectric substrate. This was achieved by
placing a small droplet with a volume of approximately 50 µl
onto the substrate and then pulling it back into the syringe.
The remaining film evaporated very quickly which mitigated
an agglomeration of particles. The particle images of dried
particles are brighter than the ones of sedimented particles.
Thus, the power of the laser was reduced until the intensity
of the particle images matched the intensity of particles sus-
pended in water with the same diameter of 1.14 µm.

For each particle size, the microfluidic chamber was posi-
tioned by a motorized stage in the xy-plane and the focus
was changed to generate a feature-rich dataset of particle
images at multiple 3D positions. The stage was moved in
the xy-plane in a region of 420 µm× 420 µm, to reduce the
uncertainty in the z-position due to a possible inclination of
the microscopic stage [13]. The focus was changed over dif-
ferent ranges zrange of z-positions as the intensity of smal-
ler particles is weaker, in particular towards the margin of
the measurement volume where the defocus gets too strong.
This results in less images for the 1.14 µm, which is com-
pensated by moving the stage in the xy-plane with a step size
of ∆x=∆y= 60 µm. The step size for the other three sizes
was 70 µm. Important parameters as well as the total number
of images for each size are summarized in the center column of
table 1.
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Table 1. Summary of the setup parameters for the image acquisition
of each particle size.

dp (µm) ∆x, ∆y (µm) # images zrange (µm) # particle images

1.14 60 5283 [−40, 40] 100 702
2.47 70 5438 [−55, 55] 157 533
3.16 70 5929 [−60, 60] 144 317
5.03 70 5929 [−60, 60] 89 692

3. Methods

The pipeline of the different steps from experimental images to
trained DNNs is illustrated in figure 1. On the left hand side,
the image acquisition, labeling and rearranging is described
while the training of the DNNs is depicted on the right hand
side.

3.1. Preparation of the synthetic datasets

Both DNNs are initially benchmarked on a synthetic dataset to
show that the chosen hyperparameters achieve state-of-the-art
results. For this, the challenge dataset proposed by Barnkob
et al [26] is used. This specific dataset consists of synthetic
particle images, thus no size classification is performed. For
details about the image size, background noise and range of
z-values, the reader is referred to the original publication [26].

As the images were generated with MicroSIG [29], their
position in all three coordinates is well known. Thus, the
left-hand part of the dataset preparation in figure 1 was not
required. Instead, the rearranged images were directly cre-
ated from the synthetic particle images. Datasets of different
particle seeding concentrations were generated. The particle
seeding concentration can be expressed with the source dens-
ity Ns, defined as

Ns ≈ Np
Ap
Ai

, (1)

where Np is the number of particles in each image, Ai the
image area in px and Ap the average particle image area in
px, taken to be the ellipse provided by MicroSIG. Six datasets
of source densities with Ns ∈ {0.1,0.2,0.3,0.4,0.5,0.6} were
generated, each containing 500 images. These high source
densities were used to test the new algorithms against the
benchmark data presented in Barnkob et al [26] and available
online3. However, for experimental data the source densities
are lower for various reasons outlined in the next section.

For the object detection network, these datasets were used
as they are, meaning that only 500 images are available.
However, each of these images contains hundreds of labeled
objects, resulting in a comprehensive and feature-rich data-
set which is learned by the neural network. For the regres-
sion network, the individual particle images were cropped to

3 https://defocustracking.com/datasets/.

a fixed size of 100× 100 px which is large enough to ensure
that even large defocused particles are fully contained within
this crop. For each source density, a total of 100 000 particle
images were cropped in this way. This number corresponds to
the number of individual particle images for Ns = 0.1. For the
other source densities, the number was reduced to obtain the
same number of images for the object detection as well as the
regression.

3.2. Preparation of the experimental datasets

For the experimental images, the individual particle images
had to be labeled before rearranging them on the synthetic
images with labeled, overlapping particle images. The class
label was known because experimental images were taken
only with one particle size, either sedimented or dried off on
the substrate. The depth position of the particles in a given
image was taken to be determined by the focus of the micro-
scope. The in-plane positions (x, y) and sizes of the semiaxes
(ax, ay) of the particles were determined with subpixel accur-
acy using the classic image processing [11]. Separate calibra-
tion curves were obtained for each particle size.

False labels of agglomerated particles or overlapping
particle images were removed by applying multiple filter cri-
teria. First, particle images with a Euclidean distance to the
calibration function in the axay-plane larger than a global
threshold of 7.5 px were removed. In a second step, a local
threshold for each depth position was adaptively determined
until 90% of the particle images at a certain depth position
were declared as valid. For details, see [8]. A final validation
step considered the intensity of the particle image [24]. For
this, a background subtraction was applied by subtracting 2D
second order polynomial fit of the image intensity. An example
is illustrated in figure 2. The filter method compares the sum of
the intensities Ib within the proposed ellipse, defined by ax and
ay (blue) to the sum of the intensities of the extended ellipse
Ig, which is enlarged by an expansion factor f = 1.25 (green).
Because of this extension, particle images whose extended
ellipse exceeded the margins of the image were removed. The
resulting histogram of the intensity ratio Ir = Ib/(Ig− Ib) for
all particle sizes is shown in figure 3. Proposed labels with
an Ir < 4 were rejected, as indicated by the dashed line. This
threshold changes slightly for different f. However, the local
minimum in the histogram can be easily seen for different
values and applied as a filter. The expansion factor has just
to be large enough to cover a representative portion of the
background and not to be larger than 1.5 so that neighboring
particle images contribute to Ig. However, the shape of this his-
togram is almost independent from the actual particle sizes,
so this threshold was applied to all experimental datasets. The
resulting number of valid particle images in each experimental
dataset is listed in the right column of table 1.

The validated particles were then rearranged on a synthetic
new background to generate experimental images with labeled
overlap. This has been shown to benefit the training process
of neural networks [33]. For this, the particle images need to
be cropped accurately to avoid artifacts as well as truncated
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Figure 1. Flowchart explaining the processing pipeline for the 3D position determination and size classification. Particle images are
acquired, labeled and then rearranged to generate datasets with different particle seeding concentrations. The in-plane position and class are
obtained with an object detection pipeline and the depth position with a regression network.

Figure 2. Example of an individual particle image with the
associated ellipsis label from the classic image processing (blue).
The particle image is cropped around the ellipsis, extended by the
expansion factor f (green).

intensity distributions in the newly generated images [34].
This has also been applied to the detection of particle images
to great effect [8, 24]. The particle images were cropped from
the original image with an ellipse around the center point. This
ellipsewas again expandedwith f = 1.25. The cropped particle
image was then pasted onto a background of zero intensity at
the same in-plane position to retain the local features stem-
ming from optical aberrations [13]. The intensity of overlap-
ping particle images was added. After all particle images were
placed in the new image, Gaussian noise with a mean value
of 0.5 and a standard deviation of 4.5 was added to simulate
noise of the camera sensor.

Figure 3. Histogram of the intensity ratio Ir for the multimodal
dataset of all four particle sizes. The shown threshold of four is the
same for all four particle sizes.

The four different particle sizes allow a multitude of com-
binations for the rearranged particle images with multiple
particle sizes. The number of possible cases was reduced to
the seven cases which always contain the 2.47 µm particles
(see table 2). These seven cases can further be divided into
four cases which also contain the 3.16 µm particles and three
cases which do not. The reason for this is that the distinction
between these two narrow particle sizes is expected to be more
difficult because of similar features in the particle images.

For each of the seven cases, datasets of four different source
densities, i.e.Ns ∈ {0.05,0.10,0.15,0.20}were created. From
the rearranged images, the individual particle images for the
regression were again cropped based on the provided labels,
at a fixed size of 250 × 250 px to fully capture the defocused
particles of the largest size.

Because of the different combinations of test cases and
number of particle sizes, the cases have a different amount of
individual particle images. This results in a different number
of training examples which can lead to different convergence
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Table 2. Properties of the seven datasets of the experimental, rearranged images.

Name Particle sizes # individual particle images # regression images

Case 1 1.14, 2.47, 3.16, 5.03 µm 492 244 984 488
Case 2 2.47, 3.16, 5.03 µm 391 542 783 084
Case 3 1.14, 2.47, 3.16 µm 402 552 805 104
Case 4 2.47, 3.16 µm 301 850 905 550
Case 5 1.14, 2.47, 5.03 µm 347 927 1043 781
Case 6 2.47, 5.03 µm 247 225 988 900
Case 7 1.14, 2.47 µm 258 235 774 705

speeds during the training process. To circumvent this, each
particle image was placed multiple times in all of the datasets.
For this, all particles were first placed once in the new images.
Then, the list of particle images was shuffled and all of them
were placed a second time to generate a different set of images.
For a source density of 0.05, this was repeated until at least
750 000 particle images were placed. If the source density was
doubled, each particle was placed twice in order to generate
the same number of total images. For the regression network,
the individual particle images were cropped from the images
with the rearranged particle images. In theory, there are more
particle images for higher particle seeding concentrations but
the number was kept the same for all source densities because
the data handling of millions of individual images is not feas-
ible. The particle sizes, number of individual particle images
and number of particle images for the regression are summar-
ized in table 2.

The rearranging of the particle images was carried out with
a bit depth of 16 to accurately resolve the gradients when
particles are overlapping. However, a large variety of data sets
with millions of individual images is investigated in this work.
Generating and storing all of these images with a bit depth
of 16 is infeasible as it becomes computationally too expens-
ive and the proposed algorithm shall work properly on con-
ventional hardware. Therefore, all images were saved with
a bit depth of 8, as this is also typically done for bench-
mark datasets, such as COCO [23] or ImageNet [15]. For
this, the original intensities were rescaled by clipping val-
ues above 4000 counts to 4000 counts and applying a lin-
ear transformation in between. In this way, defocused particle
images of the smallest particle size are still resolved by mul-
tiple intensity counts. A collage of raw experimental images of
the four particle sizes is shown in figure 4(a). Corresponding,
rearranged images for Case 1 are shown in figures 4(b)–(e)
for the four different source densities. An increasing amount
of overlap becomes visible, especially compared to the raw
images. For visualization purposes, the intensity in the images
is clipped to also show defocused particles. In comparison to
the purely synthetic datasets, the source density was limited to
Ns = 0.2 for the experimental case. There are three main reas-
ons for this. Firstly, large particles images result due to the
defocus. Therefore, they cover a large part of the image and
can even obscure particles which are located behind them. If
several particles are overlapping, this can become problematic
and also lead to a saturation of individual pixels on the camera
sensor. Secondly, if a particle tracking algorithm is later used

to determine the velocity field, it is recommended to have a lar-
ger mean inter particle spacing in comparison to the displace-
ment (for details see Cierpka et al [35]). Thirdly, the synthetic
datasets present a theoretical benchmark which highlights the
strengths and weaknesses of the different algorithms. They are
not necessarily representative for images of actual measure-
ments.

All of the synthetic and experimental datasets were split
into 70%/10%/20% for the training/validation/testing of the
DNNs. Care must be taken to avoid having one particle image
in more than one of these sets as this could introduce a bias
into the uncertainty estimation, since this particle image would
be used during the training and the evaluation. Therefore, the
particle images were initially split into these percentages and
each particle image was then only used in one of these sets.

3.3. DNNs

In this work, the approach presented by König et al [13] is
extended, meaning that two networks are again used to process
the images. DNNs or more specifically convolutional neural
networks (CNN) take images as input and apply convolutions
in successive layers of the network to extract and enhance fea-
tures of the input image on different scales. In the last layers,
the information is typically compressed and then given to the
output neurons to give the prediction of the network.

The first network is an object detection network that
provides the position and class of objects in the image plane.
The position is given in the form of a bounding box, which
consists of the four edge coordinates in the xy-plane. Here, this
box is described by the size of the semiaxes from the APTV
toolbox. The box coordinates do not need to be integer values,
they can also be float values which leads to subpixel accurate
predictions of the DNN. The classes correspond to the sizes of
the different particles. The network provides a score for each
box, ranging from 0 to 1, which is a result of the softmax activ-
ation function in the last layer. A common postprocessing step
is to remove predictions below a certain score threshold. A
Faster R-CNN [36] is chosen as the object detection algorithm
with a ResNet50 [37] as the feature extractor. The Faster R-
CNN includes a feature pyramid network, which allows the
combination of features with different scales and therefore
enhances the semantic information in the last layers [38]. The
loss function used considers the classification of the particles
as well as the in-plane uncertainties of the proposed bounding
boxes with respect to the labels.
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Figure 4. Examples of calibration images (a). Each quadrant corresponds to a raw image of the given particle size. The intensity is
normalized for each quadrant to visualize all particle images. Examples for newly generated images of case 1 for the four different source
densities (b)–(e). The image intensity is clipped at 30 counts to visualize defocused particle images of smaller particle sizes.

Figure 5. Example of cutting up the images for the object detection
network. The symmetry line of the image is shown by the dashed
white line. The dashed gray line shows the border of the image after
cutting with an overlap δ to the neighboring images. The green
boxes are valid labels that are used during the training while the
dashed blue boxes are invalid labels that are not used.

The images are downsampled in the first layer to a resol-
ution of 1333× 800 px, to reduce the memory requirements
for the GPU. Furthermore, if there are too many objects in
the images, the performance significantly drops. To circum-
vent both problems, each image was cut up into four equally
sized images, which have an overlap δ of 100 and 250 px
for the synthetic and experimental dataset, respectively. An
example of an experimental image extracted in that way is
shown in figure 5. This overlap was chosen to be slightly larger
than the maximum size of the extended ellipse of the largest
particle size. In the labels for each image, boxes which are
not fully contained within the cut-up image, are removed. If
they were not removed, the network would also learn to detect
cut-off particles. However, this can be disadvantageously if
the network detects a single particle twice in different cut-
off versions. The post-processing of the Faster R-CNN is then

not always able to filter out these additional detections which
leads to false positive (FP) samples. These removed labels are
marked by the dashed blue boxes in figure 5, while the green
boxes correspond to valid labels. The input resolution of the
Faster R-CNN was set to match the resolution of the cut-up
images.

Transfer learning was applied by using a model that was
pretrained on the COCO dataset [23] which reduces the train-
ing time and reduces the risk of overfitting [39]. The network
was trained with a batch size of four and the Adam optim-
izer [40]. For the synthetic datasets, the network was trained
with two different configurations. For the first, denoted as V1,
the network was trained for 20 epochs and the images were not
manipulated. For the second one, denoted as V2, the network
was trained for 60 epochs and the background was removed by
subtracting a second order polynomial fit of the image intens-
ity. For all rearranged, real datasets, the network was trained
for seven epochs. To avoid overfitting for long training dura-
tions, an L2 regularization with 10−4 as a penalty was applied.
Furthermore, the datasets were augmented by randomly mul-
tiplying the image intensity with a factor from [0.8, 1.2]. Also,
the rearranging of the particle images can be seen as a form of
data augmentation [41] which further reduces the risk of over-
fitting. The initial learning rate was set to 10−5 and linearly
increased over the course of one epoch to a maximum learn-
ing rate of 10−4. The learning rate was then decreased by a
factor of 10 before the penultimate and last epoch to achieve a
convergence of the network, as is common practice [37, 42].

During postprocessing, the Faster R-CNN relies on non-
maximum suppression to filter out boxes which are overlap-
ping. This potentially removes particles with a strong overlap
and therefore, the threshold for the non-maximum suppression
below which boxes are filtered out is set to 0.9. Furthermore,
the predictions on the four cut-up images must be merged in
a postprocessing step which is referred to as ‘stitching’. First,
predicted boxes located within 1 px of the image boundaries
were removed, because these are boxes for particle images
which were not fully contained within the image. The pre-
dictions on all images were then filtered to remove additional
boxes in the overlapping regions. Every box was compared
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with one another, removing the one with the smaller score if
all following criteria apply: (i) the boxes have the same class
prediction, (ii) the center points of both boxes are within 15 px,
(iii) the relative difference of the aspect ratio is smaller than
15% and (iv) the relative difference of the area is smaller than
15%. These are user-defined thresholds that were found to
work well for the present cases. A predicted box was marked
as valid if it had a Euclidian distance of 5 px or less to a labeled
ground truth box.

The performance of this DNN is evaluated by three metrics.
The first metric compares the precision and the recall which
are defined as:

precision=
TP

TP+FP
,

recall=
TP

TP+FN
,

where the true positives are the valid predictions of the net-
work with the correct class, the FPs are the valid predictions
of matched particles with the incorrect class or unmatched
predictions and the false negatives are the particles from
the ground truth that were not matched to a network pre-
diction. These values are shown in a diagram, called the
precision-recall curve which plots both values for different
score thresholds of the network. Here, score thresholds with a
step size of 0.001 from 0.050 to 0.999 are used. The second and
third metric are the in-plane uncertainties σx and σy defined
as the root mean square between the center position pre-
diction and label. Both uncertainties are always given at a
score threshold of 0.8 and the uncertainties are always given
w.r.t. to the position labels provided by the evaluation of
the experimental images using the standard APTV evaluation
approach [11].

The second DNN is solely used for the determination of
the depth position. This DNN gets the individually cropped
particle images as the input. The chosen network architecture
for this is a ResNet18 [37]which has comparatively few layers.
This is chosen because a cropped region around one particle is
not expected to have many semantic features that are extracted
at deeper layers, and a network with less layers has a smaller
training time. The individual particle images are all cropped
to the same size which depends on the dataset. Before the
images are loaded into the network, they are cropped in a rect-
angle around the center, which is then zero padded to match
the maximum size in the corresponding dataset. This rectangle
is taken to be the size of the ellipse’ semiaxes, again expanded
by f = 1.25. This was found to result in a better performance
than a constant crop around the particle center, which was used
in previous works [13, 26]. The center points of the particle
images for the cropping are taken from either MicroSIG for
the synthetic images or the position labels of the evaluation of
the experimental images using the standard APTV evaluation
approach. This is done to avoid shifting potential uncertainties
of the first DNN into the second one. For later measurement
applications, the second DNN uses the predictions of the first
DNN as input.

The chosen network is again available with a model pre-
trained on a different dataset, called ImageNet [15]. Therefore,

transfer learning is again applied to reduce the training time. In
the ImageNet dataset, the network makes a prediction between
1000 classes, thus the final layer has the same number of out-
put neurons. Here, the network is only supposed to predict a
single float value, which is why the final layer is replaced to
have just one output neuron. The weights of the last layer are
randomly initialized [16].

The pretrained weights are still able to mitigate the effects
of this random initialization because the learning rate is
linearly increased over the duration of one epoch from
10−5 to 10−4. The network is trained for a total of 15 epochs
with a batch size of 128, and the learning rate is reduced by a
factor of 10 after eleven and 13 epochs to reach a converged
state. The objective function, which is minimized during the
training is the mean absolute error between the prediction and
the ground truth of the z-position, and the Adam optimizer
is used [40]. An L2 regularization with a penalty of 10−4 is
applied again as well as data augmentation by multiplying the
image intensity with a random factor in the range [0.8, 1.2].
Additionally, random crops of the particle images are used. For
this, the center point (xi,yi) of the particle image is randomly
varied in the range of [−5, 5] px and the resulting image zero-
padded to reach the size of the respective regression datasets.
As is common in machine learning, the z-labels of the net-
work are zero-centered and normalized with a factor of 10.
For example, the 5.03 µm particles cover a depth range from
−60 µm to 60 µm, the training labels for the network span the
interval [−6, 6]. This range of values was found to yield the
best results. The performance of the network is evaluated only
by the uncertainty σz in the z-position, again taken to be the
root mean square error between the prediction and the label.

The training for both networks was carried out on the high-
performance cluster of the TU Ilmenau. The GPU used was an
NVIDIA A100 Tensor-Core-GPU with 40 GB of RAM.

4. Results and discussion

4.1. Uncertainty for synthetic images

The results of the training on synthetic images are shown in
figure 6. The arrangement of the diagrams is kept similar to
the results of Barnkob et al [26]. The normalized out-of-plane
uncertainty σz/h as a function of the source density is shown
in figure 6(a). The depth range h amounts to 85 µm. Except
for the smallest source density, the uncertainty appears to be
almost constant, at a relative depth error of 0.8%. The reason
for the higher uncertainty atNs = 0.1 is not known. The almost
constant uncertainty is in accordance with the DNN results
from previous investigations but it was improved by an order
of magnitude and also surpasses the classic methods [26].

The resulting in-plane error for the two different training
configurations is shown in figure 6(b). Here, an increase of the
in-plane uncertainty is noted with increasing source density,
which is also in accordance with previous DNN results. Again,
the uncertainties were improved by one order of magnitude
and nowmatch the results of classical evaluationmethods. The
background removal and longer training duration of V2 reduce
the uncertainties by approximately 30%. A further reduction
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Figure 6. Uncertainties of the position determination for the synthetic particle images with (a) out-of-plane uncertainty σz/h, (b) in-plane
uncertainty σx, σy, and (c) recall and apparent source density N ′

s as a function of the source density. All quantities are given at a score
threshold of 0.8. The in-plane uncertainties and recall are given for two different training configurations, denoted as V1 and V2.

Figure 7. Comparison of different defocus particle tracking techniques. The out-of-plane and in-plane uncertainties are given at the
maximum apparent source density N ′

s
⋆. Quantities for classic methods are drawn from [26].

of the uncertainties is expected for longer training durations at
the expense of an increased computational cost.

The recall (solid line) and apparent source density N ′
s =

recall · Ns (dashed line) are shown in figure 6(c) for the two
different training configurations. Compared to previous stud-
ies, the recall shows a strong improvement, especially for high
source densities. The highest apparent source density of 0.27
is reached atNs = 0.6 but the curve appears to flatten. A longer
training only leads to a slight increase in the recall. The strong
reduction in the recall down to 40% is suspected to stem from
the large number of object instances in the images. However,
cutting the images into nine individual subimages did not res-
ult in a further improvement of the recall, likely because the
images are getting too small, so the deep network topology
does not improve the extracted information.

A comparison with two methods based on classic image
processing is shown in figure 7. The first one is based on the
classical evaluation method. Assuming Gaussian-like images,
a calibration function is used to relate the depth coordinate to
the semiaxes of the particle images [8, 12]. The same method
has been used to label particles in the experimental images
of this work. The second method uses a cross correlation
with calibration images to determine particle positions [14].
For all three methods, two variants are used, denoted by the
different colors of the markers. All uncertainties are given
at the highest apparent source density, denoted as N ′

s
⋆. On

the left and right-hand sides, the relative depth error and in-
plane errors at the corresponding source density are shown,

respectively. In comparison to the classic methods, both ver-
sions of the DNNs have a much higher apparent source density
which means they work reliably even for high seeding concen-
trations. This results in a higher spatial resolution and reduces
the amount of images or the measurement time. Furthermore,
the uncertainty in the depth position is less than half of the
uncertainty of the classic methods. Important to highlight is
that the network is easily applicable and no complex data pro-
cessing is needed to obtain a calibration function. This makes
the technique also interesting for non-expert users from dif-
ferent fields. The in-plane uncertainty of V2 is slightly larger
than the best performing classic method. However, it is expec-
ted that a longer training would further decrease the error to
also achieve the smallest in-plane uncertainty.

4.2. Uncertainty for real images

The resulting uncertainties of the real, rearranged datasets in x
and y over the source density are shown in figures 8(a) and (b).
The different cases are defined according to the legend. The
first four cases are shownwith different lines than the last three
since the former contain both 2.47 and 3.16 µm particles and
are expected to constitute a more difficult classification. The
same trends are visible in both plots but the uncertainty in y
is slightly larger than the uncertainty in x. A potential explan-
ation for this is the aspect ratio of the camera sensor which
results in non-square feature maps in the layers of the neural

9



Meas. Sci. Technol. 34 (2023) 105203 M Ratz et al

Figure 8. Uncertainties of the position determination for case 1–7. σx (a), σy (b) and σz (c) as a function of the source density. All
quantities are given at a score threshold of 0.8. The legend defining each case applies to all three subfigures.

network. In this way, the information is extracted better in the
x-direction as it has a smaller range of values.

For all cases, the in-plane uncertainty w.r.t. the labels is
always below 0.5 px. Barnkob et al [26] estimate the in-
plane uncertainty with classic image processing to be 0.7 px.
However, this cannot be confirmed without knowing the
ground truth of experimental images. This remains an open
challenge in the field of defocus particle tracking which is why
further discussion about the ‘real’ uncertainty is omitted. It is
expected that the uncertainty of the ground truth adds to a cer-
tain extend to the uncertainty of the neural networks, as the
uncertainty for the neural networks is a bit lower using purely
synthetic data (see figure 6) for the same source density Ns.
However, as the errors in the ground truth are assumed to be
random and the data set is large, the effect is rather small. The
in-plane uncertainty shows a maximum increase of about 25%
at the largest source density which is only a small increase
considering that four times as many particle are present.

Generally, very similar uncertainties are observed for all
cases and only slight differences are visible. It appears that
the cases with the 1.14 µm particles have a consistently higher
uncertainty compared to other cases. The in-plane uncertainty
for case 1 is the highest as this case features four different
particles sizes. Furthermore, the cases with only two different
particle sizes (4, 6, 7) show considerably lower uncertainties.
It is interesting to note that also the uncertainty for case 4 is
in the same range although the difference in size is with 2.47
and 3.16 µm particles the smallest. One possible explanation
for this is that the DNN reaches the best possible classification
and after that only a reduction of the in-plane error results in
a smaller loss for the training and is thus further improved.

The resulting uncertainty in the depth position σz is shown
in figure 8(c). The same legend applies again. The max-
imum uncertainty of 1.05 µm is observed for case 2 for the
highest source density. This is remarkable, since it means
that a maximum uncertainty of about 1 µm is expected,
even for particle distributions where many different sizes are
present. The requirement of APTVwhich only allows a narrow
size distribution is made obsolete with the current approach,

which widens the field of applications. Again, the uncertainty
increases with larger source density although the relative gain
is slightly smaller than for the in-plane uncertainty at approx-
imately 15%.

In contrast to the in-plane uncertainty, case 5–7 have a
smaller uncertainty than case 1–4. This is interesting, because
the latter are expected to be hard to classify. The regres-
sion DNN has no knowledge about the size of each particle
image and yet, the uncertainty is larger for these cases. One
possible explanation for this is that the network performs an
internal classification based on the features of the images.
Akin to the different calibration functions of each particle
size, the depth position is then given based on this internal
classification.

An additional finding is that the cases with the 1.14 µm
particles have a consistently smaller uncertainty compared to
the ones that do not. This is different to what was observed
for the in-plane uncertainty. This can potentially be explained
by the different ranges of depth positions. The depth positions
for this particle size only span 81 discrete values while the
5.03 µm ones have 121 values. Therefore, if the uncertainties
were normalized by the depth position, they are expected to be
much more similar between these two sizes.

To confirm these hypotheses, the uncertainties of the indi-
vidual particle sizes are investigated. However, please note that
the network was trained for all sizes at once. Case 1 is chosen
for this analysis because it contains all particle sizes. The indi-
vidual uncertainties over the depth position z are shown in
figure 9, where the columns (a)–(d) correspond to the differ-
ent particle sizes according to the caption. The different source
densities are denoted by the colors and markers according to
the legend. The individual uncertainties are shifted upwards in
steps of 0.2 px or µm. This is purely for visualization purposes
because otherwise, the curves would overlap, especially in the
center.

The in-plane uncertainties of the first DNN are shown in
the first and second row, for the x- and y-position, respectively.
For both uncertainties, a clear minimum is visible at approx-
imately +20 µm for σx and −20 µm for σy. This minimum
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Figure 9. Uncertainties for each individual particle size of case 1. σx (top row), σy (middle row) and σz (bottom row) as a function of the
depth position z. The scaling of each axis is the same but σx and σy are given in px while σz is given in µm. All quantities are given at a
score threshold of 0.8. The legend defines the source density of each color and applies to all subfigures. For visualization purposes, the
uncertainties are shifted upwards with increasing source density by 0.2.

coincides with the location of the focal planes, meaning that
the uncertainty of the in-plane position is small when the size
of the respective semiaxis is small and the particle image is
sharp in this direction. There are two plausible explanations
for this. The first is an error stemming from the labels, i.e. the
fitting of the Gaussian is more accurate near the focal planes
and thus, the labels are as well. The second possibility is that
the particles near the focal planes have a small particle image.
Therefore, this information is extracted at later layers which
contain more information, therefore reducing the uncertainty.

The uncertainty increases towards the boundaries of the
measurement domain and this increase becomes larger with
increasing source density. As was already suspected based on
the uncertainty of the individual cases, the smallest particles
have the highest uncertainty. A maximum uncertainty in the y-
direction of 1.5 px is reached for the highest source density at
the margins of the investigated depth range. For the other three
sizes, the maximum uncertainty is approximately 1 px, at the
boundaries of the measurement domain. This increase in the
uncertainty towards the boundaries can again be caused by one
of the effects for the pronounced minimum given above. The
increased uncertainty of the smaller particles can be explained

by the rescaling of the images to 8 bit. For defocused 1.14 µm
particles, the particle images are sometimes binned into just
four different intensity values. This results in a flattening of
gradients as well as a loss of information, thus leading to an
increased uncertainty.

The resulting uncertainty in the depth position is shown in
the third row of figure 9. Here, the shapes deviate for the indi-
vidual particle sizes. For the 1.14 µm particles, the uncertainty
is uniform in the center and then increases towards the bound-
aries. The 2.47 and 3.16 µm particles have a uniform uncer-
tainty over the entire depth position although a spike can be
observed for the 3.16 µm particles at approximately 40 µm.
This is also were the largest uncertainty occurs for the 1.14 µm
particles. For the largest particles, the uncertainty is smallest
at the boundaries and increases in the center. These observa-
tions are present for all source densities and the same spikes
and kinks in the course are observed.

For the smallest and largest particle size, the curves can
once more be explained by the rescaling of the intensities. For
the 1.14µmparticles, the strong binning results in an increased
uncertainty for defocused particles. For the 5.03 µm particles,
the intensities of particles near the focal planes is clipped
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Figure 10. Precision-recall for different source densities. For case 1–4 (a)–(d), both the precision and the recall have the same scaling. For
case 5–7 (e)–(g), the precision and the recall are the same again but they have a different scaling to (a)–(d). The legend defines the source
density according to each color and applies to all seven subfigures. The direction of increasing score is defined by the arrow in figure (a) and
also applies to all subfigures. The markers correspond to ten evenly spaced score thresholds from 0.05 to 0.95.

and therefore, gradients are clipped as well. This information
appears to be important for the second DNN as this results in
an increased uncertainty.

The reason for the spike in the 3.16 µm particles is not
known even though it is consistently observed for all source
densities. The uncertainty of the 2.47 and 3.16 µm particles is
also consistently larger than for the other two particle sizes, as
was already observed in the global uncertainties for each case.
The network appears to perform an internal classification and
as this is expected to be more difficult, the resulting uncer-
tainties for particles with a similar particle image are larger.
The resulting uncertainty of the 1.14 µm particles is smaller
than that of the 5.03 µm ones. This is suspected to stem from
the different range of depth positions; normalizing the uncer-
tainty by the measurement height yields a very similar relative
uncertainty.

4.3. Classification

The resulting precision-recall curves of all seven cases are
shown in figure 10. Case 1–4 in the top row and case 5–7 in
the bottom row, each use the same scaling of both the pre-
cision and the recall. The legend defines the source density
and applies to all seven cases. The markers correspond to ten
evenly spaced score thresholds ranging from 0.05 to 0.95.

Case 1, 2 and 4 show a very similar trend. The minimum
precision and the maximum recall are approximately 96%,
always for the smallest source density. For smaller source

densities, the minimum precision and the maximum recall
increase, which is expected. Reaching a higher precision is
only possible by reducing the recall drastically, sometimes
below 70%. Additionally, there is almost no difference for
small score thresholds, the precision and the recall take very
similar values for these small scores.

For case 3, the observations are slightly different. The recall
spans a similar region but the shape of the curve is much differ-
ent. For small score thresholds, theminimum precision is 86%,
but it then shows a very strong initial increase, meaning that a
higher precision can be reached at almost no additional cost.
For higher score thresholds, the achieved precision and recall
are again similar to the above discussed cases. Interesting to
note is that the markers which indicate the different thresholds,
are very similar above a score of 0.65. For these scores, the
classification works equally well for Case 1–4. It was found
that the drop in the precision for small score thresholds can be
mitigated by training the network for a longer period of time
but it can not be completely removed.

One possible explanation could be that this case percent-
agewise contains the most 1.14 µm particles of all four cases.
These have the largest in-plane uncertainty as was shown in
section 4.2. Therefore, the loss function used in the optimiz-
ation process is dominated by the in-plane error, thus mak-
ing the classification harder. This further explains, why case 4
in figure 8 has a very small uncertainty in the in-plane posi-
tion. The classification between these two sizes is difficult and
therefore, only the in-plane error is improved.
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Figure 11. Precision-recall curve of each individual particle size for case 1. The legend defines the source density of each color and applies
to all subfigures. The direction of increasing score is defined by the arrow in figure (a) and also applies to all subfigures. The markers
correspond to ten evenly spaced score thresholds from 0.05 to 0.95. Top row: comparison of the four curves on the same scale of each axis.
Bottom row: zoomed-in version on the relevant region of interest of each particle size.

A very different behavior is observed for case 5–7. The
lowest precision of 98.5% is higher and also only present for
case 5, the other two have a minimum of 99%. The precision
increases for smaller source densities at the cost of an only
slightly reduced recall. The strong difference to case 1–4 is
that the curves show almost no flattening, even for higher score
thresholds. Thus, almost no trade-off between the precision
and the recall is observed. A precision of 100% can be reached
while the recall is hardly reduced and only for score thresholds
above 0.95. Furthermore, the precision shows almost no drop
for larger source densities. The shape of the curve as well as
the minimum and maximum value of the precision are very
similar. A slight decrease in the recall is noted which is the
strongest for case 7 where a worst value of 91% is reached. A
similar decrease in the recall is also present for case 1–4 but
the difference is not visible due to the scale of the axis.

A general observation is that the shape and values of the
precision-recall curve do not appear to depend on the number
of different sizes in the dataset. In fact, case 1 which has four
particle sizes reaches better values than case 4 which has two.
Instead, it seems more important that the individual particle
sizes have different features in their particle image. The 2.47
and 3.16 µm particles included in case 4 have a very similar
particle image shape and intensity distribution, resulting in a
more difficult distinction and the worst precision among the
examined cases.

To verify this proposed explanation, the precision-recall
curves of the individual particle sizes are shown in figure 11.
The markers again correspond to ten evenly spaced score
thresholds from 0.05 to 0.95. The quantities are drawn from
case 1 because it contains all particle sizes. In the top row
of the figure, the curves are shown on the same scale for all

four particle sizes. As expected, the precision of the smallest
and largest particle size is very high and above 99.75% for all
scores and source densities. In contrast, the 3.16 µm particles
achieve a minimum recall of 80% with a precision as low as
94%. For the 2.47 µm particles, the minimum precision is
slightly higher at 96% but the minimum recall drops signific-
antly to below 50%.

The bottom row of figure 11 shows the relevant region of
interest of the precision-recall curve for each particle size.
For a better comparison, the ranges of the precision are the
same in figures (a) and (d) as well as (b) and (c), respect-
ively. A strong inclination is visible which flattens out for
higher score thresholds. The maximum precision is reached
at a smaller recall for the 1.14 µm particles compared to
the 5.03 µm ones. However, for a score of 0.95, the pre-
cision is almost at the maximum for the 1.14 µm particles
while improvements are still observed for the 5.03 µm ones.
Additionally, the curves only show slight differences for
the 5.03 µm particles with varying source density while
a decrease in the recall can be noted for the smallest
particles.

As mentioned before, the minimum precision of the
2.47 µm particles is much lower at 96%. Furthermore, the
curve shows a much smaller initial increase and then flat-
tens out much stronger, down to the aforementioned minimum
recall below 50%. A different trend is visible for the 3.16 µm
particles. The smallest precision is 94% and for smaller score
thresholds, the curve has a linear inclination. The curve flat-
tens out for precisions upwards of 99.9% but a smallest recall
of 80% is still retained. Another interesting point is that for a
score threshold of 0.95, a precision above 99.5% is reached for
the 2.47 µm particles while the 3.16 µm particles only have a
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Figure 12. Absolute number of FPs due to false classification of a
matched prediction (a) and due to an unmatched network prediction
(b) with increasing source density. The values are normalized
according to the source density to account for differently sized test
sets.

precision of 98%. For the latter, significant gains are observed
for even higher thresholds, the reason for this is unknown.

In general, the classification of the 2.47 and 3.16 µm
particles is more difficult, as is expected. They have a much
smaller precision and recall. As was mentioned in section 3.3,
the FPs consist of matched predictions which either have the
false class or unmatched predictions for which no target box
was found. The amount of these respective types for case 1
with a score threshold of 0.8 is shown in figures 12(a) and
(b), respectively. The particle sizes are defined according to
the legend. The number of FPs is ’normalized’ because for a
source density of 0.20, there are four times as many particles
and hence, the number of FPs is divided by four for a better
comparison.

As expected, the predictions with the false class are almost
two orders of magnitude larger for the 2.47 and 3.16 µm
particles compared to the 1.14 and 5.03 µm ones. On the log-
arithmic scale, the curves show almost no inclination which
agrees with the observations in figure 11 where only the recall
decreases with increasing source density.

The unmatched predictions show a similar trend, where
only the 1.14 µm particles have a slight increase. For the
other sizes, there are often less than ten unmatched predic-
tions, stemming from random fluctuations. Furthermore, there
are the most unmatched predictions for the smallest particle
size, which constitutes a larger amount of FPs than due to mis-
classifications. This is expected to occur for defocused particle
images which have a very small intensity, which can blend in
with the background. The main takeaway is that the misclas-
sification of 2.47 and 3.16 µm particles makes up the highest
percentage of the FPs.

The expectation is that these particles are most commonly
misclassified as one another. This is confirmed by looking at
the misclassifications of each particle size which are shown in
figures 13(a) and (b) for Ns = 0.05 and 0.20, respectively. The
same trends are observed for all source densities, so the other

Figure 13. Misclassifications of each particle size for Ns = 0.05
(a) and 0.20 (b). The vertical axis shows the percentage with which
each particle from the ground truth is misclassified. The legend
relates the colors to the particle sizes and applies to all subfigures.

two are omitted. The particle size of the bars refers to the label
provided by the ground truth and the individual bars show the
percentage of misclassifications as the respective size accord-
ing to the legend. The 2.47 and 3.16 µm particles are misclas-
sified as one another in more than 95% of the cases, meaning
that the network has difficulties distinguishing between these
two sizes which is expected given their similar particle image
features.

Interesting to note is that the smallest particle size is mis-
classified as a 3.16 µm particle in 80% of the cases. This
is unexpected but is likely a statistical problem due to the
small number of 1.14 µm FPs. Also, there are some 5.03 µm
particles which are misclassified as 1.14 µm ones for the
highest source density. This is likely caused by a false match-
ing of the prediction and target boxes.

5. Summary and conclusion

In this work, the application of DNNs to determine the particle
position for any given defocus method using multiple particle
sizes was analyzed and improved. Besides the 3D position
determination, the percentage of correctly classified particles
(precision) and the percentage of retained particles (recall)
were of interest. Two CNNs were used to find and clas-
sify the particles in the image plane according to their size
(object detection) and determine the depth position of indi-
vidual particles (regression). The analysis of synthetic and
experimental, rearranged particle images shows:

• A heavily improved performance with respect to the uncer-
tainty in all three dimensions on a benchmark dataset of syn-
thetic images with just one particle size. The uncertainty for
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the position measurement was drastically reduced in com-
parison to previous approaches. The uncertainty was below
1% of the depth of the measurement volume and allows reli-
able measurements and a flexible adaptation form many dif-
ferent scenarios. The methodology itself is independent of
the velocity field as it measures reliably the particle posi-
tion in any flow. Hence, the results are relevant for many
particle trackingmethods, might this be classical approaches
(e.g. [35, 43–45]) or based on neural networks (e.g. [46–48]
or the overview and references herein [49]).

• The limitations of the current approach were analyzed and
showed a decreased recall when the particle seeding concen-
tration is very high because more than one thousand object
instances are present in the image. Reducing the number
of particle images yields an improved recall but this phe-
nomenon can likely be traced back to the underlying net-
work architecture and therefore requires further analysis.

• On rearranged, experimental images of up to four different
particle sizes, the in-plane uncertainty is subpixel accurate
for overlapping particle images w.r.t. the provided labels.
The uncertainty in the depth position remains below 1 µm
for all size combinations and source densities. The smallest
particles have the highest in-plane uncertainty but the smal-
lest out-of-plane uncertainty.

• A higher uncertainty in the depth position for particles of
similar size was observed. It appears that the network still
performs a sort of internal classification that is then used in
the determination of the depth position.

• The distinction of particles of similar size is more difficult.
Achieving a precision upwards of 99.5% results in a recall
below 70% in the worst cases. Nevertheless, at the chosen
operating point of the DNN, a recall above 95% is always
retained with a precision above 96%.

Future work should extend the analysis to particles made of
different materials and sizes. Additionally, other scalar values
of interest can be learned by the network, e.g. pH-value, con-
centration, temperature [50, 51]. The current approach can be
extended effortlessly to more particle sizes, shapes and mater-
ials and a good performance of the DNNs is expected based
on the present results.
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