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Abstract
The systematic manipulation of components of multimodal particle solutions is a key for the design of modern industrial 
products and pharmaceuticals with highly customized properties. In order to optimize innovative particle separation devices 
on microfluidic scales, a particle size recognition with simultaneous volumetric position determination is essential. In the 
present study, the astigmatism particle tracking velocimetry is extended by a deterministic algorithm and a deep neural 
network (DNN) to include size classification of particles of multimodal size distribution. Without any adaptation of the 
existing measurement setup, a reliable classification of bimodal particle solutions in the size range of 1.14 μm–5.03 μm is 
demonstrated with a precision of up to 99.9 %. Concurrently, the high detection rate of the particles, suspended in a laminar 
fluid flow, is quantified by a recall of 99.0 %. By extracting particle images from the experimentally acquired images and 
placing them on a synthetic background, semi-synthetic images with consistent ground truth are generated. These contain 
labeled overlapping particle images that are correctly detected and classified by the DNN. The study is complemented by 
employing the presented algorithms for simultaneous size recognition of up to four particle species with a particle diameter 
in between 1.14 μm and 5.03 μm . With the very high precision of up to 99.3 % at a recall of 94.8 %, the applicability to 
classify multimodal particle mixtures even in dense solutions is confirmed. The present contribution thus paves the way for 
quantitative evaluation of microfluidic separation and mixing processes.

1  Introduction

The mixing or separation of microparticles with various 
sizes is of crucial importance for biological or chemical 
analysis as well as for customizing pharmaceutical prod-
ucts, paints and coatings (Sajeesh and Sen 2014; Hessel 
et al. 2005). Innovative processes based on microfluidic 
lab-on-a-chip devices have achieved major advances for the 
systematic manipulation of the composition of particle solu-
tions (Ahmad et al. 2019; Gossett et al. 2010; Miyagawa 
and Okada 2021; Zhang et al. 2020; Zoupanou et al. 2021). 
In order to evaluate the performance and further optimize 
these processes, a particle size recognition is essential. 

Commercially available particle size analysis devices are 
typically designed for the separate examination of samples 
obtained from outlets (Shekunov et al. 2007; Gross-Rother 
et al. 2020). Common devices mostly utilize particle-light 
interactions (Stetefeld et al. 2016; Dannhauser et al. 2014; 
Xu 2015), resistive pulse sensing (Zhang et al. 2019; Weath-
erall and Willmott 2015; Grabarek et  al. 2019; Caputo 
et al. 2019), suspended microchannel resonators (Gross-
Rother et al. 2020; Stockslager et al. 2019; de Pastina and 
Villanueva 2020), or microscopic imaging (Sharma et al. 
2010; Rice et al. 2013). Among the available techniques, 
the microfluidic flow cytometry emerged as a widely used 
tool for the analysis of suspended particle mixtures (Mach 
et al. 2011; Picot et al. 2012; Gong et al. 2018; McKinnon 
2018). By means of hydrodynamic focusing, the particles 
are initially guided to a narrow pathline within a capillary 
and get spatially separated in flow direction. Following the 
typically laser-based illumination, a single-particle analysis 
based on an emitted fluorescence signal or scattered light 
is achieved. By analyzing the samples in a well-defined 
microfluidic environment, a high throughput and automated 
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measurements are realized. The gathered data allow a sta-
tistical process evaluation; however, it does not provide a 
deep insight into the particle behavior during the process. In 
addition, a characterization and optimization of the process 
can hardly be done. A label-free and in-process size recogni-
tion of particles is further realized by electrical impedance 
flow cytometry (de Bruijn et al. 2021; Zhong et al. 2021). 
However, the required integration of electrode arrays in a 
microchannel increases the fabrication effort and still pro-
vides no insight into the spatial distribution of the involved 
particle species. Non-invasive imaging techniques enable 
in-process size recognition and detection of particles with-
out significantly affecting the process, thus manifesting a 
solid database for optimization in early stages (Farkas et al. 
2021; Gao et al. 2018; Chen et al. 2019). In this context, a 
classification of the suspended particle species is usually 
achieved by image evaluation while using various fluores-
cent dyes in conjunction with multiple long-pass filters or a 
color camera (Ahmed et al. 2018; Sehgal and Kirby 2017). 
The extended demands on the measurement setup represent 
a major drawback of these techniques. To overcome these 
limitations, the present work aims at the simultaneous size 
recognition and three-dimensional position determination of 
suspended particles by analyzing defocused particle images 
obtained from astigmatism particle tracking velocimetry 
(APTV) measurements. In this way, no adaptation of the 
existing measurement setup is necessary, while the spatial 
distribution and classification of the involved particle spe-
cies are obtained in the process.

The APTV evolved as a reliable tool for three-dimen-
sional, three-component (3D3C) velocity measurements 
in microfluidic environments with limited optical access 
by integrating a cylindrical lens in the optical path to the 
camera (Cierpka et al. 2010). As this lens reduces the focal 
length along one axis of the camera sensor while keeping the 
focal length constant along the other axis, captured particle 
images appear elliptically shaped depending on their depth 
position. Based on the lengths of the semi-axes of the ellip-
ses ( a

x
, a

y
 ), the depth position (z) of the particles is mapped 

by a calibration function that is obtained from previously 
captured particles with known z-position (Cierpka et al. 
2011). Due to the geometric dependency between the size 
of a particle and the shape of its particle image (Rossi et al. 
2012), a monomodal size distribution is commonly used for 
velocity measurements (Rossi and Kähler 2014). However, 
by including particle size recognition algorithms in the eval-
uation of particle images, the depth position of particles with 
multimodal size distribution can be determined based on 
the corresponding calibration function. In this way, precise 
APTV measurements are achievable throughout the entire 
measurement volume with only one fluorescent dye and one 
camera, even when a multimodal particle solution is used 
(König et al. 2020).

The size recognition is accomplished by two algorithms. 
First, a deterministic algorithm was developed to achieve the 
discrimination between various particle sizes by the inten-
sity of the particle images (see Sect. 3.2). Second, a deep 
neural network (DNN) was trained for object detection of 
particles images. In recent years, DNNs gained increased 
attention for the fast segmentation and object classification, 
which make them suitable for image-based in-process evalu-
ation of particle images (Galata et al. 2021; Gao et al. 2018; 
Chen et al. 2019). By using a Mask R-CNN (Regional Con-
volutional Neural Network, He et al. 2017), real-time image 
processing was demonstrated to monitor the crystal size and 
shape during a L-glutamic acid crystallization process (Gao 
et al. 2018; Chen et al. 2019). However, since the size of the 
crystals was determined based on the size of the detected 
objects in the images, this approach is not applicable for 
astigmatically distorted particle images. Furthermore, the 
annotation of the training data poses a challenge, which is 
often performed manually at great expense. Advanced strate-
gies to provide rich semi-synthetic and fully labeled train-
ing data enable DNNs to correctly detect even overlapping 
particle images, thus exceeding the limitations of classical 
image processing (Franchini and Krevor 2020; Dreisbach 
et al. 2022). In the work of König et al. (2020), a cascaded 
DNN performed robustly even when using bimodal particle 
mixtures for velocity measurements, with deviations of an 
order of magnitude smaller than those of the classical APTV 
evaluation. However, in their study, no classification regard-
ing the particle size was done. In this study, a DNN with a 
Faster R-CNN architecture (Ren et al. 2015) is used, which 
extends the object detection in the first stage of the cascaded 
DNN of König et al. (2020) to include a size classification 
of the found particles. Furthermore, small-scale features of 
the particle images are utilized by implementing a feature 
pyramid network (FPN, Lin et al. 2017) architecture. The 
simultaneous determination of the in-plane coordinates (x, y) 
of suspended particles and assignment of these to different 
classes of objects according to their size provides a power-
ful tool for optimizing microfluidic particle separation and 
mixing processes.

The performance of the proposed algorithms is initially 
evaluated on two types of data sets using bimodal particle 
mixtures in Sect. 4.1. On the one hand, experimental images 
were captured in a laminar fluid flow with spatially separated 
particle species. On the other hand, detected particle images 
were cut out of the experimental images and resampled to 
create semi-synthetic images. In this way, the ground truth 
is well defined, even for overlapping particle images (Fran-
chini and Krevor 2020). To investigate the potential of the 
DNN trained on semi-synthetic images for real-world appli-
cations, the inference is carried out on experimental images 
in Sect. 4.2. By combining the images of different bimodal 
particle mixtures, a size classification into multiple classes is 
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investigated in Sect. 4.3. Finally, the results are summarized 
and compared in Sect. 5.

2 � Experimental setup

To compare the performance of the different algorithms, 
images of spherical particles with monodisperse diam-
eter distribution of (1.14 ± 0.03) μm , (2.47 ±  0.08) μm , 
(3.16 ± 0.07) μm and (5.03 ± 0.07) μm were acquired. 
The fluorescent polystyrene particles (PS-FluoRed, Ex/Em 
530 nm/607 nm, MicroParticles GmbH) were suspended in 
an aqueous glycerol solution (80/20 w/w deionized water/
glycerol) to reduce sedimentation. The fluid was pumped 
through a microchannel made of polydimethylsiloxane 
(PDMS) with a rectangular cross section (approx. 500 × 
185 μm2 ) at a constant flow rate of 5 μL∕min using a syringe 
pump (neMESYS, cetoni GmbH). In order to calculate 
regression planes of the intensity distribution (see Sect. 3.2) 
and to provide training data for the DNN (see Sect. 3.3), 
APTV measurements were first performed with a mono-
modal particle solution (see Fig. S1 (ESI)). Subsequently, 
the size recognition was based on measurements using par-
ticles of bimodal size distribution in a microchannel with 
three inlets. The two particle types of different sizes were 
fed individually through the outer inlets, while pure fluid 
was fed in the middle inlet to spatially separate both particle 
types across the channel width. In this way, the ground truth 
for particle size recognition was determined based on the 
particle positions along the channel width, while particle 
images of two different classes were contained in one image 
capture (see Fig. S2 (ESI)). The ratio between the outer and 
inner volume flow rates was set to 1.5:2:1.5.

The microchannel was positioned on top of an inverted 
microscope (Axio Observer 7, Zeiss GmbH) with a plan 
neofluar objective (M20� , NA = 0.4, Zeiss GmbH). A 
modulatable OPSL laser (tarm laser technologies tlt GmbH 
& Co.KG) was used to illuminate the particles through the 
channel bottom composed of 128◦ YX LiNbO

3
 . This pie-

zoelectric substrate is widely used for particle separation 
devices based on surface acoustic waves (Wu et al. 2019; 
Sachs et al. 2022). Since particle size recognition provides 
essential advantages for the optimization of those devices, 
the described experiment was designed close to the intended 
application. Due to the birefringence of the fluorescent 
light beam caused by the LiNbO

3
 crystal, a linear polariza-

tion filter was inserted into the optical path of the camera 
(Kiebert et al. 2017; Sachs et al. 2022). For detection, the 
reflected laser light was removed from the fluorescent light 
of the particles by a dichroic mirror (DMLP567T, Thor-
labs Inc) and a long-pass filter (FELH0550, 550 nm, Thor-
labs Inc). In addition, a cylindrical lens with a focal length 
of 250 mm was positioned approximately 40 mm in front 

of the camera (imager sCMOS, LaVision GmbH, 16 bit, 
2560 × 2160 pixel) to introduce astigmatism into the opti-
cal system. To cover the entire channel height, the measure-
ment volume was traversed in 8 steps in depth direction with 
a step size of Δz = 20 μm . At each measurement position, 
1000 double frame images were acquired with a frame rate 
of 10 Hz. For further evaluation, the relative depth position 
z′ of the particles in the respective measurement volume was 
used and corrected by the refractive index of the fluid. Addi-
tional details about the measurement setup can be found in 
Sachs et al. (2022).

3 � Methods

3.1 � Image processing

3.1.1 � Classical image evaluation

The acquired images were preprocessed using a background 
subtraction and smoothed by a Gaussian filter with a ker-
nel size of 5 × 5 pixel. Particle images were then segmented 
by a global threshold in the intensity profile. The in-plane 
positions and the lengths of the semi-axes of the elliptical 
particle images ( a

x
, a

y
 ) were determined by one-dimensional 

Gaussian fits in the x- and y-direction with subpixel accuracy 
(Cierpka et al. 2012). The depth position of the particles 
was assigned based on ( a

x
, a

y
 ) using a calibration function 

determined by calibration measurements with well-known 
z-positions (Cierpka et al. 2011).

In order to define the ground truth for the particle detec-
tion and size recognition in the experimental images, 
an outlier detection based on the Euclidean distance 
Z
err

=
(

(a
x,i − a

x,c(z
�

i
))
2
+ (a

y,i − a
y,c(z

�

i
))
2
)

1

2 of the found 
particle images ( a

x,i, ay,i ) to the respective calibration func-
tion ( a

x,c(z
�

i
), a

y,c(z
�

i
) ) at the assigned z�

i
 was used (Barnkob 

et al. 2021). Here, i = 1, 2, ...,N  and N is the amount of 
detected particles. Particles with Z

err
 below a global thresh-

old of 7.5 pixel were initially considered as valid. In a second 
step, the acceptable limit Z

err,lim(z
�
) of the Euclidean distance 

was adaptively determined as a function of the relative depth 
position z′ , leaving 90 % of the remaining particles images as 
valid. However, if Z

err,lim(z
�
) was locally exceeding the arith-

metic mean Z̄
err,lim across all relative depth positions, Z̄

err,lim 
was set as the local threshold instead. To further remove 
incorrectly detected overlapping particle images, the ratio 
of the summed intensities I

sum
∕(I

ex
− I

sum
) was used (see 

Fig. 1). Here, I
sum

 refers to the region within the analyzed 
ellipsoidal particle image determined by ( a

x
, a

y
 ) and I

ex
 

to the ellipsoidal region � (a
x
, a

y
) extended by a factor of 

� = 1.25 (Franchini and Krevor 2020). If this ratio exceeded 
a value of 4.5, the particle image was declared valid.
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3.1.2 � Preparation of data sets

The performance of the algorithms was evaluated on two 
types of data sets. These were either based on experimental 
images from APTV measurements or semi-synthetic images. 
The former each contains 16,000 raw images of suspended 
particles with bimodal size distribution (see Fig. S2 (ESI)), 
which were further merged to enable a multi-class size rec-
ognition (see Sect. 4.3). By adjusting the seeding concen-
tration with respect to the particle size, agglomerations and 
particle image overlaps were reduced. As a result, the num-
ber of particle images contained within a data set decreased 
with increasing particle size. Since the position and shape of 
the particle images were unknown a priori, the outcome of 
the classical image evaluation (see Sect. 3.1.1) was used as 
ground truth. As a consequence, incorrect labels could not 
be excluded entirely. Furthermore, overlapping and highly 
defocused particle images were not considered in the refer-
ence labels, since they cannot be detected by the classical 
segmentation algorithm.

The validated particle images (see Sect. 3.1.1) provided 
the basis for the preparation of the semi-synthetic images. 
After a background subtraction, the detected particle images 
were extracted from the experimentally acquired images 
along elliptical contours, which were determined by the 
lengths of the extended semi-axes � (a

x
, a

y
) . Here, the expan-

sion factor was constant at � = 1.25 . A total of 100000 indi-
vidual particle images were selected for each particle species 
to generate a balanced data set. This data set was divided 

into training, validation and test data in the ratio 70/10/20 %. 
Randomly selected particle images were then placed on a 
new synthetic image ( 2160 × 2560 pixel) at their original 
position ( xi, yi ). In this way, systematic distortion features 
in the intensity profile (König et al. 2020) that depend on 
the in-plane position were retained. For the same reason, 
conventional image augmentations such as rotation and 
flipping were avoided. The intensity of overlapping parti-
cle images was accumulated. A schematic representation of 
the image preparation is given in Fig. S3 (ESI). In order to 
generate a sufficient amount of training data, the individual 
particle images were arranged multiple times within the 
respective data set. Overall, the training data comprise at 
least 558,294 particles in each set.

The arbitrary composition of the particle images on each 
semi-synthetic image can be considered as augmentation 
(Ghiasi et al. 2021), which reduces the risk of overfitting 
when using the DNN. The particle image density N

s
 , which 

is described as the ratio of the sum of the particle image 
area to the full image area (Barnkob and Rossi 2020), was 
set to 0.02 in accordance with the experimental images. Par-
ticle images are overlapping by a mean fraction of 9.9 %. 
These were labeled within the semi-synthetic images and 
can potentially be found by the DNN. Finally, Gaussian 
noise with a mean of 0.5 counts and a standard deviation 
of 4.5 counts was added to the background of the images. 
The given ground truth represents a major advantage com-
pared to the experimental images, which contain unlabeled 
particle images that were not detected in the classical image 
evaluation.

3.2 � Deterministic algorithm for particle size 
recognition

In the proposed algorithm, the influence of particle size 
on particle image intensity (PII, Hill et al. 2001) is used to 
implement a deterministic particle size recognition based on 
APTV measurements. However, the particle image intensity 
remains a complex quantity, which further depends on the 
intensity and duration of the illumination, the sensitivity 
of the camera sensor, the optical system, the experimental 
setup, the grade of fluorescence and type of dye as well as 
the position of the particle within the measurement volume. 
Since the experimental conditions and the measurement 
system remained unchanged in all experiments, systematic 
influences on the intensity of the particle images as well as 
random fluctuations in the fluorescence grade of a particle 
species are neglected.

However, the spatial position of a particle (x
i
, y

i
, z

i
) has 

a significant effect on the intensity of its particle image. 
Due to aberrations in the optical system and the laser light 
intensity profile, characteristic intensity distributions are 
formed in the xy-plane, as shown in Fig. 2 for different 

Fig. 1   Histogram of detected particles with sizes of 1.14 μm and 
2.47 μm as a function of intensity ratio I

sum
∕(I

ex
− I

sum
) . The first 

peak corresponds to incorrectly detected clusters or fragments of par-
ticle images, as exemplified in the image framed in red. The orange 
box indicates the prediction from the classical image evaluation. Par-
ticle images with an intensity ratio greater than 4.5 (dashed line) were 
considered valid, as illustrated by the example in the green framed 
image
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particle species at a relative depth position z�
0
= 0 μm . Fur-

thermore, the stronger defocusing leads to a monotonically 
decreasing intensity as the distance from the focal planes 
( z1, z2 ) increases (Brockmann et al. 2020). To account for 
these influences, 2D regressions of the intensity profiles 
are approximated by second-order polynomials in the xy-
plane for each particle species at a constant depth position 
z′ (see Fig. 2). For this, the approximations are based on 
APTV measurements of a laminar fluid flow using parti-
cles with a monomodal size distribution. The step size in z′
-direction for calculating the regression planes amounts to 
Δz� = 1 μm . The full training pipeline is illustrated schemat-
ically in Fig. S3 (ESI). The size recognition of an unknown 
particle is performed according to the minimum absolute 
difference between its intensity and the value of the respec-
tive regression plane at the particle position (x

i
, y

i
, z�

i
) . The 

histogram of the difference in the summed intensity level 
I
dif f

 of the detected particle images and one regression plane, 
normalized by half the intensity difference between both 
regression planes I

dif f ,reg , is shown in Fig. 3 for a bimodal 
mixture of 2.47 μm and 3.16 μm particles. Particles with 
I
dif f

∕I
dif f ,reg < 1 are assigned to the 2.47 μm class, while par-

ticles with I
dif f

∕I
dif f ,reg ≥ 1 are classified as particles with a 

diameter of 3.16 μm.
In order to determine the particle image intensity, the 

intensity values of all pixels within the ellipsoidal area of 
the particle image are summed up. This approach is more 
robust against random noise in the intensity level at indi-
vidual pixel than taking the intensity value at the center of 
the particle image (Massing et al. 2016). Furthermore, not 

only the intensity peak but also the particle image size is 
considered, which proved to be beneficial for the size rec-
ognition in comparison to using the peak of a 2D Gaussian 
fit of the particle image intensity.

The performance of the deterministic algorithm is further 
improved by applying different outlier criteria. A schematic 
representation of the inference pipeline is given in Fig. S4 
(ESI). Initially, incorrectly detected fragments of defocused 
or clustered particle images are rejected by a threshold in the 
intensity ratio I

sum
∕(I

ex
− I

sum
) (see Sect. 3.1.1). Moreover, 

there is a link between the physical particle diameter and 
the particle diameter in the image (Rossi et al. 2012), caus-
ing misclassified particle images to potentially diverge to 
a greater extent from the respective calibration function in 
the a

x
a
y
-plane. The different calibration functions obtained 

for particles of 1.14 μm and 5.03 μm in size are illustrated in 
Fig. 4. The Euclidean distance to the respective calibration 
function can be used as an independent discriminator for the 
particle size recognition (Brockmann et al. 2020) yielding 
decent results in the vicinity of the focal planes, as shown 
by Sachs et al. (2022). However, the performance drops 
significantly for particles located outside the focal planes 
( z� < z

1
∨ z� > z

2
 ). To utilize this feature in the proposed 

algorithm, only particle images with an Euclidean distance 
Z
err

 smaller than the threshold Ẑ
err,lim to the assigned cali-

bration function are considered valid after size recognition 
based on the particle image intensity (Cierpka et al. 2011). 
The threshold Ẑ

err,lim was varied in the range of [1, 10] pixel 
during optimization (see Sect. 4.1). Furthermore, the dis-
tance to the nearest regression plane in the intensity level of 

Fig. 2   Summed intensity from images of spherical polystyrene par-
ticles with various sizes along with regression planes at a relative 
depth position z� = 0 μm . The intensity was normalized by the maxi-
mum intensity I

sum,max
 of the 5.03 μm particles to Ĩ

sum
= I

sum
∕I

sum,max
 . 

All data points were obtained from APTV measurement of a laminar 
channel flow

Fig. 3   Histogram of detected 2.47 μm and 3.16 μm sized particles 
against the normalized difference between the intensity of the par-
ticles and the regression plane in the intensity level of the 2.47 μm 
particles. The regression planes of the particles with sizes of 2.47 μm 
and 3.16 μm are located at I

dif f
∕I

dif f ,reg
= 0 and 2, respectively. Parti-

cles in the gray colored domains are discarded
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the particle images is considered. The latter is investigated 
by the parameter err

max
 in the range of [0.1,1.1] times half 

the distance between the neighboring regression planes at 
the respective particle position ( x

i
, y

i
, z�

i
 ). Adjusting err

max
 

remains a trade-off, since both the number of incorrectly and 
correctly classified particles decrease with err

max
 . By setting 

err
max

 for instance to 0.7, particles within the gray domains 
in Fig. 3 are rejected.

3.3 � Deep neural network (DNN)

The proposed particle size recognition is a typical classifica-
tion task for which great progress has been made in recent 
years by applying DNNs (Russakovsky et al. 2015). These 
networks use multiple layers of connected artificial neurons 
to detect image regions in which a desired object is sus-
pected, extract associated features and assign the detected 
objects based on a given set of classes. The application of 
DNNs extend into fields of medicine, where degenerative 
brain diseases can be detected on the basis of neuroimag-
ing data (Zeng et al. 2021), up to robotics, where the fast 
segmentation of images enables the use of mobile robots 
(Lewandowski et al. 2019; Seichter et al. 2021). Advanced 
techniques for using image features at multiple scales allow 
even small objects to be reliably detected (Lin et al. 2017; 
Hu et al. 2018; Li et al. 2019; Zeng et al. 2022). This opens 
the way for the use in industrial applications, such as surface 
defect detection of printed circuit board (Zeng et al. 2022). 
The use of DNNs to detect the three-dimensional particle 
positions from raw images obtained in APTV measurements 

has been successfully demonstrated by König et al. (2020). 
Although the achievable accuracy in position determination 
remained lower for that specific DNN compared to classi-
cal image processing algorithms for particle detection using 
monomodal particle solutions (Barnkob et al. 2021), the 
application of DNNs showed promising results when using 
bimodal particle mixtures (König et al. 2020).

The DNN used in this work combines the in-plane posi-
tion determination of suspended particles with the classifica-
tion of their size in multimodal particle solutions. For this, a 
network with a Faster R-CNN architecture (Ren et al. 2015) 
and a ResNet-50 (He et al. 2016) as backbone for object 
detection is trained in PyTorch version 1.11.0. The DNN 
incorporates a feature pyramid network (FPN) architecture, 
which was first introduced by Lin et al. (2017) to enable an 
inverse information transfer between later and earlier layers 
of the DNN. By using the FPN, the strong semantic informa-
tion in final layers with low resolution is combined with the 
high resolution in initial layers, which lead to rich semantics 
at all levels. In this way, small-scale features in the intensity 
distribution of the particle images are utilized to improve 
the precision of predictions (Lin et al. 2017; Dreisbach et al. 
2022). When using the experimental data set, raw images 
from flow measurements in the microchannel with only one 
particle species are employed during training (see Fig. S3 
(ESI)). The results presented are based on the inference on 
experimental images of bimodal particle solutions. In con-
trast, the semi-synthetic images are split into 70 % training, 
10 % validation and 20 % test data. The learning rate of the 
pre-trained DNN is scheduled to linearly increase over one 
epoch from 10−5 to a maximum of 10−4 and successively 
decrease by a factor of 10 at the beginning of each of the last 
two epochs. The network is trained for 5 epochs with a batch 
size of 16, and the AdamW optimizer (Loshchilov and Hut-
ter 2019) with a weight decay of 10−4 as regularization. Due 
to a large training set and short training duration, no addi-
tional data augmentation is used. The images are transmitted 
to the DNN with a bit depth of 16 bit to accurately resolve 
gradients in the intensity distribution for all particle species 
involved while avoiding clipping of high intensities due to 
large particles or overlapping particle images. The different 
particle species are labeled as classes of objects according to 
their size. During the training process, regions which contain 
suspected particles are identified by bounding boxes enclos-
ing the width and height of the particle images. The in-plane 
positions of the particles are determined based on the center 
of the bounding boxes. Correctly matched particles are 
required to have an Euclidean distance of less than 5 pixel to 
the corresponding label in the respective ground truth. Once 
the DNN has been trained on an NVIDIA A100 tensor-core 
GPU at the high-performance computing (HPC) cluster of 
TU Ilmenau, combinations of the acquisitions of bimodal 
particle flows serve to compare the size classification with 

Fig. 4   Valid 1.14 μm (green, 60.3 %) and 5.03 μm (red, 45.7 %) poly-
styrene particles with the corresponding calibration functions in the 
a
x
a
y
-plane. The particles are detected in a laminar fluid flow with 

only one particle species present. Outliers with an Euclidean distance 
of Z

err
> 2  pixel to the respective calibration function are depicted 

in gray for visualization. The positions of the two focal planes are 
marked as z

1
 and z

2
.
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the presented deterministic approaches during the inference 
(see Fig. S4 (ESI)). Here, particle labels predicted by the 
DNN are validated by a threshold in the classification score, 
which gives a measure for the confidence of the prediction.

4 � Results and discussion

4.1 � Particle size recognition in bimodal particle 
mixtures

The performance of the proposed algorithms for particle size 
recognition is initially investigated on the basis of semi-syn-
thetic and experimental images from APTV measurements 
with particle solutions of bimodal size distribution. For this, 
spherical polystyrene particles with a diameter of 2.47 μm are 
to be distinguished from 1.14 μm , 3.16 μm or 5.03 μm parti-
cles. Representative samples of semi-synthetic images contain-
ing 2.47 μm and 3.16 μm particles are given in Fig. 5a,b, while 
related experimental images are shown in Fig. 5c,d. In contrast 
to the experimental images, Fig. 5a,b do not include strongly 
defocused particle images in the background. These reduce the 
signal-to-noise ratio (SNR) of brighter particle images in the 
foreground, and thus complicate their detection. Predictions 
of classified particles given by the deterministic algorithm are 

depicted in Fig. 5a,c, while particles suggested by the DNN 
are labeled in Fig. 5b,d. Particles correctly classified by the 
algorithms are declared as true positives (TP, green), incor-
rectly classified particles as false positives (FP, red), and non-
detected particles are indicated as false negatives (FN, cyan), if 
they are considered as valid in the ground truth. Based on this 
sampling evaluation, a reliable size classification by the DNN 
is evident, while some undetected or misclassified particles 
are present in the predictions of the deterministic algorithm. 
The DNN is able to correctly detect and classify overlapping 
particle images in the semi-synthetic images, which is a sig-
nificant improvement compared to the deterministic algorithm. 
In the experimental images, overlaps are not labeled within the 
ground truth, which causes them to remain unlearned by the 
DNN during the training process.

To enable a quantitative comparison of the algorithms, the 
following metrics are determined.

(1)precision =
TP

TP + FP

(2)recall =
TP

ref

TP
ref

+ FN

Fig. 5   Elliptically distorted particle images with labels given by the 
particle image intensity (PII, a, c) and the deep neural network (DNN, 
b, d). Semi-synthetic images are shown in (a, b), while experimen-
tal images are present in (c, d). Spherical particles with 2.47 μm and 

3.16 μm in size are used in a bimodal mixture, which are hydrody-
namically pre-positioned to the left and right side of the microchannel 
in (c, d), respectively. Unlabeled particle images are not part of the 
ground truth
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The precision serves as a measure for the quality of the 
classification and considers all predictions given by the 
respective algorithm. In contrast, the recall is based on the 
reference labels, which are validated with knowledge of the 
ground truth (see Sect. 3.1.1), and quantifies the proportion 
of particles that are correctly assigned (TP

ref
 ) to the total 

number of valid particles.
In Fig. 6, the achieved precision is plotted against the 

recall for the utilized algorithms under variation of the 
accepted threshold values in the outlier criteria (see Sect. 3) 
for a particle mixture of 2.47 μm and 5.03 μm particles. 
For both algorithms, a characteristically increasing pre-
cision is revealed as the recall decreases. This trend is 
caused by a more rigorous validation, which leads to less 
particles being declared as valid and to a decrease in the 
recall. Simultaneously, more reliable predictions are kept 
and the precision increases. To identify the best combi-
nation of thresholds in the outlier criteria within the grid 
search, the minimum of the weighted Euclidean distance 
d =

[

(1 − recall)2 + �(1 − precision)2
]

1

2 to the optimal case 
with precision and recall equal one is calculated. In order to 
prioritize a reliable size classification higher than the yield, 
the precision is weighted higher by the coefficient � = 100.

The achievable precision following this optimization is 
plotted in Fig. 6a for all combinations of particle species 
using semi-synthetic images. Two trends emerge from the 
diagram: First, both the recall and the precision for a given 
particle combination are consistently highest using the 
DNN. Second, a distinction between 2.47 μm and 5.03 μm 
particles is more reliable than between 2.47 μm and 3.16 μm 
particles, as indicated by the precision. This is caused by 
less distinctive features regarding the intensity distribution 
of the particle images corresponding to the latter combina-
tion of particle sizes. However, a precision above 98 % is 

reached consistently. Greater limitations exist with regard 
to the recall for size detection according to PII, while values 
above 95 % were always attained with the DNN. One major 
reason for this is found in overlapping particle images, which 
are captured in the ground truth but remain undetected by 
the deterministic algorithm. Since the labels in the experi-
mental images are based on the classical image evaluation, 
the achievable recall based on PII increases for all combi-
nations of particle species (see Fig. 6b). It applies that the 
higher the precision obtained for semi-synthetic images, the 
more the recall increases when using experimental images. 
This is determined by the more rigorous validation of hard-
to-distinguish particle images based on the experimental 
images, which becomes necessary as a result of the strongly 
defocused particle images in the background. Concurrently, 
the precision achieved with the DNN increases slightly, 
while a drop of about 0.35 % is observed in the distinc-
tion between 2.47 μm and 3.16 μm sized particles using the 
PII. The results prove that the DNN performs more robust 
than the deterministic algorithm against defocused particle 
images in the background.

The achievable precision and recall are evaluated as a 
function of the relative depth position z′ in Fig. 7 using 
semi-synthetic images. Both algorithms yield a very uni-
form precision with minute variations when applied with 
optimized settings. A reliable size classification of bimodal 
particle solutions is thus demonstrated for the entire depth 
range studied. The proportion of correctly classified parti-
cles among the ensemble of valid particles is reflected by 
the recall, which is in contrast always lower when using 
the deterministic algorithm. For the latter, a decrease is 
especially noticeable for particle images obtained from 
particles outside the focal planes, e.g. z� < z

1
∨ z� > z

2
 . In 

these regions, a greater portion of particle images is fil-
tered by the outlier criteria in order to maintain accurate 

Fig. 6   Precision as a function of recall achieved for size recognition 
of 2.47 μm and 5.03 μm particles with DNN (dots) and PII (triangle) 
under variation of the threshold in the outlier criteria. The results are 
obtained by using either semi-synthetic images (a) or experimental 

images (b). Optimized results are given for different bimodal combi-
nations of particle species. The legend on the right hand side applies 
to both subplots
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size recognition. Overall, a significantly enhanced perfor-
mance was achieved using the DNN with respect to recall. 
Across all combinations of particle species examined, a 
precision above 99 % is obtained for 85.68 % of the depth 
range, while maintaining a recall above 98 % for 84.55 % 
of the depth range when applying the DNN. Thus, only 
2156 of the 465814 predicted particles are incorrectly 
classified in total with this algorithm.

In Fig. 8, precision and recall for the size recognition of 
different bimodal mixtures based on experimental images 
are depicted. The strongly defocused particle images in 
the background of the experimental images significantly 
affect the size classification and can lead to local drops 
in precision. These drops are particularly evident in the 
distinction between 2.47 μm and 3.16 μm sized particles 
using PII, since differences in the intensity of the par-
ticle images of both species are smallest. Considerable 
variations in the precision are evident across z′ in Fig. 8c. 
Due to the close intensity levels, a more rigorous valida-
tion with respect to Z

err
 was chosen, which is reflected in 

a decreasing recall with increasing distance to the focal 
planes ( z

1
, z

2
 ) (see Fig. 8d). Furthermore, a drop in preci-

sion is apparent within a narrow band when discriminat-
ing between 1.14 μm and 2.47 μm sized particles using the 
DNN (see Fig. 8a). This reduced precision can be attrib-
uted to a single particle sticking to the channel floor, which 
is consistently misclassified by the DNN. Since the asso-
ciated ground truth on the particle species is determined 
based on the position along the channel width, the sticking 

particle is labeled to have a diameter of 2.47 μm . However, 
an incorrect label cannot be discounted confidently when 
considering the intensity of the particle image.

4.2 � Application to different data sets

Training the DNN on fully annotated semi-synthetic images 
enables the detection and classification of overlapping par-
ticle images, as shown in Sect. 4.1. Applied experimentally, 
this provides the potential to use a higher particle seeding 
concentration, which could yield more Lagrangian particle 
tracks and a finer resolution of the velocity field at constant 
measurement effort and time (Kähler et al. 2012). To utilize 
this improvement in the particle size recognition, the DNN 
needs to be trained on semi-synthetic images and tested on 
experimental images during the inference phase. Since both 
types of data sets were sampled from similar distributions, 
a practical conversion is conceivable and will be explored 
below. The particle size recognition of 2.47 μm and 3.16 μm 
sized particles is used to evaluate the performance of the 
DNN, which is found to be the most difficult bimodal size 
distinction in Sect. 4.1. The inference is consistently based 
on background subtracted experimental images, while the 
training is conducted on two modifications of semi-synthetic 
images. Examples of the modified semi-synthetic images can 
be found in Fig. S5 (ESI).

The first modification (V1) is similar to the semi-synthetic 
images introduced in Sect. 3.1.2. These images contain only 
annotated particle images extracted from experimental data 
sets. Exemplary predictions by the DNN are shown in Fig. 9 

Fig. 7   Results obtained using semi-synthetic images. Precision and 
recall as a function of the relative depth position z′ for size classifica-
tion of bimodal particle solutions of sizes 1.14 μm and 2.47 μm (a, 
b), 2.47 μm and 3.16 μm (c, d), as well as 2.47 μm and 5.03 μm (e, f). 
Please note that the legend in (a) applies to all subplots

Fig. 8   Particle size recognition based on experimental images. Preci-
sion and recall against the relative depth position z′ obtained in the 
distinction between 1.14 μm and 2.47 μm (a, b), 2.47 μm and 3.16 μm 
(c, d), as well as 2.47 μm and 5.03 μm (e, f) sized particles. Please 
note that the legend in (a) applies to all subplots
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for the inference on experimental images. After successfully 
training the DNN on semi-synthetic images of modification 
V1 (Fig. 9a), a higher amount of particle images are cor-
rectly detected and classified ( �� ) as compared to training 
on experimental images (Fig. 9c). However, the number of 
incorrectly classified particles ( �� ) increases as well, which 
are mainly related to strongly defocused particle images and 
particles at the edge of the microchannel or image. These are 
rarely detected by the classical image evaluation and thus 
underrepresented in the semi-synthetic training images. In 
order to optimize the performance of the DNN according to 
the weighted Euclidean distance d (see Sect. 4.1), the thresh-
old in the classification score is set to be higher than when 
trained on experimental images. Consequently, a larger num-
ber of correct predictions is rejected as well, which increases 
the amount of false negatives ( �� ). The reduced performance 
of the DNN after training on semi-synthetic images of modi-
fication V1 is thus caused by a lack of similarity between the 
training and test images.

In order to overcome this lack of similarity, the semi-
synthetic images were further refined, creating a data set 
referred to as version V2. The modifications comprise the 

implementation of strongly defocused and near-edge par-
ticle images without annotation in the background of the 
semi-synthetic images. Since these particle images were not 
labeled by the classical image evaluation, they are extracted 
manually from the experimental training images. Provid-
ing accurate annotations could further enhance the perfor-
mance of the DNN and the detectable depth range; however, 
this is not feasible in the manual extraction of the particle 
images. The complexity of object detection increased sig-
nificantly due to the superposition of labeled overlapping 
particle images with strongly defocused particle images in 
the background. As a result, an extended training duration of 
ten epochs proved to be beneficial. With respect to Fig. 9b, 
the number of �� s could be reduced. Furthermore, fewer 
strongly defocused particle images are detected, since these 
are now included unannotated in the training. Simultane-
ously, predictions for particles closer to the focal planes are 
given with higher confidence and are not rejected as outliers.

A quantitative comparison of the results obtained with 
both versions of semi-synthetic images is given in Fig. 10a 
and (b) based on the precision as a function of recall and 
number of �� s, respectively. For an optimized threshold in 

Fig. 9   Exemplary predictions given by the DNN in the size recog-
nition of 2.47 μm and 3.16 μm particles using experimental images 
during inference. The training of the DNN was performed on semi-

synthetic images of modifications V1 (a) or V2 (b) as well as on 
experimental images (c). Unlabeled particle images are not present in 
the ground truth and correspond to the background



Experiments in Fluids           (2023) 64:21 	

1 3

Page 11 of 16     21 

the classification score, both precision and recall increase 
due to the modifications by about 11.59 % and 17.17 %, 
respectively. Concurrently, the number of �� s decreases by 
only 1.29 %, indicating a reliable detection and classification 
of overlapping particle images. This is further reflected by 
the steeper slope of the precision when using version V2 in 
Fig. 10b, which indicates that most of the incorrect predic-
tions show a lower classification score.

In comparison to training on experimental images, a mar-
ginal decrease of 0.24 % in precision is observed, which can 
be attributed to the much more complex object detection of 
overlapping particle images. However, the increase of 0.92 % 
in precision among the detected particle images that are not 
annotated in the ground truth underlines the benefit of train-
ing on semi-synthetic images. A larger discrepancy is seen 
in recall, which dropped by 2.76 %. The calculation of the 
recall according to equation 2 is based on the ground truth 
and disregards the 85,389 additionally found �� s. Overall, 
the number of correctly classified particle images increased 

by 28.34 % compared to training on experimental images. 
This is a significant improvement in performance, while less 
individual particle images are required in training and the 
experimental effort can be reduced. The results highlight the 
relevance of a high similarity between the training and test 
data sets in order to utilize the potential of a improved detec-
tion rate when training the DNN on semi-synthetic images.

4.3 � Multi‑class size recognition

After applying and optimizing the particle size recogni-
tion on experimental and semi-synthetic images of bimodal 
particle solutions, the distinction between multiple particle 
species is analyzed in the following. For this, the existing 
experimental images each containing two different particle 
species are concatenated into new experimental data sets 
without manipulating the individual images. In this way, 
experimental data sets are generated that include multiple 
particle species, while only two particle species are present 
on each image. Furthermore, semi-synthetic images of modi-
fication V1 are used in which all involved particle species 
are present on each image. In the different data sets either 
particles with 1.14 μm , 2.47 μm and 5.03 μm or 1.14 μm , 
2.47 μm , 3.16 μm and 5.03 μm in diameter are investigated 
as three- and four-class distinction problems, respectively. 
The outlier criteria optimized in Sect. 4.1 are adaptively 
applied within the deterministic algorithms depending on the 
predicted particle class. For size recognition by the DNN, 
the outlier detection is performed using a constant thresh-
old in the classification score, which is optimized for each 
combination of particle species according to the minimum 
of the criterion d (see Sect. 4.1).

The achieved precision in particle size recognition is 
plotted in Fig. 11 for the proposed algorithms as a func-
tion of recall. With the extension to three and four classes 
of particles, the precision does not significantly decrease 
with values above 96 % or 97 % using semi-synthetic or 
experimental images, respectively. For both algorithms, the 
achievable precision and recall in the classification of three 
particle species are consistently higher than the results of the 
four-class discrimination. This trend is expected to persist 
for an increasing number of classes within the similar size 
range.

Furthermore, only a marginal decrease in precision is 
revealed when using PII in the three-class problem com-
pared to the distinction between two of the involved par-
ticle species. The reason for this is found in the significant 
deviation between the intensity levels of the different par-
ticle images, which facilitates the size classification. How-
ever, a more challenging particle size recognition is con-
stituted by the four-class discrimination, in which 3.16 μm 
sized particles were complemented to the data set. Herein, 
the minimum mean deviation between adjacent regression 

Fig. 10   Results obtained for the inference on experimental images 
and training on either semi-synthetic images in different modifica-
tions (V1, V2) or experimental images. The precision is depicted 
as a function of the recall (a) and the number of correctly classified 
particles (TP, b). The results with an optimized threshold in the clas-
sification score are highlighted by filled markers. Here, 2.47 μm and 
3.16 μm particles are distinguished in a bimodal particle solution. 
Please note that the legend in (a) applies to both subplots



	 Experiments in Fluids           (2023) 64:21 

1 3

   21   Page 12 of 16

planes in the intensity level is reduced by about 30 %, which 
leads to a reduced precision consistent with the results of the 
bimodal size classification. Compared to the application to 
three particle species, the precision decreases by approx. 
1.82 % or 2.07 % and the recall by about 3.01 % or 4.45 % 
when using semi-synthetic or experimental images, respec-
tively. Employing the DNN, the drop in precision and recall 
observed between the three- and four-class problem is con-
siderably reduced to about 0.2 % and 1.75 %, respectively. 
In conjunction with the excellent precision clustering around 
99.44 %, the results indicate a robust size classification even 
with four particle species.

The analysis of precision and recall as a function of rel-
ative depth position z′ is shown in Figs. 12 and 13 using 
semi-synthetic and experimental images, respectively. The 
obtained results for the particle size recognition of multiple 
species are somewhat similar to those achieved for bimodal 
particle mixtures. Using either algorithm, very uniform 

profiles of precision with values higher than 98 % in about 
89 % of the depth range were reached consistently in the 
semi-synthetic images. However, local drops are revealed in 
the discrimination of four particle species by the PII using 
experimental images (see Fig. 13c). These are caused by 
the superposition of the inaccuracies in the classification of 
the bimodal size-distributed particles, since this data set is 
based on combinations of the images used in Sect. 4.1. For 
the same reason, the local drop at z� ≈ 7 μm in the preci-
sion obtained by the DNN in Fig 13a reappears, which is 
attributed to an adherent particle in the images of 1.14 μm 
and 2.47 μm sized particles (see Sect. 4.1).

In Fig. 12, a decrease in recall for defocused particle 
images ( z� < z

1
∨ z� > z

2
 ) is evident when employing the 

deterministic algorithm. A similar trend is further pre-
sent in Fig. 13d due to the more rigorous validation of 
the involved 3.16 μm particles according to Z

err
 . In these 

domains, a higher amount of particles are correctly 

Fig. 11   Precision as a function of recall obtained in the classification of multiple particle species by using DNN (dots) and PII (triangles). The 
results are achieved based on semi-synthetic (a) or experimental images (b)

Fig. 12   Precision and recall as a function of the relative depth posi-
tion z′ for the classification of 1.14 μm , 2.47 μm and 5.03 μm (a, b) 
as well as 1.14 μm , 2.47 μm , 3.16 μm and 5.03 μm sized particles (c, 
d) by using DNN and PII. Here, semi-synthetic images are used. The 
legend in (a) applies to all subplots

Fig. 13   Precision and recall over the relative depth position z′ for the 
classification of particles with sizes of 1.14 μm , 2.47 μm and 5.03 μm 
(a, b) as well as 1.14 μm , 2.47 μm , 3.16 μm and 5.03 μm (c, d). The 
results are obtained by using DNN and PII on experimental images. 
Please note the legend in (a), which applies to all subplots
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classified by the DNN, circumventing limitations regard-
ing the defocusing of particle images in the observed depth 
range. Furthermore, detected overlapping particle images 
lead to a consistently higher recall by the DNN in the 
semi-synthetic images.

The results demonstrate the applicability of the pro-
posed algorithms for multi-class size recognition with a 
very stable performance of the DNN. For a deeper analy-
sis of the misclassifications in the discrimination between 
four particle species, the relative number of involved and 
incorrectly classified particles is illustrated in Fig. 14. In 
the semi-synthetic images (Fig. 14a), an even distribu-
tion across all particle species was set. The highest fre-
quency of misclassifications occur due to 2.47 μm and 
3.16 μm sized particles using either algorithm. This is to 
be expected since both the intensity of the particle images 
and features in the intensity distribution are closest in 
similarity between these particle species. In contrast, dis-
tinctive features are more pronounced in the images of par-
ticles with sizes of 1.14 μm and 5.03 μm , which facilitates 
their classification. The experimental data set contains a 
constant number of images for each bimodal particle com-
bination investigated, thus resulting in a varying relative 
number of valid particles for each particle species (see 
Fig. 14b). The smaller the particles, the higher the chosen 
seeding concentration, which means that large particles 
are underrepresented in this data set. An exception to this 
trend is the proportion of 2.47 μm particles of about 49 % 
of the total number of valid particles, since these occur in 
every bimodal particle mix. The underrepresentation of 
5.03 μm particles applies also to the training data, which is 
reflected in a significantly increased proportion of misclas-
sifications by the DNN. Simultaneously, the deterministic 
algorithm behaves robust against the imbalance of the data 
set. Resembling the results with semi-synthetic images, 

the highest relative amount of misclassifications occurs 
for 2.47 μm and 3.16 μm sized particles.

5 � Conclusion

In this study, the particle size recognition of suspended 
tracer particles is investigated by implementing a deter-
ministic algorithm and a deep neural network (DNN). 
The performance of both algorithms is compared based 
on experimental and semi-synthetic images from astig-
matism particle tracking velocimetry (APTV) measure-
ments in a microchannel. By utilizing differences in the 
particle image intensity (PII), a discrimination of spheri-
cal 2.47 μm and 3.16 μm sized particles is achieved with 
a precision above 98.0 % by the deterministic algorithm. 
After training the DNN for object detection and particle 
size classification, an even higher precision beyond 99.3 % 
is achieved in all examined bimodal particle solutions. 
Concurrently, the recall remains consistently above 92 % 
across approx. 90.1 % of the investigated depth range, 
which further demonstrates the applicability of the DNN 
for particle size recognition of highly defocused particle 
images. By training the DNN on modified semi-synthetic 
images, a reliable detection and size classification of over-
lapping particle images is achieved even in experimental 
images. The increased detection rate represents a signifi-
cant improvement in the particle size recognition for real-
world applications.

Once various outlier criteria are optimized based on the 
discrimination of bimodal particle mixtures, a size recog-
nition of multimodal distributed particles is performed. 
Fluorescent polystyrene particles in the range of 1.14 μm to 
5.03 μm are distinguished into four classes with a precision 
of up to 99.3 %, while a recall of 94.8 % is maintained. The 

Fig. 14   Relative distribution of the number of valid particles 
(involved particles) and relative frequency of incorrectly classified 
particles (FP) by the proposed algorithms (PII, DNN) versus particle 

size. Illustrated are the results of the particle size recognition of four 
particle species, which is based on semi-synthetic (a) or experimental 
images (b)
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obtained results demonstrate the capability of a reliable 
particle size recognition using a standard APTV setup for 
microfluidics. The introduced algorithms allow a low cost 
extension of APTV to particle solutions with multimodal 
size distribution, which does not require any adaptation of 
the existing measurement equipment or the use of different 
fluorescent dyes for each particle species. Furthermore, 
the training of the DNN is based on flow measurements, 
which can be integrated into the measurement procedure 
with reasonable effort and does not require a rather time 
consuming acquisition of training data using sedimented 
particles as usual. Variations in the optical setup, such 
as the magnification, might affect the appearance of fea-
tures in the particle images and the performance of the 
algorithms, which requires further investigation in upcom-
ing studies. Meeting the requirement of high similarity 
between training and test data sets, by using e.g. modified 
semi-synthetic images, is an important aspect of ongoing 
research that opens new prospects to improve the applied 
measurement technique. For this, an assessment of the 
positional uncertainty of the predictions by the introduced 
DNN based on synthetic or semi-synthetic data sets with 
rich ground truth is further needed. The application of the 
algorithms for label-free identification of targeted parti-
cle species paves the way for future usage as triggers for 
online on-demand particle separation devices (Ma et al. 
2017; Zhang et al. 2020; Bakhtiari and Kähler 2022).
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