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Abstract
We propose a Lagrangian method for simultaneous, volumetric temperature and velocity
measurements. As tracer particles for both quantities, we employ encapsulated thermochromic
liquid crystals (TLCs). We discuss the challenges arising from color imaging of small particles
and present measurements in an equilateral hexagonal-shaped convection cell of height
h= 60mm and distance between the parallel side walls w= 104mm, which corresponds to an
aspect ratio Γ = 1.73. As fluid, we use a water-glycerol mixture to match the density of the TLC
particles. We propose a densely-connected neural network, trained on calibration data, to predict
the temperature for individual particles based on their particle image and position in the color
camera images, which achieves uncertainties below 0.2K over a temperature range of 3K. We
use Shake-the-Box to determine the 3D position and velocity of the particles and couple it with
our temperature measurement approach. We validate our approach by adjusting a stable
temperature stratification and comparing our measured temperatures with the theoretical results.
Finally, we apply our approach to thermal convection at Rayleigh number Ra = 3.4× 107 and
Prandtl number Pr = 10.6. We can visualize detaching plumes in individual temperature and
convective heat transfer snapshots. Furthermore, we demonstrate that our approach allows us to
compute statistics of the convective heat transfer and briefly validate our results against the
literature.

Supplementary material for this article is available online
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1. Introduction

Temperature-driven flows are ubiquitous. They are respons-
ible for many earthbound [1–5] and astrophysical phenom-
ena [6, 7] and thereby have a direct impact on our daily
life. Beyond the occurrence in nature, convective heat trans-
fer is important in many engineering applications on differ-
ent scales [8], e.g. the cooling of electronic components [9] or
inherent temperature-driven flows in large scale energy stor-
ages [10], to name just two. Hence, a deep understanding of
the underlying mechanism and the convective heat transfer, in
general, is essential.

In many cases, however, the specific configurations are
too complex and can not be efficiently modeled. Therefore,
the simpler, canonical Rayleigh–Bénard convection (RBC)
model is often studied instead. In the idealized RBC model,
a fluid is confined by adiabatic sidewalls, heated from below,
and cooled from above. Once a critical temperature differ-
ence between the cooling and heating plate is reached, fluid
motion sets in due to local fluid density changes. The emerging
convective flow is governed by two dimensionless numbers,
namely the Rayleigh number Ra= gα∆Th3/νκ, which is a
measure of the ratio between the strength of the thermal driv-
ing and viscous damping, and the Prandtl number Pr= ν/κ as
the ratio of the momentum to thermal diffusion, respectively.
In these definitions, g denotes the acceleration due to gravity,
α the thermal expansion coefficient, ∆T the temperature dif-
ference between the cooling and the heating plate and h the
height of the domain. ν and κ represent the kinematic viscos-
ity and the thermal diffusivity, respectively. Beyond Ra and
Pr, the aspect ratio Γ = w/h and shape of the container affect
the flow and the formation of characteristic structures [11,
12]. Since the first systematic studies [13, 14] thermal convec-
tion has been extensively studied by means of experimental,
numerical and theoretical methods [15, 16]. Nevertheless, the
flow phenomena are not yet fully understood, and many open
questions, for example, with respect to the thermal boundary
conditions [17, 18] remain.

Even though the power of high-performance computers is
ever-increasing, not all problems are viable to be solved by
numerical studies. Hence, experiments are still essential, espe-
cially when studying flow configuration apart from the clas-
sical idealized setup.

While volumetric velocity measurements in fluids are
now state-of-the-art [19–22], volumetric temperature meas-
urements, especially combined with velocity measurements,
remain the exception.

Massing et al [23] and Deng et al [24] combined lumin-
escent lifetime imaging, which leverages the temperature-
dependent intensity decay rate of exited photolumines-
cent particles and astigmatism particle tracking velocimetry
(APTV) for a joint study of temperature and velocity
on the micro-scale. This technique, however, is not well
suited for long-time measurements due to the photobleach-
ing effect. Also, on a micro-scale, Segura et al [25] combined
particle image thermometry (PIT) with non-encapsulated

thermochromic liquid crystals (TLCs) and APTV to meas-
ure temperature and velocity within an evaporating droplet.
All these approaches are well-suited for microfluidic measure-
ments since they use only a single camera. However, APTV
measurements require large particle images, limiting the field
of view and spatial resolution of the measurement and there-
fore are less suitable for macroscopic flowmeasurements [26].

Stelter et al [27] developed a thermographic 3D
Particle Tracking Velocime (PTV) approach. They use the
temperature-related spectral shift of the emission spectrum of
phosphorous particles, which were excited by an ultra-violett
laser. They were able to measure the temperature within a hot
jet but were limited to low seeding concentrations. Kashjan
and Nobes [28] applied a scanning approach to 2D two-
color laser-induced fluorescence. By scanning several parallel
planes in rapid succession, they could reconstruct the temper-
ature distribution within a slender RBC cell. This approach
can, in principle, also be combined with particle image veloci-
metry (PIV) measurements. Kimura et al [29] combined a
scanning planar PIV and PIT approach to reconstruct 3D tem-
perature and velocity distributions in rotating thermal convec-
tion. The applicability of their technique is limited due to the
requirement of a rotating experiment. Furthermore, a rotat-
ing domain influences the flow physics [30]. Rietz et al [31]
investigated the usage of TLCs and a light field camera for
joint 3D temperature and velocity estimation on a qualitat-
ive level. Closest to the method presented in this work is the
study by Schiepel et al [32]. In their work, they combined
tomographic PIV and PIT to investigate RBC. Even though
they successfully reconstructed both temperature and velocity,
the authors combined an Eulerian approach for the velocity
measurement and a Lagrangian approach for the temperature
measurements, leading to significant processing overhead due
to the tomographic processing itself as well as the necessity
to identify the individual particles within the reconstructed
intensity volume.

In this manuscript, we describe a purely Lagrangian
approach for simultaneous temperature and velocity measure-
ments in a volume. Namely, we combine Lagrangian Particle
Tracking with TLC-based PIT [33, 34] and apply it to an
RBC experiment. The Lagrangian approach yields efficient
processing and allows us to study the heat transfer along the
particle trajectory. We leverage the temperature-related color
change of the light scattered by the TLC particles for temper-
ature estimation. We implement a deep learning approach to
estimate the temperature from individual particle images and
the particle image positions in the color camera image, sim-
ilar to the method presented by Noto et al [35] for color-based
depth regression in color PTV. This approach benefits from the
additional information provided by the whole particle images
compared to a single averaged color value. Therefore, it is
robust to local, non-temperature-related changes in the TLCs’
color appearance.

The remainder of the manuscript is structured as follows.
In section 2, we discuss the challenges that arise from color
imaging of small particles. Thereupon, section 3 introduces the
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experimental setup, followed by a detailed explanation of the
developed method in section 4. Subsequently, we validate our
results and apply the method to RBC in section 5. Finally, we
summarize ourmanuscript and provide an outlook in section 6.

2. Color imaging of small particles

For the vast majority of particle-based optical flow measure-
ments, only the fluid velocity is measured, and hence, mono-
chromatic cameras are used [36]. In our case, however, color
imaging is essential to analyze the TLCs’ color, which con-
tains information about their temperature. Here two distinct
challenges arise, which are specifically important when small
particles are imaged, namely the color separation of the cam-
era and chromatic dispersion.

2.1. Color separation

The camera pixels are the light-sensitive elements on the
camera sensor. In general, a pixel does record light intensit-
ies and does not differentiate between the wavelength of the
incident light. Hence, the color must be separated before the
pixel absorbs the light. Several different approaches have been
developed. The by far most widespread method is to mount a
fixed color filter array (CFA), e.g. a Bayer pattern as shown
in figure 1(a), directly on top of the image sensors. Hence,
only light passing the filter is absorbed by the respective pixel
below. Due to the filter array, the image’s actual resolution
is reduced, and the RGB (red–green–blue) color image must
be reconstructed or demosaiced from the raw image data.
In the past, several demosaicing approaches have been pro-
posed [37–39]. Many of these approaches take image fea-
tures like edges or a larger region of the image into account
to increase the reconstruction performance and minimize arti-
facts [40, 41]. While these advanced approaches work well for
aesthetic photography, for the reliable temperature measure-
ment from small particle images, these approaches can corrupt
results by incorporating background regions into the recon-
struction of the particle images’ color.

Beyond the CFA, there are other color separation
approaches, like the so-called three-chip camera, which uses
a trichroic prism for color separation, the Foveon X3 sensor,
which separates colors by the wavelength-dependent penetra-
tion depth of the light, or the filter wheel camera. While the
three-chip camera records full-resolution color images and
hence no interpolation is required, the trichroic prism leads
to a sharp color separation with minimal overlap between the
color channels [42]. Hence, gradual changes in the particle
image hue, as typical in PIT, might not be resolved by the
three-chip camera. The Foveon X3 sensor, however, was, to
the best of our knowledge, never used in a scientific camera
and was discontinued. Finally, the filter wheel camera records
the color subsequently and is therefore not well suited to image
moving particles [43].

Considering all these aspects, a Bayer pattern camera
combined with bilinear demosaicing turned out to be the most

Figure 1. (a) Sketch of the color filter array called Bayer pattern. (b)
Schematic of the chromatic dispersion at media interfaces.

suitable choice and is also available inmany other laboratories;
however, a large enough particle image size is essential.

2.2. Chromatic dispersion

When observing objects under polychromatic illumination
through media with changing index of refraction and under
oblique viewing angles, chromatic dispersion occurs as con-
ceptualized in figure 1(b). While chromatic dispersion might
be neglected when imaging large objects, it can seriously cor-
rupt the color signal of small particle images. The effect might
not always be severe but should nevertheless be considered
when designing the experimental setup and applying the tech-
nique. Chromatic dispersion can be minimized by limiting the
media interfaces in the optical path, matching the index of
refraction, the usage of lenses with large focal lengths and suit-
able camera positioning.

3. Experiment

The experiments were performed in an equilateral hexagon-
shaped convection cell made from glass with a height
h = 60mm and a distance between parallel sidesw= 104mm,
corresponding to an aspect ratio Γ = w/h = 1.73. The
hexagonal shape was chosen to allow for an oblique view-
ing angle into the illuminated volume and to keep the cam-
era viewing direction perpendicular to the sidewall. Thereby,
chromatic dispersion as described in section 2 can be minim-
ized. An image of the experiment is shown in figure 2. Both
the cooling and heating plates aremade from aluminum,which
was chosen due to its high thermal conductivity. The temper-
ature in both plates can be adjusted by pumping water through
a meander structure inside the plate.

The temperature in each plate is measured by a PT-100 ther-
mistors with a maximum deviation of 0.1K at 0 ◦C. However,
the deviation of the individual temperature sensors to each
other was found to be below 0.01K. During the experiment,
a volume of ≈12mm in the depth direction z at the center of
the cell was illuminated by a custom-made light source with a
spectrum covering the visible range. The light source is a smal-
ler version of the LED light source used byMoller et al [44]. It
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Figure 2. Image of the experimental setup. The thermostats and the
connecting hoses are not shown.

Figure 3. Sketch of the top view inside the hexagonal cell. The
drawing indicates the camera arrangement and the illuminated
volume.

was used in pulsed mode with a pulse width of 20ms to avoid
motion blur and illuminated the full cell height. Since white
light is necessary for the TLCs, LEDs are a good choice due
to their wide illumination spectrum and minimal energy input
that may cause local heating.

The flow is captured by three cameras (PCO edge 5.5),
of which one is color-sensitive. The camera arrangement is
shown in the sketch in figure 3, which also includes the
coordinate system’s orientation. The cameras were positioned
approximately 60 cm away from the center of the cell and
observed the domain under an observation angle ϕ of 60◦ and
120◦, respectively. We used Scheimpflugadapters to optimize
the depth of field. All cameras were equipped with achromatic,
100mm focal length optics (Zeiss Milvus 2/100M). We chose

the observation angle ϕ = 60◦ for the color camera since it
is well suited for our experiment concerning the measurable
temperature range and sensitivity while looking perpendicu-
larly through the side walls. The two monochrome cameras
were positioned to have a suitable stereo angle with the color
camera while still looking through the sidewalls perpendicu-
larly. Detailed information about optimizing the camera angle
for the temperature and velocity measurements can be found
in [34, 45]. We observed that due to the CFA, approximately
50% less light reached the sensor of the color camera com-
pared to a monochrome camera in a similar configuration. The
camera setupwas geometrically calibrated using the 058-5 cal-
ibration target (LaVison GmbH) and a polynomial approach.
Afterward, we refined the calibration by applying the volu-
metric self-calibration onto the particle images [46]. The geo-
metric camera calibration was performed using DAVIS 10.2
(LaVison GmbH). As seeding particles encapsulated TLCs
with a nominal diameter of 100µm (Japan Capsular Products
Inc.) were used. The particles have a nominal (ϕ = 0◦) tem-
perature range from 20 ◦C where they start to appear red up to
30 ◦C when they appear blue and eventually become transpar-
ent again. However, in the current setup, the effective temper-
ature range is drastically reduced to≈ 19.7 ◦C– 22.7 ◦C due to
the larger observation angle resulting in increased sensitivity.
For further details on the influence of observation angle ϕ we
refer the reader to [34]. For the experiment, the particle slurry
was sieved, and only the fraction with a diameter between
63µm and 100µm was used as seeding particles. Since the
density of the particles is slightly higher than water, a water-
glycerol mixture with a volume fraction of 13% glycerol at
room temperature was used to minimize sedimentation and
floating of the particles.

4. Processing

4.1. Temperature calibration

To derive the temperature from the particle images, a calibra-
tion that connects particle images and temperature has to be
established. A flowchart of the procedure is shown in figure 4.
We start the calibration by setting a uniform temperature dis-
tribution inside the convection cell by connecting the bottom
and top plates both to the same thermostat. While adjusting
the temperature, the fluid is stirred by a magnetic stirrer to
enhance the heat transfer between plates and fluid. Thereby,
a uniform temperature distribution can be achieved. After the
temperature converged towards the set value, color images of
the TLC seeding particles were recorded while the temperat-
ure was simultaneously measured by the PT-100 thermistors
in the bottom and top plates to obtain the reference temperat-
ure Tref. Hence, the color appearance of the particles and the
temperature can be connected. This procedure is performed in
total 16 times from 19.7 ◦C to 22.7 ◦C with steps of 0.2K to
resolve the color response of the particles within this range.

Subsequently, we applied a simple bilinear interpola-
tion to reconstruct the color information from the CFA
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Figure 4. Flowchart of the calibration procedure. An example input
of the neural network is shown at the bottom right of the figure.
MSE is the abbreviation for mean squared error, which is a common
loss metric for training neural networks. It is defined in equation (1).

image of the camera. Figure 5 shows excerpts of the color
images at different reference temperatures. By comparing the
temperature-related color difference of the particle images
between the subfigures, the trend from red for low temperat-
ures over green towards blue for high temperatures is recog-
nizable. This is further verified by the circular mean hue value
⟨H⟩ written on top of each subfigure. The hue H is a meas-
ure that describes the perception of a color. It is a circular
scale in which H= 0 is equal to H= 1. For more informa-
tion on the hue values in the context of PIT, we would like
to refer to the work by Moller et al [34]. Overall, the color
difference between the particle images in the same subfigure
is small but directly contributes to the measurement uncer-
tainty. We then computed a grayscale version of the image
and applied thresholds to negate background noise and over-
saturated particles. We used 0.1× 65535 and 0.8× 65535 as
lower and upper thresholds, respectively. 65535 is the max-
imum intensity value in a 16-bit image. Subsequently, a local
maxima search was performed to identify the particle images.
We used the obtained position of the local maxima to extract
the 5× 5 pixels particle color images. The extracted particle
images were normalized by the maximum intensity across all
pixels and color channels. Thereby we compensate for the
intensity changes due to varying particle size and position

Figure 5. Exemplary images of TLC particles at 19.7 ◦C
(a), 20.6 ◦C (b), 21.7 ◦C (c), and 22.7 ◦C (d). On top of each
subfigure, the circular mean hue ⟨H⟩ is shown. It is a circular scale
in which H = 0 is equal to H = 1 [34].

within the illuminated domain. Thereupon, the particle image,
as well as the position of the center pixel in the color image
X and Y, totaling 77 input features, were split into training
and testing sets with a ratio of 9:1. An exemplary input is
shown at the bottom right of figure 4. Subsequently, the train-
ing data was forwarded into the machine learning pipeline for
which we used the scikit-learn package [47]. This pipeline
consists of the standard scalar preprocessing operation and an
multi-layer perceptron regressor, which is a simple, densely-
connected neural network, with three hidden layers of 100
neurons each and the Relu activation function. To train the net-
work, the Adam optimizer was used [48]. The neural network
was trained for 18 epochs until the mean squared error (MSE)
sufficiently converged for 10 consecutive epochs. The MSE
(equation 1) is a common loss metric for the training of neural
networks.

MSE=
1
n

n∑
i=1

(Tref,i−Ti)
2 (1)

In the definition of the MSE, n represents the number of
samples or, in our case, particle images.

In the next step, we applied the neural network to the test
data set to analyze the calibration quality and estimate the
measurement uncertainty. In figure 6(a), we plotted the mean
of the measured particle temperatures for each calibration step
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Figure 6. (a) Plot of the mean measured particle temperature ⟨T⟩cali (blue) for each reference temperature Tref. The dashed, gray line
indicates ⟨T⟩= Tref. (b) Plot of the mean absolute deviation between the reference and the measured particle temperature ⟨ |Tref − T | ⟩ (red)
and the standard deviation of the measured particle temperature σT (blue) for each reference temperature Tref.

Figure 7. Conceptual sketch of the joint temperature and velocity measurements.

⟨T⟩cali depicted as blue stars over the reference temperature
Tref obtained from the PT-100 sensors for each calibration step.
The dashed, gray line indicates ⟨T⟩cali = Tref, which denotes
a perfect mean value of the predictions. One can clearly
observe that the mean measured particle temperature ⟨T⟩cali
and Tref agree well, except for the highest reference temper-
ature, where the deviation is slightly higher since it is the
upper limit of the training temperatures in the calibration data
set.

For amore detailed investigation of themodel performance,
we computed the mean absolute deviation between the refer-
ence temperature and the measured temperature ⟨ |Tref −T | ⟩
(red) as well as the standard deviation of the measured tem-
perature σT (blue) for each reference temperature, which is
shown in figure 6(b). Looking at the mean absolute devi-
ation, we observe it to be lower than the standard deviation
except for the highest reference temperature. This indicates
a small systematic deviation from the reference temperat-
ure. Furthermore, the standard deviation as a measure of the

measurement uncertainty for all temperature steps is below
0.2K, indicating a relative measurement uncertainty of ≈
6.5% over the considered temperature range of 3K.

4.2. Joint temperature and velocity measurements

After successful training, the neural network can be applied
together with Shake-the-Box (STB) for joint temperature and
velocity measurements as visualized in figure 7. We started
by setting up the experiment and recording images with three
cameras. After demosaicing the CFA images, we generated a
gray-scale version of the color images. To demonstrate that the
particle images of the color camera can be used for tracking,
we compare a CFA particle image (a), a gray-scale conver-
ted particle color image (b), and a particle image recorded by
a monochrome camera (c) figure 8. While the imprint of the
CFA can be noticed in the CFA image, the intensity distribu-
tion of the gray-scale converted particle color image appears
Gaussian, albeit larger than the particle image recorded by
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Figure 8. Comparison of a typical Bayer particle image (a), a
gray-scale converted particle color image (b), and a particle image
recorded by a monochrome camera (c).

the monochrome camera. This proves that the demosaicing
acts similarly to a smoothing filter and that the gray-scale
converted particle color image is suitable for particle track-
ing even though the subpixel accuracy of the position estima-
tion might be slightly lower than for the monochrome particle
image. The exact influence of the demosaicing on the uncer-
tainty of the position estimation should be investigated in
future studies. Hence, the gray-scale converted color image,
together with the images of monochrome cameras, were then
processed using the time-series STB (Davis 10.2) [20]. Here,
we used only a single processing path. After the STB pro-
cessing, the 3D particle positions were back-projected into the
image of the color camera and the particle images were extrac-
ted. The extracted particle images were thresholded by their
mean intensity to discard over- and under-saturated particles
or particles not present in the color camera image. However,
due to the camera position with the two monochrome cameras
opposing each other and, thereby, generating little additional
perspective information, almost all the 3D position estima-
tions require the particle image from the color camera. Hence,
in theory, the temperature can be estimated for almost all
tracked particles. We then took the particle image and the
image coordinates as input for the trained neural network to
estimate the temperature. Subsequently, the particle temper-
ature data and the particle velocity data were merged. For
the convection measurement, the particle temperatures were
filtered using a sliding median filter with a window of three
time steps on the respective trajectory, and trajectories shorter
than five consecutive time steps were discarded.

5. Results

To validate our method, we set a stable thermal stratification
in the flow domain by cooling the bottom plate to 19.9 ◦C and
heating the top plate to 22.4 ◦C. Hence, heat is only conduc-
ted, and in an idealized setup, a well-known linear temperature
profile would emerge. Figure 9(a) shows a scatter plot of the
temperature of the particles in the x− y−plane. The plots con-
tain data from 200 snapshots. Looking at the scatter plot, we
can clearly identify the trend from low temperatures at the bot-
tom up to high temperatures at the top, with only a few appar-
ent outliers. For better quantification, we partitioned the cell
height into 19 equally spaced horizontal bins and computed

the average temperature and the standard deviation for each
bin. Figure 9(b) shows the resulting vertical temperature pro-
file ⟨T⟩strat. Each blue marker indicates the average temper-
ature of its corresponding bin, and the bar shows the stand-
ard deviation of the temperature within the bin. The dashed
line indicates the theoretical temperature profile that would
emerge under the conditions of adiabatic sidewalls and pure
conductive heat transfer between the plates. Comparing the
measured vertical temperature profile with the theoretical pro-
file shows that the measurements capture the trend. However,
the profiles differ, especially at the mid-height of the cell.
This deviation is caused by the boundary conditions of the
sidewall, which do not adhere to adiabatic assumption, espe-
cially in the case of the linear temperature profile. The side-
walls are made from 6mm thick glass with a thermal con-
ductivity λg ≈ 1WmK−1, which cannot be further covered by
insulation due to the necessity of optical access. Comparing
the thermal conductivity with the thermal conductivity of the
water-glycerol mixture λf = 0.54WmK−1, we can see that the
sidewalls do not achieve the thermal insulation required to be
considered adiabatic, especially when the heat transfer in the
fluid is not enhanced by thermal convection. Looking at the
error bars, we see that the standard deviation within the bins
increases with a temperature increase. This is related to the
decreasing temperature sensitivity of the TLCs at higher tem-
peratures.

Finally, we applied the approach to the classical RBC
setup. Therefore, we set the cooling plate temperature to Tc =
15.1◦C and the heating plate temperature to Th = 25.4◦C.
Combined with the fluid properties, this results in a Rayleigh
number Ra = 3.4× 107 and a Prandtl number Pr = 10.6.
At this point, we want to emphasize that the temperature dif-
ference between the plates is larger than the sensitivity range
of the TLCs. Hence, the thermal boundary layer can not be
resolved by the TLCs; in return, however, the bulk fluctuations
of the temperature can be well resolved. After an initial wait-
ing phase in which the flow established, a time series of 1000
images was recorded at a frame rate of 10 frames per second,
resulting in a measurement time t= 100 s. This time span cor-
responds to a dimensionless time of 71 free-fall units with a
free fall time tf =

√
h/αg(Th −Tc) = 1.40 s. After tracking

and post-processing, we obtained the temperature and velo-
city of approximately 5000 particles per time step. For a better
physical interpretation of the results, we non-dimensionalize
the time, length, temperature, and velocity according to the
equations (2)–(5), respectively,

t̃= t/tf =
t√

h/αg(Th −Tc)
(2)

x̃= (x̃, ỹ, z̃) =
x
h
, (3)

T̃=
T−Tc
Th −Tc

, (4)

ũ= (ũx, ũy, ũz) =
u√

hαg(Th −Tc)
. (5)
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Figure 9. (a) Scatter plot of the temperature of individual particles T of the stable thermal stratification achieved by cooling the bottom
plate and heating the top plate. The particle positions are projected in the x− y-plane. (b) Vertical temperature profile ⟨T⟩strat obtained by
binning the scatter plot data and averaging along the width. The bar indicates the standard deviation of the measured temperature within the
corresponding bin.

Figure 10. Exemplary temperature fluctuation Θ̃ snapshot of RBC.
A video of the whole time series can be found in the online
supplementary materials.

Figure 10 shows an exemplary snapshot of the dimensionless
temperature fluctuations

Θ̃ = T̃−⟨ T̃⟩x̃,̃t. (6)

With ⟨ T̃⟩x,t denoting the spatial and temporal average the
dimensionless temperature T̃. Looking at the figure, we can
clearly see the detaching thermal plumes and the fluctuations
within the bulk. Remarkably is also the hot region close to the
cooling plate at x̃ ≈ −0.25− 0.25, hinting at the presence of
the large-scale circulation (LSC) typical for convection cells
with an aspect ratio close to unity [49, 50]. Comparing the
structures in the temperature snapshot with those in the snap-
shot of the velocity magnitude, shown in figure 11, we observe
that particles with a larger difference from the mean temper-
ature have a large velocity magnitude. This is intuitive since
the local fluctuations in the density, caused by local temperat-
ure fluctuations, drive the fluid motion. We distinguish higher
velocity magnitudes close to the heating and cooling plate and
the vertical edges of the shown region compared to the center,
again indicating the presence of the LSC. The LSC organizes
along the domain diagonal and is therefore tilted around the
vertical axis with respect to the volume of interest.

The significant advantage of our purely Lagrangian
approach is that we are able to study the convective heat trans-
fer in time and space along particle trajectories. As these are
highly aligned to the thermal plumes this allows for a complete
characterization of the structures in space and time. Hence we
compute the convective heat transfer according to (7), similar
to [51, 52],

J̃conv =
√
RaPr ũz (x̃, t̃)Θ̃(x̃, t̃) . (7)

The definition of the convective heat transfer is equal to the
definition of the local Nusselt number [17, 53]. However, since
the local Nusselt number represents the overall heat transfer,
the conductive heat transfer must be neglectable, which is only
a valid assumption close to the horizontal mid-plane within
the Boussinesq-approximation regime. Hence, in our case, the
convective heat transfer should not be interpreted as the local
Nusselt number. Figure 12 shows the convective heat transfer
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Figure 11. Exemplary velocity magnitude Ũ snapshot of RBC. A
video of the whole time series can be found in the online
supplementary materials.

J̃conv for the same snapshot as shown in figures 10 and 11. The
plot unveils the enhanced heat transfer of the thermal plumes
compared to the heat transport of the turbulent background.
We also observe regions of inverted convective heat transfer
(blue) close to the thermal plumes. Animations of the tem-
perature fluctuations Θ̃, the velocity magnitude Ũ, and the
convective heat transfer J̃conv are available as online supple-
mentary material. Apart from analyzing single snapshots or
animations, the simultaneous temperature and velocity data
can be used to compute the heat transfer statistics. To demon-
strate that, we calculate the probability functions (PDF) of
the normalized convective heat transfer J̃conv/σ(J̃conv) with
σ(J̃conv) indicating the standard deviation of J̃conv. The prob-
ability density function shows the relative likelihood of a fluid
parcel being associated with a convective heat transport within
a specific range of values.

In figure 13 the PDFs of J̃conv/σ(J̃conv) for the inner region
|x̃|⩽ 0.25 (red) and outer region |x̃|> 0.25 (blue) are shown.
Both PDFs show the typical skew towards positive events,
which are more likely since, in RBC, heat is transferred from
the bottom to the top. We compare the results with the PDFs
presented by Shang et al [52], obtained from point-wise meas-
urements at the center of the cell and near the sidewall. Albeit
their measurements were performed at Ra O(109) and Pr
≈ 5.5, we observe that the shape, especially of the PDF of
the inner region, is similar to the respective counterpart shown

Figure 12. Exemplary convective heat transfer J̃conv snapshot of
RBC. A video of the whole time series can be found in the online
supplementary materials.

Figure 13. PDF of the normalized convective heat transfer
J̃conv/σ(J̃conv) for the inner region |x̃|⩽ 0.25 (red) and outer region
|x̃|> 0.25 (blue).

by Shang et al. The PDF of the outer region and the sidewall
PDF by Shang et al are less similar since even the outer region
can not be considered as close to the wall. Nevertheless, the
same trend towards less extreme J̃conv/σ(J̃conv) events at the
sidewall is also apparent in the PDF of the outer region. This
shows that the joint measurement technique can be used to

9
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measure the statistics of the heat transfer and oncemore under-
lines the capabilities of the proposed method.

6. Conclusion

In this paper, we presented a purely Lagrangian approach for
simultaneous and volumetric temperature and velocity meas-
urements in liquids. We employ temperature-sensitive encap-
sulated TLCs as seeding particles for the temperature as well
as the velocity measurements. We discuss the challenges that
arise from color imaging of small particles and propose pos-
sible solutions. The particle velocities and 3D positions are
obtained from the commercial version of the STB algorithm.
We propose a novel temperature processing method based on
a neural network that uses the whole particle images as well
as their position within the camera image and hence can com-
pensate for local changes in the particle images as they would
occur due to chromatic dispersion and varying viewing angles
for large fields of views. We evaluate our approach on the test
dataset and obtain relative uncertainties of ≈6.5%. We fur-
thermore validate our method on a stable thermal stratifica-
tion by heating the top plate and cooling the bottom plate. We
correctly catch the gradual change of the temperature over the
cell height; however, some deviations in the bulk are observed.
This is caused by the non-adiabatic sidewall, which due to the
low thermal conductivity of the fluid compared to the wall
material, can not be considered as a thermal insulator, espe-
cially for the case of purely conductive heat transfer within the
fluid. Finally, we apply our technique to RBC at Ra = 3.4×
107 and Pr = 10.6. We are able to clearly visualize detaching
thermal plumes as well as the LSC. Our joint method allows
us to determine the convective heat transfer of individual
particles and, hence, to study the statistics of the convective
heat transfer. In the future, we will focus on further devel-
oping the temperature measurement technique by improving
the processing and post-processing to detect and replace out-
liers more effectively to allow for higher seeding densities.
However, color ambiguities due to overlapping particles are
limiting the seeding density. To circumvent this and to reduce
the uncertainty of the temperature measurement, we are cur-
rently working on integrating another color camera into the
setup. Judging from the particle images in figure 8, we believe
that the uncertainty of velocity measurement will remain low,
but this should also be addressed in a dedicated study. Beyond
that, we aim for a deeper integration of the temperature meas-
urements within the 3D particle tracking algorithm to reduce
the computational cost. Another aspect is the development of a
joint data assimilation technique to extract Eulerian fields that
take advantage of the available temperature data. Finally, we
want to apply the new method to study large aspect ratio RBC
[17] and thermal energy storages [54].
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