
Phys. Fluids 34, 045106 (2022); https://doi.org/10.1063/5.0087977 34, 045106

© 2022 Author(s).

Direct data-driven forecast of local turbulent
heat flux in Rayleigh–Bénard convection
Cite as: Phys. Fluids 34, 045106 (2022); https://doi.org/10.1063/5.0087977
Submitted: 11 February 2022 • Accepted: 14 March 2022 • Published Online: 05 April 2022

Sandeep Pandey, Philipp Teutsch, Patrick Mäder, et al.

https://images.scitation.org/redirect.spark?MID=176720&plid=1757167&setID=405127&channelID=0&CID=645035&banID=520640774&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=013411114b86d12cff94c76ea45c19d5c6dec90d&location=
https://doi.org/10.1063/5.0087977
https://doi.org/10.1063/5.0087977
https://aip.scitation.org/author/Pandey%2C+Sandeep
https://orcid.org/0000-0002-4247-7961
https://aip.scitation.org/author/Teutsch%2C+Philipp
https://orcid.org/0000-0001-6871-2707
https://aip.scitation.org/author/M%C3%A4der%2C+Patrick
https://doi.org/10.1063/5.0087977
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0087977
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0087977&domain=aip.scitation.org&date_stamp=2022-04-05

Direct data-driven forecast of local turbulent
heat flux in Rayleigh–B�enard convection

Cite as: Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977
Submitted: 11 February 2022 . Accepted: 14 March 2022 .
Published Online: 5 April 2022

Sandeep Pandey,1 Philipp Teutsch,2 Patrick M€ader,2,3 and J€org Schumacher1,4,a)

AFFILIATIONS
1Institute of Thermodynamics and Fluid Mechanics, Technische Universit€at Ilmenau, D-98684 Ilmenau, Germany
2Institute for Practical Computer Science and Media Informatics, Technische Universit€at Ilmenau, D-98684 Ilmenau, Germany
3Faculty of Biological Sciences, Friedrich-Schiller-Universit€at Jena, D-07745 Jena, Germany
4Tandon School of Engineering, New York University, New York, New York 11201, USA

a)Author to whom correspondence should be addressed: joerg.schumacher@tu-ilmenau.de

ABSTRACT

A combined convolutional autoencoder–recurrent neural network machine learning model is presented to directly analyze and forecast the
dynamics and low-order statistics of the local convective heat flux field in a two-dimensional turbulent Rayleigh–B�enard convection flow at
Prandtl number Pr ¼ 7 and Rayleigh number Ra ¼ 107. Two recurrent neural networks are applied for the temporal advancement of turbu-
lent heat transfer data in the reduced latent data space, an echo state network, and a recurrent gated unit. Thereby, our work exploits the
modular combination of three different machine learning algorithms to build a fully data-driven and reduced model for the dynamics of the
turbulent heat transfer in a complex thermally driven flow. The convolutional autoencoder with 12 hidden layers is able to reduce the dimen-
sionality of the turbulence data to about 0.2% of their original size. Our results indicate a fairly good accuracy in the first- and second-order
statistics of the convective heat flux. The algorithm is also able to reproduce the intermittent plume-mixing dynamics at the upper edges of
the thermal boundary layers with some deviations. The same holds for the probability density function of the local convective heat flux with
differences in the far tails. Furthermore, we demonstrate the noise resilience of the framework. This suggests that the present model might be
applicable as a reduced dynamical model that delivers transport fluxes and their variations to coarse grids of larger-scale computational mod-
els, such as global circulation models for atmosphere and ocean.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087977

I. INTRODUCTION

Turbulent thermal convection processes form one fundamental
class of flows that are found in numerous natural and technological
applications ranging from astrophysical scales in stellar interiors to
sub-meter lengths in heat exchangers.1–4 The fundamental physical
question in these flows is the one on the local and global mechanisms
of turbulent heat transfer that is typically significantly enhanced by the
turbulent fluid motion in comparison to a purely diffusive transport in
a quiescent medium. In its simplest configuration, a thermal convec-
tion flow consists of a fluid layer that is enclosed by two impermeable
parallel plates at distance H, known as the Rayleigh–
B�enard convection (RBC) case. The bottom plate is uniformly heated
at a constant temperature T ¼ T0 þ DT , and the top plate is cooled at
T¼T0.

5 For temperature differences DT > 0 being large enough, the
buoyancy-triggered fluid motion is turbulent. Convective turbulence is
sustained by characteristic coherent structures that are denoted as

thermal plumes. These unstable fragments of the thermal boundary
layer permanently rise from the bottom or fall from the top into the
bulk region of the convection layer and thus inject kinetic energy into
the flow. Thermal plumes are also the local building blocks of the
global heat transfer; their morphology has been studied in several
experimental6,7 and numerical studies.8,9 They are connected with the
local convective heat flux, which is given by

jconvðx; tÞ ¼ uzðx; tÞhðx; tÞ; (1)

with

hðx; tÞ ¼ Tðx; tÞ � hTiA;t : (2)

Here, uz is the vertical velocity component and h is the deviation of
the total temperature field T from the mean hTiA;t , where h�iA;t repre-
sents a combined average with respect to simulation domain area con-
tent A and time t. The analysis of this flux requires the joint solution

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0087977
https://doi.org/10.1063/5.0087977
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0087977
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0087977&domain=pdf&date_stamp=2022-04-05
https://orcid.org/0000-0002-4247-7961
https://orcid.org/0000-0001-6871-2707
https://orcid.org/0000-0002-1359-4536
mailto:joerg.schumacher@tu-ilmenau.de
https://doi.org/10.1063/5.0087977
https://scitation.org/journal/phf

of the coupled Boussinesq equations for the velocity and temperature
fields. Here, we want to model the dynamics of this central transport
quantity and its statistical properties directly by recurrent neural net-
works (RNNs) without solving the underlying nonlinear equations for
velocity and temperature fields. This results in a significant simplifica-
tion and data reduction and sets the major motivation for the present
work.

Machine learning (ML) methods have caused a change of para-
digms to analyze, model, and control turbulent flows.10–16 This evolu-
tion is driven by the growing technological capabilities of numerical
and laboratory experiments to generate high-dimensional, highly
resolved data records at increasing Reynolds or Rayleigh number that
can reproduce many aspects of fully developed turbulent flows in great
detail. Flow features, such as the thermal plumes in the present case,
are then to be classified, dynamically modeled, or connected to statisti-
cal moments for parametrizations and other reduced descriptions. To
illustrate the typically resulting demands of a data analysis better, let
us consider a concrete example of a three-dimensional direct numeri-
cal simulation (DNS) of a turbulent thermal convection flow. A layer
of height H with an aspect ratio of 60H : 60H : H at a Rayleigh num-
ber Ra � 108 is resolved with about 6� 109 spectral collocation points
on an unstructured spectral element mesh for each of the involved
fields, such as the three velocity components, temperature, and pres-
sure.17 It amounts to 181 GB of raw data per snapshot. The estimate
does not incorporate the temporal dynamics that is typically stored as
a sequence of such highly resolved snapshots. This underlines clearly
the necessity to process and reduce data in completely new ways to
uncover the main physical processes, such as the characteristic struc-
tures that form the backbone of the turbulent heat transfer.

Reduced-order models (ROMs) are derived to approximate the
dynamics of the most energetic degrees of freedom or the large-scale
flow and predict low-order turbulence statistics such as mean or fluc-
tuation profiles. Most of these models are data-driven and can be gen-
erated in several ways, e.g., by Proper Orthogonal Decomposition
(POD),18,19 Dynamic Mode Decomposition,20 nonlinear Laplacian
spectral analysis,21 or expansions in modes and eigenfunctions of the
Koopman operator22,23 to mention only a few. Particularly, the POD
is still a popular workhorse for projection-based reduced models24–27

and has been combined more recently also with ML algorithms.28–31

With the increase in the vigor of turbulence (which is in line with an
increase in Reynolds or Rayleigh number), the number of necessary
POD modes in a ROM grows quickly. As a consequence, limitations
of these models are reached quickly even with efficient algorithms
such as the snapshot method.32 This circumstance calls for alternative
ways to reduce simulation snapshots, being further motivation for our
present work.

In the present work, we combine a convolutional autoencoder
(CAE) with recurrent neural networks (RNNs) to obtain a ML-based
equation-free dynamical model for the convective heat flux field
jconvðx; tÞ. The convolutional encoder reduces the high-dimensional
simulation snapshots of the convective heat flux to a low-dimensional
feature space. In this latent space, the RNNs are trained and then run
autonomously to advance the dynamics of jconvðx; tÞ with respect to
time. A subsequent convolutional decoder transforms the resulting
latent space data back into high-dimensional data snapshots of the
flux. The choice of the hyperparameters of the RNNs will be explained
more detailed further below. We discuss two CAE-RNN architectures

that will predict the low-order statistics, such as the mean and fluctua-
tion profiles of the convective heat flux, very well and are even able to
reproduce the probability density function (PDF) of jconvðx; tÞ. The
two chosen RNN architectures are as follows:

• Echo state networks (ESNs) belong to the class of reservoir com-
puting models33 and have been used to describe the nonlinear
dynamics of the Lorenz 63 or Lorenz 96 models, chaotic acoustic
models, and two-dimensional convection without and with phase
changes.34–38 In the latter cases, the ESN was combined with a
data reduction by POD,37,38 such that the temporal dynamics of
the POD expansion coefficients was modeled.

• Gated Recurrent Units (GRUs) with a specific sequence to
sequence (seq2seq) architecture form the second RNN architec-
ture that is studied in the present work. More precisely, we apply
an encoder–decoder GRU39 that was originally designed for nat-
ural language processing, but is now also applied to predict con-
tinuous time series data.40,41

Here, we thus substitute the data reduction and expansion that
was formerly done by means of a snapshot POD37,38 by a convolutional
encoder/decoder network, which will be better suited for higher-
dimensional simulation data. Different from previous studies, we feed
the derived field jconvðx; tÞ directly into the ML algorithm. Throughout
this work, we will remain in the two-dimensional Rayleigh–B�enard con-
vection setup to demonstrate our concepts. For example in Ref. 37, we
were able to compress our data by 92% while losing 17% of the turbu-
lent variance. This is improved now even further to a compression by
99.7% while losing only about 5% of the variance.

A similar approach, to the present one, has been successfully
taken by Gonzalez and Balajewicz, who combined a long short-term
memory network with a CAE to study the one-dimensional viscous
Burgers equation, interacting point vortices in a plane, and a two-
dimensional lid-driven cavity flow.42 Furthermore, RNN-based enco-
der–decoder architectures are also used as a comparison model for
ESNs in similar applications.43–46 Encoders and decoders have been
successfully employed for de-noising data,47,48 anomaly detection,49

and to dimensionality reduction50,51 in many other fields. Encoder
and decoder networks can incorporate a variety of nonlinear activation
functions, thus taking advantage of higher-order representations in
connection with a deep network architecture. Particularly for multi-
dimensional datasets, such architectures can reduce the training effort
due to its parameter sharing and sparse connectivity.52 For example,
the spatiotemporal dynamics of fluid flows past cylinders and air-
foils53–55 or for turbulent channel flows56 were successfully predicted
and analyzed with CAEs. In the field of turbulent convection, neural
network algorithms have been used to fit the global laws of turbulent
heat and momentum transfer better.57

Finally, we want to mention the connection between the linear
Koopman operator, which describes the evolution of observables of a
nonlinear dynamical systems, and deep learning methods. Eivazi et al.
combined Koopman methods with RNNs.58 Lusch et al. used convolu-
tional neural networks to discover representations of the eigenfunctions
of the Koopman operator from data for linear higher-dimensional
embeddings of the nonlinear dynamics.59 Otto and Rowley combined
an autoencoder and a linear recurrent dynamics in the latent space to
learn low-dimensional subspaces of observables that are invariant with
respect to the Koopman operator.60

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf

The outline of the manuscript is as follows. Section II presents
the Boussinesq equations of turbulent convection and the numerical
simulation model in brief that generate the database. Section III
describes in detail the building blocks of our CAE-ESN and CAE-
GRU networks including the hyperparameter tuning. Section IV dis-
cusses the training procedures and the results of both model runs with
test data. We summarize the work and give a brief outlook at the end
in Sec. V. Further specific details of the architecture of the CAE and
the training are summarized in Appendixes A and B, respectively.

II. SIMULATION DATA OF TWO-DIMENSIONAL
TURBULENT CONVECTION

The turbulent convection data are generated by a DNS using
nek5000 spectral element solver61 in the two-dimensional case. The
Boussinesq equations (3)–(5), which couple the velocity components
(ux, uz) and temperature T, are solved in a closed rectangular cell of an
aspect ratio L=H ¼ 6. They are given in dimensionless form by

@ui
@xi
¼ 0; (3)

@ui
@t
þ uj

@ui
@xj
¼ � @p

@xi
þ

ffiffiffiffiffiffi
Pr
Ra

r
@2ui
@x2j
þ Tdi;z; (4)

@T
@t
þ uj

@T
@xj
¼ 1ffiffiffiffiffiffiffiffiffiffi

RaPr
p @2T

@x2j
: (5)

The pressure field is denoted by p and i; j 2 fx; zg. The horizontal
coordinate is given by x and the vertical one by z. The dimensionless
Rayleigh number Ra is a measure of the vigor of convective turbulence,
set to Ra ¼ 107 here. The dimensionless Prandtl number Pr, which is
the ratio of momentum to thermal diffusion, was fixed to Pr ¼ 7, as
for thermal convection in water. The parameters are given by

Ra ¼ gaDTH3

�j
and Pr ¼ �

j
: (6)

Here, g is the acceleration due to the gravity, a the thermal expansion
coefficient, � the kinematic viscosity, j the thermal diffusivity, and
DT the temperature difference between the bottom and top plates.
All equations are made dimensionless by the cell height H, free fall
velocity Uf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gaDTH

p
, and DT > 0. Note that 0 � T � 1 and thus

�0:5 � h � 0:5.

The simulation domain is covered by 48� 16 spectral elements.
On each element, the four fields are expanded in polynomials of order
11 in each space dimension. For the machine learning analysis, these
fields are obtained by a spectral interpolation on a uniform grid con-
sisting of Nx � Nz ¼ 320� 60 points. As a result, we have 2400 snap-
shots and thus a total of 2400� 320� 60 data points. Snapshots were
sampled at every 0.125 free fall time units,H=Uf . This data generation
process using the DNS took approximately 123 CPU-hours including
the initialization with random perturbations. More details of the simu-
lation and the boundary conditions can be found in Ref. 37.

Figure 1 shows snapshots of the two-dimensional convection
fields. We display the temperature (left column) and vertical velocity
component (middle column) that are combined to the derived convec-
tive heat flux field jconv (right column). The latter field is characterized
by sharp ridges that suggest a strongly localized convective heat flux.
Exactly these ridges will be extracted as the dominant features by the
CAE. Following from definitions (1) and (2), a positive local convec-
tive heat flux jconv is present for both, uz > 0 and h > 0 as well as
uz < 0 and h < 0; compare panels (a) and (c). We note that the
Nusselt number, a global dimensionless measure of the turbulent heat
transfer, follows Nu ¼ 1þ

ffiffiffiffiffiffiffiffiffiffi
RaPr
p

hjconviA;t � 1. Again, the symbol
h�iA;t stands for a combined average with respect to time t and area
A ¼ L� H.

III. BUILDING BLOCKS OF THE END-TO-END PIPELINE

Figure 2 illustrates the building blocks and workflow in our end-
to-end pipeline. It consists of a convolutional encoder for compressing
the two-dimensional spatiotemporal data, a recurrent neural network
(RNN) to forecast dynamics in the reduced order space (also known
as latent space), and an accompanying convolutional decoder decom-
pressing the two-dimensional convective heat flux field from the fore-
casted reduced order data. We study two types of RNNs for
forecasting, an ESN and a GRU-based network. Once trained, the pre-
sented purely data-driven approach can process simulation snapshots
on the fly. In contrast, the previously applied POD snapshot analy-
sis37,38 requires knowledge of the entire training dataset ab initio to
extract the POD modes from the collection of simulation snapshots
and thus to obtain subsequently the time series of the POD expansion
coefficients as the RNN input. The following subsections discuss the
individual building blocks of our CAE–RNN approach in detail.

FIG. 1. Contours of the two-dimensional convection fields for two time instances. (a) and (d) Total temperature T, see also Eq. (2). (b) and (e) Vertical velocity component uz.
(c) and (f) Resulting turbulent convective heat flux jconv as given by Eq. (1).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf

A. Generation of compressed snapshot representation

An autoencoder is a machine learning model consisting of an
encoder and a decoder module, see Fig. 2. The purpose of the encoder
is to compress its input into a trained latent space. The accompanying
decoder takes data in this latent representation and reconstructs its
representation in the original input domain. From a learning perspec-
tive, autoencoders are self-supervised, i.e., the network’s input is also
used as expected output and no additional labeling effort for a training
dataset is required. That is, in theory an autoencoder encodes input
data I into c ¼ encodeðIÞ where c 2 Rl . It decodes c back into
Î ¼ decodeðcÞ subsequently. In practice, however, there will be devia-
tions, such that Î � I (cf. Fig. 2). An L2 norm is used as an objective
function, and the training uses a gradient descent method, e.g., with
adaptive momentum (Adam).62

A CAE utilizing convolutional layers rather than fully connected
layers is specifically suitable for coping with the complexity of high-
dimensional input data. A typical convolutional layer combines a con-
volution operation on the input data with trainable kernels and an
activation function to induce a nonlinearity. Consider, three-
dimensional input data I 2 RCin�Nx�Nz with Cin the number of input
channels. Here, Cin ¼ 1 (as we load the convective heat flux field only
into the network) and thus I 2 RNx�Nz . This input is convoluted with
a kernel km as shown in Eq. (7), where M ¼ ½1;Cout	
N with the
number of output channels Cout. Furthermore, bm is the bias term of
kernel km, and w a nonlinear activation function. Zero-padding is typi-
cally applied to a layer’s input to prevent information loss at the edges
of the input data,

Convðm; IÞ ¼ w bm þ
XCin

i¼1
km � Ii

 !
form 2 M: (7)

In the encoder, multiple convolutional layers are typically followed by
pooling layers. A window of configurable size and sliding is used with
a configurable step across the input. Thereby, the input per window is

aggregated into a single output element with a selectable aggregation
function. This aggregation function of the common max-pooling layer
retains only the maximum element per window. The pooling layer’s
step size is typically chosen such that it reduces the dimensionality of
the input I. The eventual output of the encoder consists of data in the
latent space Rl where l � Nx � Nz . The CAE’s decoder follows a
mostly analogous design. The main difference is the use of upsampling
instead of max-pooling layers to decode the data back to input domain
size. An upsampling step, also known as unpooling, doubles the data
dimension. Nearest-neighbour linear interpolation is therefore used in
the present work. The effective processing of complex turbulence data
requires a deep architecture consisting of multiple convolutional and
accompanying upsampling layers in order to obtain a representation
without substantial loss of information (cf. Table IV in Appendix A).
In the end-to-end scenario and after training all networks, we utilize
the CAE’s encoder to derive a compressed form ct from a given snap-
shot It . The compressed snapshot becomes input to a subsequent
RNN that forecasts the next reduced representation ĉ tþ1, which is
then decoded back into the input domain by the decoder unit of the
CAE.

B. Forecast of compressed snapshots in the latent
space

We study two types of RNNs for forecasting the dynamics of
compressed snapshots in the latent space, echo state networks (ESNs)
and gated recurrent units (GRUs).

1. Echo state network

The ESN has previously shown great potential in modeling
sequential turbulent flow data.35,63 ESNs consist of an input layer; a
sparsely occupied and randomly parametrized network of recurrent
and direct connections, the reservoir; and an output layer, see Fig. 3
(top).

FIG. 2. Illustration of proposed end-to-end pipeline for the forecasting of convective heat flux dynamics. The convolutional autoencoder receives the high-dimensional field
data of the direct numerical simulations at time t and has been trained for a task-specific order reduction. A trained RNN consumes the reduced order dynamics compressed
by the encoder and forecasts future dynamics in the reduced order space at time tþ 1. The compressed dynamics is input for the decoder that accompanies the CAE to pre-
dict a fully resolved flow field at time tþ 1. Note that the RNN can also be run in latent space for several time steps p>1 from time t to tþ p.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf

The reservoir is represented as an N�N adjacency matrix WðrÞg

whose initialization depends on a vector of hyperparameters g (cf. Sec.
IV) and is used to encode the ESN’s input into a hidden representa-
tion, the reservoir state, that accumulates information of previous
inputs. N is also called the reservoir dimension and chosen typically
much larger than the dimension of the latent space, N
 l. This reser-
voir is furthermore updated per time step with new input. More specif-
ically, at each time step t the ESN’s input ct influences the
computation of an updated reservoir state rt 2 RN . This step is given
by

rt ¼ ð1� aÞrt�1 þ a tanh WðinÞct þWðrÞg rt�1
� �

: (8)

The parameter a denotes a leakage rate determining the blending of
previous state and current input. The random matrices WðinÞ and
WðrÞg are initialized at the beginning of the training and remain
unchanged thereafter. The ESN’s output at time t is obtained by

ĉ tþ1 ¼WðoutÞrt : (9)

In the ESN case, the final output layer is trained only; no backpropaga-
tion in several epochs is required as for convolutional networks. This

implies that the components of the output matrix WðoutÞ have to be
optimized to give a minimal cost function that quantifies the difference
between training data and ESN output. The cost function C is given by

C WðoutÞ½ 	 ¼ 1
ntr

Xntr
t¼1

WðoutÞrt � ct
� �2 þ b

Xl
i¼1
jjwout

i jj
2
2; (10)

and has to be minimized corresponding to

WðoutÞ� ¼ arg minC WðoutÞð Þ: (11)

Here, wout
i denotes the ith row of WðoutÞ and jj � jj2 the L2 norm. The

number of training samples is ntr. Equations (10) and (11) are known
as ridge regression with the parameter b, also known as the Tikhonov
regularization parameter. The last term suppresses large values of the
rows of the output matrix. This regression problem is solved by

WðoutÞ� ¼ YST SST þ b Id
� ��1

; (12)

where ð�ÞT denotes the transposed and Id the identity matrix. Here, Y
and S are matrices where the nth column is the target output ct and
the reservoir output ĉ t , respectively.

The hyperparameters of the ESN are the reservoir size N, the
node density D, which is the percentage of active nodes, the spectral
radius of the reservoir qðWðrÞg Þ, the leakage rate a, and the Tikhonov
regularization parameter b in the cost function C. Thus, the vector of
hyperparameters is g ¼ ðN;D;q; a; bÞ. This training is inherently fast
compared to other types of RNN.33,35 After successful training and
hyper-parameter optimization, the ESN runs as an autonomous
dynamical system, i.e., a forecasted compressed snapshot ctþ1 can be
used as the next ESN input to forecast ctþ2 and so on. This is also
known as the closed-loop scenario.

2. Gated recurrent unit

As already mentioned in Sec. I, we also study a gated recurrent
unit (GRU) in an encoder–decoder architecture as an RNN, used for
complex sequence analysis and forecasting problems. GRU is an
advanced RNN cell that uses gates to control which information
becomes part of the maintained cell state and which previously
acquired information can be forgotten. Due to this mechanism, the
GRU effectively mitigates vanishing and exploding gradient problems
typically faced when training RNNs with long training sequences.
Figure 3 (bottom) shows the interplay of the components of the GRU.

The operation of the reset gate and the update gate is denoted as

kt ¼ rðWðkÞ � ht ; ct½ 	Þ (13)

and

xt ¼ rðWðxÞ � ht ; ct½ 	Þ; (14)

where kt denotes the reset gate vector and xt the update gate vector at
time step t; WðkÞ and WðxÞ are the corresponding weight matrices
applied to a vector formed by concatenating the input vector ct at time
step t with the hidden state vector ht . The sigmoid activation function
r ensures an output range between 0 and 1. The output is used in
an element-wise vector multiplication to determine how much of
other vector element’s value to preserve. More specifically, kt is

FIG. 3. (a) Echo state network (ESN) architecture consisting of an input layer, the
reservoir, and an output layer. (b) Gated recurrent unit (GRU) cell consisting of a
reset gate and an update gate.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf

element-wise multiplied with ht to “reset” individual values of the old
state when computing the updated intermediate state ĥt as

ĥt ¼ tanhðW � kt � ht ; ct½ 	Þ; (15)

where W is an additional weight matrix and tanh is used as activation
function. The element-wise Hadamard product is denoted by � in
(15). Analogously, xt is element-wise multiplied with ht and ð1� xtÞ
with ĥt to add current input information to the updated cell state
htþ1, which is also the cell’s output, given by

htþ1 ¼ ð1� xtÞ � ht þ xt � ht : (16)

The output is then fed forward through a final fully connected layer
with a linear activation to forecast the next compressed snapshot ĉ tþ1.

We organize two GRU cells in an encoder–decoder architec-
ture64,65 as detailed in Fig. 4. The encoder processes a sequence of
compressed input snapshots while building the hidden state that rep-
resents a latent representation thereof. This latent representation is
then passed to the decoder which uses the encoded accumulated infor-
mation up to the previous time step to forecast the next compressed
snapshot of the sequence, ĉ tþ1. Following an initial externally triggered
step, the decoder progresses auto-regressively; it consumes its output
of the previous iteration ĉ tþ1 as an input for the computation of an
updated latent representation that is used to forecast the next output
ĉ tþ2.

IV. RESULTS AND DISCUSSION

Before we turn to the training, validation, and test phases, we list
a few more details of the DNS data record. In total, we used 2400 snap-
shots divided into three subsets. The first subset consisted of 1000
snapshots exclusively used for training, thus, called training set. The
second subset, called validation set, consisted of 500 snapshots used to
evaluate an unbiased estimation of training while performing hyper-
parameter tuning of a given model in the runtime. This validation is
done right after the training with each of the chosen hyperparameter
sets in order to find the optimal g for the subsequent test phase; it
helps to mitigate over- and under-fitting. The third subset contained
the remaining 900 snapshots used as an independent, unseen, and
non-trained dataset, known as test dataset. The final model is evalu-
ated for this test data, providing an unbiased estimation on blind data-
set. We trained CAE and GRU on NVIDIA GeForce GTX 1060 and
RTX 2080TI GPUs, respectively, and the ESN on a CPU with 16 GB
of memory.

A. Training of the convolutional autoencoder

We first developed a multi-layer CAE consisting of 12 layers for
each, encoder and decoder (cf. Table IV in Appendix A). The decoder
consists of an additional cropping layer to gain the original data
dimension of 320� 60. This final layer uses a sigmoid activation to
ensure a normalized output. We optimized the network hyperpara-
meters using a Bayesian optimization (BO). Table I shows the opti-
mized parameters, the value search range per parameter, and the
discovered optimum within this range. Eventually, we used convolu-
tions with a kernel size of 5� 5 giving them a larger receptive field.
For the latent representation between the encoder and decoder, we
found a size of 40 elements to best suit our application. The latent
space will thus be 40-dimensional. All network weights were initialized
following a Glorot uniform distribution.66 More details of the BO pro-
cedure are found in Appendix B. After obtaining the optimized
parameters, we trained the CAE and simultaneously validated the
model against the validation dataset at the end of every epoch (cf.
Fig. 5). The training has converged after about 30 epochs; it is however
continued until it satisfies the early stopping criterion. In addition, we
observe that both training and validation error decrease coherently,
which indicates the robustness of the model on unseen validation data.

B. Training of the echo state network

After obtaining a trained CAE delivering compressed representa-
tions of input data, we proceeded with the training of the ESN for the
prediction of the temporal evolution of the convection flow in the
latent space. Details of the corresponding training procedure have
been given already in Sec. III B 1. We employed the same dataset and
the same splitting as discussed above. We used the mean squared error
(MSE) between the predicted and ground truth modes as an objective
function for ESN training. We also monitored the MSE between the

FIG. 4. Forward data flow of an encoder–decoder network based on a gated recurrent unit.

TABLE I. Optimized parameters obtained from the Bayesian optimization for the
convolutional autoencoder. The optimization process was started with five random
initial points and thereafter 25 iterations were used with a factor j¼ 1, see Eq. (B3)
in Appendix B.

Parameter Search range Optimized value

Kernel size (1� 1)–(5� 5) 5� 5
Latent vector size 20kjk 2 f1; 2;…; 3gf g 40
Learning rate 0.0001–0.001 0.000 58
Batch size 8ljl 2 f1; 2; 3gf g 16

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf

predicted and the original turbulent convective heat flux as an additional
metric for training success. This was realized by continuously feeding the
predicted test modes to the decoder and gather them in ensembles.
Again, we optimized the network’s hyperparameter using a BO.

Figure 6 illustrates an example of the BO progress in three differ-
ent iterations. In the example, we solely optimize the regularization
parameter b while keeping the other hyperparameters constant. In
these figures, the actual (unknown, black-box) objective function is
shown as the red curve. One can observe the complex nature along
with an incapability of a grid-search if the grid is too coarse to capture
the optima. Here, we used the MSE as a cost function and maximized
the negative of MSE.

FIG. 5. The loss function in the form of a mean squared error (MSE) vs the number
of training epochs in double-logarithmic plot.

FIG. 6. Exemplary progress of the Bayesian
optimization of the ESN. In panels (a)–(c),
we plot the negative mean squared error
(MSE) in the top together with the upper
confidence bound in the corresponding bot-
tom panel for the search of the optimal
Tikhonov regularization parameter b. (a)
Iteration No. 1 after initialization with two
random points is shown. (b) Iteration No. 2
is shown. (c) Iteration No. 8 is shown. For
this demonstrative case, we took j¼ 1
(see Appendix B), and the following ESN
hyperparameters: a ¼ 0:96; q ¼ 0:92,
D¼ 0.2, and N¼ 100 from the given
ranges.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf

We started the BO at two random points for b, which enable the
calculation of the posterior distribution as shown in Fig. 6(a). The
third observation is at b ¼ 18:6 and the acquisition function in
the form of an upper confidence bound (UCB) predicts the next query
point at b ¼ 16:4 because it becomes the area for exploitation as
j¼ 1. In Fig. 6(b), it can be seen that the uncertainty becomes zero for
b ¼ 16:4 (assuming no noise) and that the acquisition function sug-
gests a next point, b ¼ 18:9. This iteration proceeds until we reach an
optimum or a predefined number of iterations. Figure 6(c) illustrates
the status after eight iterations, showing that the model is still not con-
verged, but continues to explore a region with higher uncertainty and
eventually yielding an optimum. Here, the factor j¼ 1 in the UCB is
taken, which forces the algorithm to exploit regions with higher mean;
see again Appendix B. In our BO for the ESN, we optimized the five
hyperparameters that are summarized in vector g plus the scaling.
They are known to have a significant effect on the performance of the
network. Table II summarizes the optimized hyperparameters
obtained after 50 BO iterations.

C. Training of the gated recurrent unit

We further went on to train the encoder–decoder GRU as an
alternative to the ESN. Both will predict the temporal evolution of the
convection flow in the latent space. Again, we searched for the optimal
hyperparameters of the network in our given application scenario.
More specifically, we optimized here the learning rate, the batch size,

and the hidden state size via a grid-search (cf. Table III). Different
from the ESN, the GRU is trained by means of a stochastic gradient
descent (SGD) method, equally to the CAE. Therefore, we use snap-
shots from the training, validation and test set, respectively, to generate
samples. Each sample consists of 50 input snapshots and 100 target
snapshots. Within the training process, we dynamically adapt the
learning rate once the training loss did not improve for a given num-
ber of epochs (known as patience), i.e., we reduce the learning rate.
The reduction is performed by multiplying the current learning rate
with a factor c. We set the number of patience epochs to 20 and
c ¼ 0:6. Finally, we applied an early stopping to determine the num-
ber of training epochs. Here, we choose a patience of 100 epochs to
ensure the convergence of the model.

D. Convective heat flux fields and mean profiles

With two levels of machine learning models combined, both of
which have reached low errors in training and validation, it is neces-
sary now to assess their generalization ability by a comparison with
unseen test data snapshots.

Test data samples for the RNNs are generated by feeding the cor-
responding ground truth DNS data into the CAE encoder unit, which
generates lower-dimensional compressed data vectors of dimension
l¼ 40 (cf. Sec. IIIA). For the GRU, a test sample consists of 950 com-
pressed representations. From these representations, the encoder uses
the first 50 as an input to build its hidden state; the decoder predicts
the remaining 900 autoregressively. The ESN does not require this
extra initialization of its hidden state since we use a model that is ini-
tialized already and can succeed from the training–validation sequence

TABLE II. Optimized parameters obtained from BO for the ESN. Here, five points
were randomly chosen to initialize the prior, 50 iterations were used for the BO and
j¼ 1.

Parameter Search range Optimized value

Reservoir size 100–5000 2992
Spectral radius 0.90–0.99 0.97
Reservoir density 0.05–0.20 0.09
Scaling True, false False
Leakage rate 0.5–0.9 0.50
Regularization parameter 0–600 4.89

TABLE III. Hyperparameters used for the encoder–decoder GRU training.

Parameter Search range Optimized value

Initial learning rate 0.006, 0.003, 0.001, 0.001
0.0006, 0.0003, 0.0001,

0.000 06, 0.000 03, 0.000 01
Batch size 32, 64, 128, 256, 512 128
Hidden state size 128, 256, 384, 512, 1024 512

FIG. 7. Result from the blind test. (a)–(d) Instantaneous convective turbulent heat flux snapshots at output time step No. 51 out of 900 (which corresponds to t¼ 6.25 free fall
time units). (e)–(h) Mean convective turbulent heat flux field averaged over all 900 snapshots. (a) and (e) DNS data that are the ground truth for the CAE. (b) and (f) Fields
that have been processed by the CAE, i.e., encoded and subsequently decoded. Note that the encoded DNS data are considered as the ground truth for ESN/GRU since they
operate in the latent space. (c) and (g) Prediction from the ESN with subsequent decoding. (d) and (h) Prediction from the GRU with subsequent decoding.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf

to predict 900 compressed representations. Thus, the test sample of
the ESN consists of 900 latent vectors in total. Afterwards, the 900 pre-
dicted latent data vectors are passed through the decoder to recon-
struct the corresponding convective heat flux fields. Thereby, the ESN
and the GRU are evaluated as autoregressive prediction models. To
evaluate the CAE itself, we feed 900 target snapshots into the encoder
and then reconstruct them directly via the decoder, thereby analyzing
the bare reconstruction error.

Figure 7 depicts the qualitative comparison between the DNS
results, the reconstruction by the CAE, and the autonomous prediction
by ESN and GRU. A good agreement can be observed especially for
the high-magnitude plume regions and the general flow structure in
the form of circulating convection rolls, refer to Figs. 7(a)–7(d). In the
former regions, the convective heat flux is locally largest, caused by
sinking colder fluid or rising hotter fluid. In a 3D convection case,
these regions would form a dynamically evolving skeleton as shown
and analyzed in Fonda et al.67

When looking at the instantaneous and time-averaged fields in
Fig. 7, small deviations can be noticed due to the highly reduced
dimensionality of the latent space with l¼ 40. This is an expected
error for such kind of data compression. Nevertheless, one can con-
clude that the reconstructed fields agree qualitatively and even quan-
titatively fairly well with the ground truth. Unlike in cases, where a
POD has been applied for data reduction,37,38 the mean fields are
not separated here; these fields were thus also dependent upon the
ML predictions.

A deviation of the obtained mean profiles of the convective heat
flux, hjconvix;t , from the ground truth is seen in Fig. 8(a) away from the
wall. This deviation is situated above the thermal boundary layer in
the plume mixing zone for the high Prandtl number of Pr ¼ 7 that is
chosen here. In this region, the dynamics is characterized by bursting
thermal plumes that detach randomly at different positions from the
wall and get dispersed by the turbulence. Clearly, the reproduction of
this intermittent time dynamics of the convective turbulent transport
is most challenging for the ML algorithms.

Figure 8(b) shows fairly well overlapping profiles for the fluctua-
tions of the convective heat flux for all three cases that remain close to
the ground truth. In more detail, these profiles are obtained as a root
mean square average of the field

j 0conv ¼ ðuzhÞ
0 ¼ uzh� huzhðzÞix;t : (17)

We have also quantified the loss of information of the CAE-RNN applica-
tion, which is based on the integrated convective flux, which is given by

U ¼
ð
A
hðuzhÞ02it dA: (18)

The loss follows by

Li ¼
jUi � UDNSj

UDNS
; (19)

with i ¼ fCAE;ESN;GRUg. The results are LCAE ¼ 5:3%; LESN
¼ 4:2%, and LGRU ¼ 6:7%. Here, LCAE denotes the loss that results
from encoding and decoding the ground truth sequence without any
forecasting. LESN and LGRU denote the loss between the original DNS
and the decoding of latent representations that were previously fore-
casted by the ESN and the GRU, respectively.

Figure 9 illustrates the temporal evolution of the area-averaged
values of the convective heat flux. All algorithms show a similar varia-
tion in time for the mean convective heat flux. However, we observe a
quantitative mismatch, in particular for the ESN case. Qualitatively,
the time variation of this average is picked up by all three algorithms
fairly well.

FIG. 8. Comparison of the mean convective turbulent heat flux and the correspond-
ing fluctuation profiles over half the cell height. Due to the top-down symmetry in
RBC, we took an additional mean over both halves of the layer. (a) Mean convec-
tive turbulent heat flux profile, and (b) Convective turbulent heat flux fluctuation pro-
file. Linestyles in the legend hold for both panels.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf

E. Probability density function of convective heat flux

Figure 10 illustrates a further comparison of the two ML algo-
rithms with the original DNS results. The probability density function
(PDF) of convective turbulent heat flux ðj 0convÞ, see Eq. (17), contains
the full statistical information of the fluctuations at all orders. It is
extracted here at three different locations in the channel. The PDFs of
all methods show a good overlap around the mean. Deviations are
observed in the tails, particularly in the positive tails where the most
intense rising and falling plume events appear. The differences
between pure CAE application and the combination with the ESN or
GRU remain small. A physically important property of this PDF is
that has to be skewed to positive values since heat is transported from
the bottom to the top on average. This property is reproduced well by
all our ML methods. The pronounced positive tails correspond physi-
cally to both, rising warmer-than-average and falling colder-than aver-
age thermal plumes.8,9

F. Individually extracted modes and noise resilience

After directly comparing the flow fields with the ML prediction,
we further verified the evolution of individual modes from the ESN
evolution. This was done with the help of a principal component anal-
ysis (PCA). The PCA algorithm enables a further down-scaling from
40 modes in the latent space to two principal modes, which carry
more than 65% of the variance. Figure 11 shows a scatterplot of the
two primary PCA components for the three algorithms. We display
the result of the CAE, i.e., ground truth for the subsequent RNN appli-
cation together with the outputs of ESN and GRU for unseen test data.
All data points are clustered in the same ranges and overlap. This war-
rants the learning and generalization ability of the ESN and GRU
when compared to the CAE for the present dynamical system at hand.

Finally, we examined the robustness of the CAE against noise.
Robustness is desired especially when one wants to use a CAE in an
experimental facility or for a simulation model with parametrizations
and closures. The objective of this step is to evaluate how the trained
CAE will be affected by noise at the small scale. We investigated two
distinct noise levels sampled from a random distribution with a zero
mean and two different standard deviations r. Figure 12 shows that

FIG. 9. Comparison of the temporal evolution of the area-averaged convective tur-
bulent heat flux hjconviA over the first 100 time steps that correspond to a time inter-
val of 12.5 free fall time units.

FIG. 10. Comparison of probability density functions (PDFs) for convective turbulent heat flux at three different locations in the wall normal direction z. (a) z¼ 0.16. (b)
z¼ 0.50. (c) z¼ 0.84. The legend holds for all three panels.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf

the CAE is affected by the noise. We apply the analysis to a tempera-
ture field snapshot here. However, at the lower noise level these effects
remain subdominant and the CAE can filter them out [cf. Figs. 12(a)
and 12(c)]. while a higher noise level is beyond the filtering abilities of
the CAE [cf. Figs. 12(d) and 12(f)].

Figure 13 substantiates this finding. Small levels of noise leave the
mean and fluctuation profiles nearly unchanged. Higher levels of addi-
tive noise lead to stronger deviations in the low-order statistics as dem-
onstrated in both panels of the figure.

V. CONCLUSIONS AND OUTLOOK

In this work, we have investigated two recurrent machine learn-
ing (ML) algorithms that model and forecast the local convective heat
flux—the central quantity for the characterization of the mean turbu-
lent heat transfer from the bottom to the top—in a two-dimensional

turbulent Rayleigh–B�enard flow directly. This implies that this derived
property, which is the product of the temperature and the vertical
velocity component, together with its low-order statistics is modeled
without applying the underlying highly nonlinear Boussinesq equa-
tions of motion.

In both models, a convolutional autoencoder (CAE) is applied
first to reduce the high-dimensional data records, which are obtained
from direct numerical simulations of the turbulent flow, in a low-
dimensional latent space. The dynamics in the latent space is advanced
by means of either an echo state network (ESN), one implementation
of a reservoir computing model, or a gated recurrent unit (GRU). We
find that both ML algorithms performed well and are able to repro-
duce mean profiles of the convective heat flux and its fluctuations
fairly well. This includes even the reproduction of the whole probabil-
ity density function. It is furthermore tested how resilient the models
are with respect to a small amount of added noise. Our investigation
demonstrates that the model is robust to such a noise with a small
standard deviation of r � 0:02 using the advantages of the CAE archi-
tecture for data reduction. The latter is often used for de-noising in
image analysis.

Typical fluid dynamics data from turbulence simulations and
experiments inherently contain a large number of degrees of freedom,
which makes them unsuitable for a direct input into a machine learn-
ing algorithm. A reduction step, as applied here, is consequently neces-
sary. Our CAE algorithm can be used on the fly (while the DNS is
running and writing data records) and does not require the complete
turbulence dataset at the beginning of the reduction, as it would be the
case for a POD snapshot algorithm. Therefore, we presented a two-
level neural network architecture that can reduce the dimensionality of
data by using a nonlinear convolutional autoencoder and the latent
vector can be autoregressively predicted by a recurrent network. Due
to a large number of hyperparameters in the ESN case, we took a
Bayesian optimization, which enables an efficient search of optimized
hyperparameters by a relatively small number of iteration steps in
comparison to a conventional grid search.

A potential application field of our CAE-RNN approach could be
the modeling of mesoscale convective fluxes of heat (or moisture and
salinity) in global circulation models of the atmosphere and ocean.
These models are typically built on coarse computational grids that
span the globe and require parametrizations of locally strongly varying
unresolved fluxes.68,69 The developed model provides a dynamical

FIG. 11. Scatterplot visualization of the principal components obtained by a princi-
pal component analysis that was applied to the 40 modes in the latent space. The
two primary components are denoted by PCA-1 and PCA-2.

FIG. 12. Noise resilience of the CAE tested by means of contours of two individual temperature snapshots. (a) and (d) Prediction by the CAE for original temperature field with-
out noise. (b) and (e) Original temperature field with added random noise. In panel (b), the standard deviation is r ¼ 0:025, in panel (e), the distribution is broader with
r ¼ 0:05. (c) and (f) Prediction from the CAE for the corresponding noisy fields.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf

ROM that delivers the low-order statistics of the turbulent transport in
convection flows.

The extension to three-dimensional data records is required
and possible with the given tools. It will however face new additional
challenges. Three-dimensional data records will require higher-
dimensional latent spaces and deeper networks for both, encoder and
decoder. This suggests a possible decomposition of the weight matrix
of the corresponding convolutional networks into matrix product

states that have been successfully used in the solution of problems in
quantum many-particle dynamics.70 These investigations are currently
in progress and will be reported elsewhere.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsgemeinschaft
with Grant No. SCHU 1410/30-1 and in part by Project No. P2018-02-
001, “DeepTurb-Deep Learning in and of Turbulence,” which is funded
by the Carl Zeiss Foundation. The authors gratefully acknowledge the
Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for
funding this project by providing computing time through the John von
Neumann Institute for Computing (NIC) on the GCS Supercomputer
JUWELS at J€ulich.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX A: CONVOLUTIONAL AUTOENCODER
ARCHITECTURE

The following Table IV details the architecture of the
encoder–decoder network that was used in this work.

FIG. 13. Comparison of (a) the mean and (b) the fluctuation profiles of the convec-
tive heat flux over half the cell height for two different levels of random noise. Data
are compared with the noise-free run. The profiles are the arithmetic mean over
both halves of the layers.

TABLE IV. Detailed structure of the convolutional autoenocoder. The table summa-
rizes the encoder and decoder architectures (Conv¼ convolution, Max Pool¼max
pooling, Upsamp¼ upsampling). Symbol E2 denotes for example encoder hidden
layer No. 2.

Encoder Decoder

Layer Output size Layer Output size

Encoder input 320� 60� 1 Decoder input 5� 1� 8
2D conv-E1 320� 60� 256 2D conv-D1 5� 1� 8
Max pool-E1 160� 30� 256 2D upsamp-D1 10� 2� 8
2D conv-E2 160� 28� 128 2D conv-D2 10� 2� 32
Max pool-E2 80� 15� 128 2D upsamp-D2 20� 4� 32
2D conv-E3 80� 15� 64 2D conv-D3 20� 4� 32
Max pool-E3 40� 8� 64 2D upsamp-D3 40� 8� 32
2D conv-E4 40� 8� 32 2D conv-D4 40� 8� 64
Max pool-E4 20� 4� 32 2D upsamp-D4 80� 16� 64
2D conv-E5 20� 4� 32 2D conv-D5 80� 16� 128
Max pool-E5 10� 2� 32 2D upsamp-D5 160� 32� 128
2D conv-E6 10� 2� 38 2D conv-D6 160� 32� 256
Max pool-E6 5� 1� 8 2D upsamp-D6 320� 64� 256

Output with
2D conv

320� 64� 1

Output with
cropping

320� 60� 1

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-12

Published under an exclusive license by AIP Publishing

http://www.gauss-centre.eu
https://scitation.org/journal/phf

APPENDIX B: HYPERPARAMETER TUNING
BY BAYESIAN OPTIMIZATION

The training of an ML algorithm relies on a cost function which
depends on different hyperparameter vectors g ¼ ðg1;…; gnÞ. In the
ESN case, the hyperparameter vector consists of ðN;D;q; a;bÞ.
Grid and random search procedures are often used, and they
proved to provide a (nearly) optimal solution.71 As a downside,
these methods are based on a parameter space which is predefined
in the form of a multi-dimensional grid of parameter vectors. A
more favorable alternative is the Bayesian optimization (BO), a
global optimization method that automatically finds the optimal
hyperparameter vector

g� ¼ argmax
g

f ðgÞ; (B1)

by a relatively small number of iterations.72 As the name suggests,
BO utilizes the Bayes rule,

pðf ðgÞjgÞ � pðgjf ðgÞÞpðf Þ: (B2)

The a posteriori probability of a hyperparameter model f ðgÞ
¼ ðf ðg1Þ;…; f ðgnÞÞ given the hyperparameters g is similar to the
likelihood of g given f, denoted as pðgjf Þ, and the a priori probabil-
ity p(f). Here, p(f) contains our obtained knowledge from prior iter-
ations which is not discarded. Two main ingredients are necessary:

(1) BO typically utilizes a Gaussian process (GP) to model p(f)
which is characterized by a mean lðgÞ and a covariance matrix
kðgi; gjÞ. Here, we use a Mat�ern kernel for the covariance
matrix, which is given by73

kðgi; gjÞ ¼
1

Cð�Þ2��1

ffiffiffiffiffi
2�
p

l
dðgi; gjÞ

� ��
K�

ffiffiffiffiffi
2�
p

l
dðgi; gjÞ

	

:

In this equation, dð�; �Þ is the Euclidean distance, K� is a modi-
fied Bessel function of the second kind, and C is the gamma
function. The parameter �, which controls the smoothness of
the learned function, is set to � ¼ 1:5.

(2) BO needs furthermore an acquisition function to determine the
hyperparameter vectors that are going to be evaluated by f in
the next iteration. This is a trade-off between the exploration,
i.e., to sample at a high uncertainty region and exploitation, i.e.,
querying a high mean region. In this work, we have used upper
confidence bound (UCB) as an acquisition function.74 UCB at
iteration step t is then given by [see also Eq. (B1)]

g� ¼ argmax
g

ðltðgÞ þ jrtðgÞÞ; (B3)

where lt is the mean and rt the standard deviation. Here, j is a
UCB model coefficient that is provided in the main text when
UCB is applied.

REFERENCES
1L. P. Kadanoff, “Turbulent heat flow: Structures and scaling,” Phys. Today
54(8), 34–39 (2001).

2G. Ahlers, S. Grossmann, and D. Lohse, “Heat transfer and large scale dynam-
ics in turbulent Rayleigh-B�enard convection,” Rev. Mod. Phys. 81, 503–537
(2009).

3F. Chill�a and J. Schumacher, “New perspectives in turbulent Rayleigh-B�enard
convection,” Eur. Phys. J. E 35, 58 (2012).

4J. Schumacher and K. R. Sreenivasan, “Colloquium: Unusual dynamics of con-
vection in the Sun,” Rev. Mod. Phys. 92, 041001 (2020).

5M. K. Verma, Physics of Buoyant Flows (World Scientific, 2018).
6Q. Zhou, C. Sun, and K.-Q. Xia, “Morphological evolution of thermal plumes
in turbulent Rayleigh-B�enard convection,” Phys. Rev. Lett. 98, 074501 (2007).

7S. Moller, C. Resagk, and C. Cierpka, “Long-time experimental investigation of
turbulent superstructures in Rayleigh-B�enard convection by noninvasive
simultaneous measurements of temperature and velocity fields,” Exp. Fluids
62, 64 (2021).

8O. Shishkina and C. Wagner, “Analysis of sheet-like thermal plumes in turbu-
lent Rayleigh-B�enard convection,” J. Fluid Mech. 599, 383–404 (2008).

9M. S. Emran and J. Schumacher, “Conditional statistics of thermal dissipation
rate in turbulent Rayleigh-B�enard convection,” Eur. Phys. J. E 35, 108 (2012).

10M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects,” Science 349, 255–260 (2015).

11Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521, 436–444
(2015).

12J. N. Kutz, “Deep learning in fluid dynamics,” J. Fluid Mech. 814, 1–4 (2017).
13K. Duraisamy, G. Iaccarino, and H. Xiao, “Turbulence modeling in the age of
data,” Annu. Rev. Fluid Mech. 51, 357–377 (2019).

14M. P. Brenner, J. D. Eldredge, and J. B. Freund, “Perspective on machine learn-
ing for advancing fluid mechanics,” Phys. Rev. Fluids 4, 100501 (2019).

15S. Brunton, B. R. Noack, and P. Koumoutsakos, “Machine learning for fluid
mechanics,” Annu. Rev. Fluid Mech. 52, 477–508 (2020).

16S. Pandey, J. Schumacher, and K. R. Sreenivasan, “A perspective on machine
learning in turbulent flows,” J. Turbul. 21, 567–584 (2020).

17P. P. Vieweg, J. D. Scheel, and J. Schumacher, “Supergranule aggregation for con-
stant heat flux-driven turbulent convection,” Phys. Rev. Res. 3, 013231 (2021).

18J. L. Lumley, “The structure of inhomogeneous turbulent flows,” in
Atmospheric Turbulence and Radio Wave Propagation, edited by A. M. Yaglom
and V. I. Tatarski (Nauka, Moscow, 1967), pp. 166–178.

19G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decomposi-
tion in the analysis of turbulent flows,” Annu. Rev. Fluid Mech. 25, 539–575
(1993).

20P. J. Schmid, “Dynamic mode decomposition of numerical and experimental
data,” J. Fluid Mech. 656, 5–28 (2010).

21D. Giannakis and A. J. Majda, “Nonlinear Laplacian spectral analysis for time
series with intermittency and low-frequency variability,” Proc. Natl. Acad. Sci.
109, 2222–2227 (2012).

22C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson,
“Spectral analysis of nonlinear flows,” J. Fluid Mech. 641, 115–127 (2009).

23D. Giannakis, A. Kolchinskaya, D. Krasnov, and J. Schumacher, “Koopman
analysis of the long-term evolution in a turbulent convection cell,” J. Fluid
Mech. 847, 735–767 (2018).

24J. Moehlis, T. R. Smith, P. Holmes, and H. Faisst, “Models for turbulent plane
Couette flow using the proper orthogonal decomposition,” Phys. Fluids 14,
2493–2507 (2002).

25B. R. Noack, P. Papas, and P. A. Monkewitz, “The need for a pressure-term
representation in empirical Galerkin models of incompressible shear flows,”
J. Fluid Mech. 523, 339–365 (2005).

26J. Bailon-Cuba and J. Schumacher, “Low-dimensional model of turbulent
Rayleigh-B�enard convection in a Cartesian cell with square domain,” Phys.
Fluids 23, 077101 (2011).

27L. Soucasse, B. Podvin, P. Rivière, and A. Soufiani, “Reduced-order modelling
of radiative transfer effects on Rayleigh–B�enard convection in a cubic cell,”
J. Fluid Mech. 898, A2 (2020).

28S. Pawar, S. M. Rahman, H. Vaddireddy, O. San, A. Rasheed, and P. Vedula,
“A deep learning enabler for nonintrusive reduced order modeling of fluid
flows,” Phys. Fluids 31, 085101 (2019).

29S. A. Renganathan, R. Maulik, and V. Rao, “Machine learning for nonintrusive
model order reduction of the parametric inviscid transonic flow past an air-
foil,” Phys. Fluids 32, 047110 (2020).

30Z. Deng, Y. Chen, Y. Liu, and K. C. Kim, “Time-resolved turbulent velocity
field reconstruction using a long short-term memory (LSTM)-based artificial
intelligence framework,” Phys. Fluids 31, 075108 (2019).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-13

Published under an exclusive license by AIP Publishing

https://doi.org/10.1063/1.1404847
https://doi.org/10.1103/RevModPhys.81.503
https://doi.org/10.1140/epje/i2012-12058-1
https://doi.org/10.1103/RevModPhys.92.041001
https://doi.org/10.1103/PhysRevLett.98.074501
https://doi.org/10.1007/s00348-020-03107-1
https://doi.org/10.1017/S002211200800013X
https://doi.org/10.1140/epje/i2012-12108-8
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1038/nature14539
https://doi.org/10.1017/jfm.2016.803
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1103/PhysRevFluids.4.100501
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1080/14685248.2020.1757685
https://doi.org/10.1103/PhysRevResearch.3.013231
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1073/pnas.1118984109
https://doi.org/10.1017/S0022112009992059
https://doi.org/10.1017/jfm.2018.297
https://doi.org/10.1017/jfm.2018.297
https://doi.org/10.1063/1.1483300
https://doi.org/10.1017/S0022112004002149
https://doi.org/10.1063/1.3610395
https://doi.org/10.1063/1.3610395
https://doi.org/10.1017/jfm.2020.395
https://doi.org/10.1063/1.5113494
https://doi.org/10.1063/1.5144661
https://doi.org/10.1063/1.5111558
https://scitation.org/journal/phf

31S. M. Rahman, S. Pawar, O. San, A. Rasheed, and T. Iliescu, “Nonintrusive
reduced order modeling framework for quasigeostrophic turbulence,” Phys.
Rev. E 100, 053306 (2019).

32L. Sirovich, “Turbulence and the dynamics of coherent structures. Part I:
Coherent structures,” Q. Appl. Math. 45, 561 (1987).

33H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication,” Science 304, 78–80 (2004).

34Z. Lu, J. Pathak, B. R. Hunt, M. Girvan, R. Brockett, and E. Ott, “Reservoir
observers: Model-free inference of unmeasured variables in chaotic systems,”
Chaos 27, 041102 (2017).

35P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan, E. Ott, and P.
Koumoutsakos, “Backpropagation algorithms and reservoir computing in
recurrent neural networks for the forecasting of complex spatiotemporal
dynamics,” Neural Networks 126, 191–217 (2020).

36F. Huhn and L. Magri, “Gradient-free optimization of chaotic acoustics with
reservoir computing,” Phys. Rev. Fluids 7, 014402 (2022).

37S. Pandey and J. Schumacher, “Reservoir computing model of two-dimensional
turbulent convection,” Phys. Rev. Fluids 5, 113506 (2020).

38F. Heyder and J. Schumacher, “Echo state network for two-dimensional moist
Rayleigh-B�enard convection,” Phys. Rev. E 103, 053107 (2021).

39K. Cho, B. Van Merri€enboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, and Y. Bengio, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” arXiv:1406.1078 (2014).

40S. Du, T. Li, and S.-J. Horng, “Time series forecasting using sequence-to-
sequence deep learning framework,” in 2018 9th International Symposium on
Parallel Architectures, Algorithms and Programming (PAAP) (IEEE, 2018), pp.
171–176.

41M. Sangiorgio and F. Dercole, “Robustness of LSTM neural networks for multi-
step forecasting of chaotic time series,” Chaos Solitons Fractals 139, 110045
(2020).

42F. J. Gonzalez and M. Balajewicz, “Deep convolutional recurrent autoencoders
for learning low-dimensional feature dynamics of fluid systems,”
arXiv:1808.01346 (2018).

43A. A. M. Al-Saffar, H. Tao, and M. A. Talab, “Review of deep convolution neu-
ral network in image classification,” in 2017 International Conference on
Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)
(IEEE, 2017), pp. 26–31.

44Z. Han, J. Zhao, H. Leung, K. F. Ma, and W. Wang, “A review of deep learning
models for time series prediction,” IEEE Sens. J. 21, 7833–7848 (2021).

45F. M. Bianchi, S. Scardapane, S. Løkse, and R. Jenssen, “Reservoir computing
approaches for representation and classification of multivariate time series,”
IEEE Trans. Neural Networks Learn. Syst. 32, 2169–2179 (2021).

46S. Qian, Y. Yu, L. Li, and Y. Chang, “An attention-based GRU encoder decoder
for hostload prediction in a data center,” in 2021 International Conference on
Computer Communication and Artificial Intelligence (CCAI) (IEEE, 2021), pp.
121–125.

47X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement based on deep
denoising autoencoder,” in Interspeech (ISCA, 2013), Vol. 2013, pp. 436–440.

48L. Gondara, “Medical image denoising using convolutional denoising
autoencoders,” in 2016 IEEE 16th International Conference on Data Mining
Workshops (ICDMW) (IEEE, 2016), pp. 241–246.

49C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep
autoencoders,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Association for
Computing Machinery, Halifax, Canada, 2017), pp. 665–674.

50G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science 313, 504–507 (2006).

51Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,”
Neurocomputing 184, 232–242 (2016).

52I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press,
Cambridge, 2016).

53J. Xu and K. Duraisamy, “Multi-level convolutional autoencoder networks for
parametric prediction of spatio-temporal dynamics,” Comput. Methods Appl.
Mech. 372, 113379 (2020).

54N. Omata and S. Shirayama, “A novel method of low-dimensional representa-
tion for temporal behavior of flow fields using deep autoencoder,” AIP Adv. 9,
015006 (2019).

55T. Murata, K. Fukami, and K. Fukagata, “Nonlinear mode decomposition with
convolutional neural networks for fluid dynamics,” J. Fluid Mech. 882, A13
(2020).

56K. Fukami, T. Nakamura, and K. Fukagata, “Convolutional neural network
based hierarchical autoencoder for nonlinear mode decomposition of fluid field
data,” Phys. Fluids 32, 095110 (2020).

57S. Bhattacharya, M. K. Verma, and A. Bhattacharya, “Predictions of Nusselt
and Reynolds numbers in turbulent convection using machine-learning mod-
els,” Phys. Fluids 34, 025102 (2022).

58H. Eivazi, L. Guastoni, P. Schlatter, H. Azizpour, and R. Vinuesa, “Recurrent
neural networks and Koopman-based frameworks for temporal predictions in
a low-order model of turbulence,” Int. J. Heat Fluid Flow 90, 108816 (2021).

59B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear
embeddings of nonlinear dynamics,” Nat. Commun. 9, 4950 (2018).

60S. E. Otto and C. W. Rowley, “Linearly recurrent autoencoder networks for
learning dynamics,” SIAM J. Appl. Dyn. Syst. 18, 558–593 (2019).

61P. F. Fischer, “An overlapping Schwarz method for spectral element solution of
the incompressible Navier-Stokes equations,” J. Comput. Phys. 133, 84–101
(1997).

62D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 (2014).

63A. Chattopadhyay, P. Hassanzadeh, and D. Subramanian, “Data-driven predic-
tions of a multiscale Lorenz 96 chaotic system using machine-learning meth-
ods: Reservoir computing, artificial neural network, and long short-term
memory network,” Nonlinear Processes Geophys. 27, 373–389 (2020).

64D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” arXiv:1409.0473 (2014).

65J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” arXiv:1412.3555 (2014).

66X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” in Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (Society for Artificial
Intelligence and Statistics, Sardinia, Italy, 2010) pp. 249–256.

67E. Fonda, A. Pandey, J. Schumacher, and K. R. Sreenivasan, “Deep learning in
turbulent convection networks,” Proc. Natl. Acad. Sci. 116, 8667–8672 (2019).

68L. Zanna and T. Bolton, “Data-driven equation discovery of ocean mesoscale
closures,” Geophys. Res. Lett. 47, e2020GL088376, https://doi.org/10.1029/
2019GL085988 (2020).

69S. Bony, H. Schulz, J. Vial, and B. Stevens, “Sugar, gravel, fish, and flowers:
Dependence of mesoscale patterns of trade-wind clouds on environmental
conditions,” Geophys. Res. Lett. 47, e2019GL085988, https://doi.org/10.1029/
2019GL085988 (2020).

70R. Or�us, “Tensor networks for complex quantum systems,” Nat. Rev. Phys. 1,
538–550 (2019).

71J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”
J. Mach. Learn. Res. 13, 281–305 (2012), available at http://jmlr.org/papers/v13/
bergstra12a.html.

72M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated
Machine Learning (Springer, Cham, 2019), pp. 3–33.

73M. G. Genton, “Classes of kernels for machine learning: A statistics
perspective,” J. Mach. Learn. Res. 2, 299–312 (2001), available at https://
www.jmlr.org/papers/v2/genton01a.html.

74N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process optimi-
zation in the bandit setting: No regret and experimental design,”
arXiv:0912.3995 (2009).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 045106 (2022); doi: 10.1063/5.0087977 34, 045106-14

Published under an exclusive license by AIP Publishing

https://doi.org/10.1103/PhysRevE.100.053306
https://doi.org/10.1103/PhysRevE.100.053306
https://doi.org/10.1090/qam/910462
https://doi.org/10.1126/science.1091277
https://doi.org/10.1063/1.4979665
https://doi.org/10.1016/j.neunet.2020.02.016
https://doi.org/10.1103/PhysRevFluids.7.014402
https://doi.org/10.1103/PhysRevFluids.5.113506
https://doi.org/10.1103/PhysRevE.103.053107
http://arxiv.org/abs/1406.1078
https://doi.org/10.1016/j.chaos.2020.110045
http://arxiv.org/abs/1808.01346
https://doi.org/10.1109/JSEN.2019.2923982
https://doi.org/10.1109/TNNLS.2020.3001377
https://doi.org/10.1126/science.1127647
https://doi.org/10.1016/j.neucom.2015.08.104
https://doi.org/10.1016/j.cma.2020.113379
https://doi.org/10.1016/j.cma.2020.113379
https://doi.org/10.1063/1.5067313
https://doi.org/10.1017/jfm.2019.822
https://doi.org/10.1063/5.0020721
https://doi.org/10.1063/5.0083943
https://doi.org/10.1016/j.ijheatfluidflow.2021.108816
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1137/18M1177846
https://doi.org/10.1006/jcph.1997.5651
http://arxiv.org/abs/1412.6980
https://doi.org/10.5194/npg-27-373-2020
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1412.3555
https://doi.org/10.1073/pnas.1900358116
https://doi.org/10.1029/2019GL085988
https://doi.org/10.1029/2019GL085988
https://doi.org/10.1038/s42254-019-0086-7
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://doi.org/
https://doi.org/
http://arxiv.org/abs/0912.3995
https://scitation.org/journal/phf

	s1
	d1
	d2
	s2
	d3
	d4
	d5
	d6
	s3
	f1
	s3A
	d7
	s3B
	s3B1
	f2
	d8
	d9
	d10
	d11
	d12
	s3B2
	d13
	d14
	f3
	d15
	d16
	s4
	s4A
	s4B
	f4
	t1
	f5
	f6
	s4C
	s4D
	t2
	t3
	f7
	d17
	d18
	d19
	f8
	s4E
	s4F
	f9
	f10
	s5
	f11
	f12
	l
	app1
	f13
	t4
	dB1
	dB2
	app2
	dB3
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69
	c70
	c71
	c72
	c73
	c74

