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VIZING’S TWO FUNDAMENTAL PAPERS

A.1 ON AN ESTIMATE OF THE CHROMATIC CLASS OF A p-GRAPH

Vadim. G. Vizing

Diskretnyi Analiz 3 (1964) Novosibirsk, 25–30.

At the moment there is no practical effective algorithm for a minimal edge-coloring
of a multigraph, thus it is interesting to estimate the chromatic class using more
visible graph parameters. This paper deals with this problem.

A multigraph is a finite nonoriented multigraph without loops [1]. It is called a
p-graph if it has at most p parallel edges. A 1-graph is just a graph. A multigraph
with colored edges is said to be properly colored if the edges from the same vertex
are always colored differently. The smallest number of colors needed to color the
multigraphG properly is called the chromatic class ofG and denoted q(G).
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The maximum degree in G we denote σ(G). This is the maximum number of
edges from a vertex. Of course, for every multigraph G we have q(G) ≥ σ(G).
There is also a trivial upper bound q(G) ≤ 2σ(G)− 1.

C. E. Shannon [2] proved that anymultigraphG satisfies q(G) ≤ � 3
2σ(G)�, where

the parenthesis denotes the lower integer part. It is possible for eachm to construct
a multigraphG with σ(G) = m and q(G) = � 3

2m�, but even so it is possible to get
a better upper bound for q(G) by introducing a second parameter for multigraphs.

First we describe some lemmas from Shannon [2].
Let us suppose that the multigraph G has been properly colored, and let s and t

denote two different colors. An (s, t)-path is a set of edges ofG forming a connected
subgraph, each edge colored s or t. 1 We call an (s, t)-path maximal if it is not a
proper part of another (s, t)-path. We say that an (s, t)-path is recolored if the colors
s and t are interchanged on the edges of the (s, t)-path.

Lemma A.1 A properly colored multigraph is still properly colored after recoloring
a maximal (s, t)-path.

A color s is missing at vertex x in a properly colored multigraph if no edge at x
has color s.

Lemma A.2 Letx,y and z be three different vertices in a properly colored multigraph
G. Suppose that in each of x,y and z either the color s or the color t is missing.
Then at least one of x, y and z is not contained in the same (s, t)-path as any of the
two other vertices.

Theorem A.3 If m is the maximum degree in the p-graph G, then q(G) ≤ m+ p.

Proof : We denote the colors by numbers from 1 tom+ p. We shall show how one
can properly color the edges of the p-graphG using these colors.

Let (a, b) be an uncolored edge between vertices a and b. Since the degree of any
vertex is at mostm there are at least p colors missing at each vertex.2

Let A and B respectively denote the set of colors missing at a and at b.
If A

⋂
B �= ∅, then the edge (a, b) may be colored by a color missing at both a

and b.
Suppose therefore that A

⋂
B = ∅. We associate to each colored edge between a

and a neighbor x of a a color missing at x in such a way that different colored edges
between a and x are associated with different missing colors at x. This is possible
because there are at least p missing colors at each vertex.

Let s0, β1, ..., βp−1 be colors not present at b. We may assume that the color s0

is not associated with any edge between a and b. Since s0 ∈ B and A
⋂
B = ∅

it follows that s0 does not belong to A, hence there is an edge (a, x1) colored s0.
Clearly x1 �= b. Let s1 be the color related to (a, x1). If s1 ∈ A, then the edge
(a, x1) may be recolored by color s1, and then the edge (a, b) can get the color s0. If
s1 /∈ A, then there is an edge (a, x2) from a colored s1.

1Such a 2-colored (s, t)-path might be a cycle, or it might contain only one edge, or no edges.
2From the set of colors 1, 2, ...,m + p.
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Let (a, x1), (a, x2), ..., (a, xk) (k ≥ 2) be a sequence of different edges in the
multigraph G, all from the vertex a. Let their colors be s0, s1, ..., sk−1. The colors
sj (j = 0, 1, 2, ..., k − 1) are all different and not in A. For each i = 1, 2, ..., k − 1
we assume that si is the color related to the edge (a, xi).3

Let sk be the color related to the edge (a, xk). There are two possible cases:

1. sk ∈ A. Then sk �= sj for all j = 0, 1, ..., k − 1. We recolor the edge (a, xk)
by sk, the edge (a, xk−1) by sk−1, ... , the edge (a, x1) by s1. This is still a proper
coloring, and then the edge (a, b) may be colored by the color s 0.

2. sk /∈ A. Then there are the following possibilities (a), (b), and (c):

(a) sk = s0. Then xk �= x1 since the color s0 is present at x1 as the edge (a, x1)
is colored s0. Also xk �= b since the color s0 is not related to edges parallel to (a, b).

We chose a color t ∈ A and get the following:

• In vertex a the color t is missing.

• In vertex b the color s0 is missing.

• In vertex xk the color s0 is missing.

By Lemma A.2, at least one of the three vertices a, b, xk is not joined to any of the
other two vertices by an (s0, t)-path. If a and b are not in the same (s0, t)-path,
then recolor the maximal (s0, t)-path starting with the edge (a, x1) at a. After the
recoloring the color s0 is missing at both a and b. Then (a, b) may be colored s0.
If xk is not in the same (s0, t)-path as a or b, then recolor the maximal (s0, t)-path
starting at xk. Then the color t ∈ A is missing at xk. If we relate this color to the
edge (a, xk), we are back in Case 1 and can recolor and color the edge (a, b).

(b) sk = si for 1 ≤ i ≤ k − 2. (Note that sk = sk−1 is impossible because
(a, xk) is colored sk−1.) Then xi �= xk since otherwise two parallel edges (a, xi)
and (a, xk) are related to the same color si, which is impossible.

Let t ∈ A . We get the following:

• In vertex a the color t is missing.

• In vertex xk the color si is missing.

• In vertex xi the color si is missing.

We use again Lemma A.2. If xk is not in the same (si, t)-path as a or xi, then
recolor the maximal (si, t)-path starting at xk . Then t ∈ A is missing at xk. We
relate t with the edge (a, xk) and get back to Case 1. In the same way we get back
to Case 1 if xi is not in the same (si, t)-path as a or xk.

3Note that we may have that x� = xr for � �= r; 1 ≤ �, r ≤ k. But even then the edges (a, x�) and
(a, xr) are different parallel edges, because the edges (a, xi) for i = 1, 2, ..., k are all different.
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So assume that a is not connected by an (si, t)-path to xk or xi. The first edge in
a maximal (si, t)-path starting in a is (a, xi+1) colored si. After recoloring the path
the color si is missing at a, and si is related to the edge (a, xi). (The color si is still
missing at the vertex xi, since a is not connected to xi by an (si, t)-path.) We are
again back in Case 1.

(c) sk �= sj for all j = 0, 1, ..., k−1. In this case an edge (a, xk+1) is colored by the
color sk and it is different from the edges (a, x1), (a, x2), ..., (a, xk). We now repeat
the argument for the longer sequence of edges (a, x1), (a, x2), ..., (a, xk), (a, xk+1).
Since the graph is finite we get either Case 1 or Case 2 (a or b) after a finite number
of steps.

The theorem gives an upper bound for the chromatic class of a ρ-graph G, and
in case p < �σ(G)

2 � it is better than Shannon’s bound q(G) ≤ � 3
2σ(G)�. A natural

question may be asked: Is it possible for each m and p with p ≤ � m
2 � to obtain a

p-graphG with σ(G) = m and q(G) = m+ p ? In case p = 1 the answer is yes:

Corollary A.4 Ifm is the maximum degree in the graphG, thenm ≤ q(G) ≤ m+1.
Moreover, for each m ≥ 2 there is a graph G with σ(G) = m and q(G) = m+ 1

Proof : We shall only prove the second part.
Let m ≥ 2. Let H be a graph with 2m vertices x1, x2, ..., xm, y1, y2, ..., ym and

edges (xi, yj) for i = 1, 2, ...,m and j = 1, 2, ...,m. Add a new vertex z outside
H , remove the edge (x1, y1) from H and join z to x1 and y1 by edges. The new
graph G has 2m + 1 vertices, m2 + 1 edges, and σ(G) = m. Because of the odd
number (2m+1) of edges, at mostm edges may be given the same color in a proper
edge coloring of G. This means that q(G) ≥ m2+1

m = m + 1
m > m, implying that

q(G) = m+ 1.

When p ≥ 2 our bound is not always the best possible. One can show that for
each p ≥ 2 the chromatic class of a p-graph G with σ(G) = m = 2p+ 1 is at most
m+ p− 1. However, if m = 2kp (k ≥ 1) and G has 2k + 1 vertices for which all
pairs of vertices are joined by p edges, then q(G) = m+ p.

Hence, the best possible upper bound for the chromatic class of a p-graph G

with p ≤ �σ(G)
2 � depends on the relationship between σ(G) and p. Perhaps I will

investigate this question later.
Finally, the author would like to express heartfelt thanks to A. A. Zykov for

assistance and valuable advise.
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A.2 CRITICAL GRAPHS WITH A GIVEN CHROMATIC CLASS

V.G. Vizing

Diskretnyi Analiz 5 (1965) Novosibirsk, 9–17.

In this paper we use the notation from Vizing [1] and the book by C. Berge [2]. In
Vizing [1] it was proved that if σ(G) is the maximum degree of a vertex of G then
the chromatic class q(G) is either σ(G) or σ(G) + 1. Each of the two possibilities
depends on the structure of the graph. We do not have criteria that can help us to
determine the chromatic class using visible properties of the graph. But we can
investigate two directions:

1. What can one say about the properties of a graph if it is known that its chromatic
class is one bigger than the maximum degree?

2. If some structural or numerical characteristics of a graph is known, what is its
chromatic class?

For the research in the first direction it is natural to introduce the definition of a
critical graph.

DEFINITION OF A CRITICAL GRAPH OF DEGREEm AND ITS PROPERTIES

A graphG is called critical of degreem, wherem ≥ 2 is an integer, when:

(a) G is connected;

(b) σ(G) = m;

(c) q(G) = m+ 1;

(d) The chromatic class of a graph obtained by removing any edge fromG is equal
to m.

The following Lemma is of interest because of its use in induction proofs for
critical graphs.

Lemma A.5 Let G be a graph with σ(G) = m and q(G) = m+ 1. Then for any k
satisfying m ≥ k ≥ 2 there exists a critical graph of degree k as a subgraph of G.

Proof : This is obvious for k = m. Let m > k ≥ 2 and G be critical of degree
m. Color all edges of G with m colors except an edge (a, b). We have δ(a) �= ∅,
δ(b) �= ∅, and since q(G) = m + 1, δ(a) ∩ δ(b) = ∅. (Here and in what follows,
δ(x) denotes the set of colors missing at the vertex x.) Let the colors s1 and s2,
respectively, belong to δ(a) and δ(b) (s1 �= s2). Remove now from G all edges
colored withm−k of the colors different from s1 and s2. The chromatic class of the
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remaining graph H of G is k + 1, therefore σ(H) ≥ k. On the other hand, H does
not contain any vertex of degree k + 1 in H so σ(H) = k. This means that there is
a critical subgraph ofH of degree k and therefore also of G.

The Lemma has been proved.

In Vizing [3] the following properties of critical graphs were given:

PROPERTY I. A critical graph of degreem cannot have a separating vertex.

PROPERTY II. The sum of the degrees of two adjacent vertices in a critical graph of
degreem is ≥ m+ 2.

PROPERTY III. In a critical graph of degreem each vertex is adjacent to at least two
vertices of degreem.

We shall now obtain a common generalization of Properties II and III. For this we
define a fan-sequence of edges.

Let us have a graph with colored edges (it does not matter if all edges are colored
or not). A sequence of different edges (a, x1), (a, x2), . . . , (a, xn) (n ≥ 1), at the
vertex a and colored s1, s2, . . . , sn, is called a fan-sequence at a, starting with (a, x1),
if the color s2 is missing at x1 , the color s3 is missing at x2, . . ., the color sn is
missing at xn−1.

REMARK. In a fan-sequence, all edges are incident with the same vertex; hence
the colors s1, s2, . . . , sn are all different.

Theorem A.6 In a critical graph of degree m each vertex incident with a vertex of
degree k is in addition also incident with m− k + 1 vertices of degree m.

Proof : Let G be a critical graph of degree m, σ(b) = k ≤ m, where σ(b) is the
degree of the vertex b and (a, b) is an edge ofG. We shall prove that a is adjacent to
m− k + 1 vertices of degreem, different from b.

We color the edges of G withm colors, except the edge (a, b). We have |δ(b)| =
m− k + 1 and |δ(a)| ≥ 1. Since q(G) = m+ 1, we have δ(a) ∩ δ(b) = ∅.

Using the same method as in [1], we can show that no fan-sequence at a, starting
with an edge having a color from δ(b), can contain an edge (a, x) such that there is
a missing color at x from δ(a) or there is a missing color at x being the color of an
earlier edge of the fan-sequence.

We shall now prove that if |δ(b)| ≥ 2, then two fan-sequences at vertex a, starting
with two different edges colored with colors from δ(b) are edge-disjoint. For a
contradiction, assume that (a, x1), . . . , (a, xr) and (a, y1), . . . , (a, y�) are two fan-
sequences at a, colored s1, . . . , sr and s′1, . . . , s

′
�, where (s1 ∈ δ(b), s′1 ∈ δ(b),

s1 �= s′1), and only (a, xr) and (a, y�) are equal. Obviously, either r ≥ 2 or
� ≥ 2 (both cases are possible). Let us assume that r ≥ 2. Then sr = s′� belongs to
δ(xr−1). Let t ∈ δ(a) and change the colors in themaximum (sr, t)-chain starting the
vertex xr−1 (see Vizing [1]). If the edge (a, xr) does not get the color t, then the fan-
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sequence (a, x1), . . . , (a, xr−1) contains the edge (a, xr−1)with δ(xr−1)∩δ(a) �= ∅.
If the edge (a, xr) gets the color t, then when � = 1 we have sr = s′� ∈ δ(b) ∩ δ(a);
and when � ≥ 2 the fan-sequence (a, y1), . . . , (a, y�−1) contains the edge (a, y�−1)
with δ(y�−1) ∩ δ(a) �= ∅. This contradicts q(G) = m+ 1.

We finish the proof as follows.
For each edge with a as end-vertex and having one of the finitely many colors from

δ(b), construct a maximal fan-sequence at the vertex a starting with the edge. Then if
(a, x) is the last vertex of the fan, then δ(x) = ∅ and σ(x) = m. Since fan-sequences
at a starting with different edges cannot have common edges, it follows that a is
adjacent to at least |δ(b)| = m− k + 1 different vertices of degreem, these vertices
being also different from b.

Theorem A.6 has been proved.

Theorem A.6 obviously generalize properties II and III of critical graphs. Conse-
quently the theorem proves Hypothesis 2 from Vizing [3].

Theorem A.7 A critical graph of degree m contains an elementary cycle of length
≥ m+ 1.

Proof : We proceed by contradiction. Let G be a critical graph of degree m for
which the length of any elementary cycle is no more thanm.

By μ = [a1, a2, . . . , an] we denote a longest elementary path in G. Let a� be the
vertex of μ with the maximum index which is adjacent to a1 (this means that a1 and
a� are adjacent, a� ∈ μ, but for all j > � the vertex aj of the path μ is not adjacent
to a1).

Similarly, let ar be the vertex of the path μ with the maximum index which is
adjacent to a2.

Since μ is an elementary path of maximum length, all vertices ofG adjacent to a 1

belong to μ. Thus if σ(a1) = m, then � ≥ m+ 1 and the length of the elementary
cycle [a1, a2, . . . , a�, a1] is larger thanm. This means that σ(a1) = k < m (k ≥ 2).
By Theorem A.6, the vertex a2 is adjacent to at least m − k + 1 vertices of degree
m. If a vertex a′ is adjacent to a2 and σ(a′) = m, then a′ ∈ μ, because otherwise
the elementary sequence [a′, a2, . . . , an] would be of maximum length which is
not possible since σ(a′) = m. Next, if a1 is adjacent to ai (2 ≤ i ≤ n), then
σ(ai−1) < m, because the elementary path [ai−1, ai−2, . . . , a1, ai, ai+1, . . . , an]
has maximum length.

Now let us compare � and r. If � ≥ r, then as mentioned above, among the
vertices a1, a2, . . . , an we can find k vertices of degree< m andm− k+1 vertices
of degreem. Consequently the length of the elementary cycle [a 1, a2, . . . , a�, a1] is
not smaller than k +m− k + 1 = m+ 1.

Assume now that r > �. If a1 is not adjacent to a3, then among the vertices
a3, a4, . . . , ar we can find at leastm−k+1 vertices of degreem and k−1 vertices of
degree< m, and consequently the length of the elementary cycle [a 2, a3, . . . , ar, a2]
is at least m + 1. If on the other hand a1 is adjacent to a3, then among the vertices
a1, a2, . . . , ar we havem−k+1 vertices of degreem and k vertices of degree< m.
Then the elementary cycle [a2, a1, a3, a4, . . . , ar, a2] contains at leastm+1 vertices.



276 VIZING’S TWO FUNDAMENTAL PAPERS

Theorem A.7 has been proved.

It would be of interest to obtain the best possible lower bound for the maximum
length of an elementary cycle in a critical graph of degreem, taking into account also
the number of vertices of the graph.

Using Theorem A.6, we shall now obtain a lower bound on the number of edges
in a critical graph of degreem.

Theorem A.8 In a critical graph of degree m the number of edges is ≥ (3m2 +
6m− 1)/8.

Proof : Let G be a critical graph of degreem, and let k be the minimum degree of
the vertices of G. Then G obviously contains at least m− k + 2 vertices of degree
m. As the number of vertices of the graph is at least m + 1 the number of edges is
at least ((m− k + 2)m+ (k − 1)k)/2.

The minimum of this expression is obtained for k = (m + 1)/2 (this may be
proved by differentiation). If we insert (m+1)/2 instead of k we get that the number
of edges is at least (3m2 + 6m− 1)/8.

Theorem A.8 has been proved.

In Vizing [3] it is conjectured that the number of edges in a critical graph of degree
m is > m2/2 (Hypothesis I). The author has been unable to prove or disprove this
conjecture. In the particular case whenm is even and the number of vertices ism+1,
the problem may be formulated as follows:

Suppose we have an odd number n of elements. Prove or disprove that every
set of (n − 1)2/2 unordered pairs, each consisting of two of the elements, can be
divided inton−1 groups such that the pairs in each group have no common elements.

A METHOD FOR CLASSIFICATION OF GRAPHS

We define that a graph G belongs to the class Lk, where k is an integer ≥ 0, if
every subgraph ofG has a vertex of degree at most k. It follows that ifG ∈ L k, then
G ∈ L′k for k′ ≥ k. On the other hand, a graph of maximum degree m belongs to
Lm.

Theorem A.9 If G ∈ Lk and σ(G) ≥ 2k, then q(G) = σ(G).

Proof : Suppose the theorem is not true and thatG ∈ Lk (k ≥ 1), σ(G) = m ≥ 2k,
but q(G) = m+ 1.

We may assume thatG is critical of degreem. LetX denote the set of all vertices
of G and S the subset of all vertices of degree ≤ k. Then since σ(G) ≥ 2k the set
X \S is nonempty. By TheoremA.6, every vertex fromX \S with a neighbor from
S, also has at least m − k + 1 neighbors of degreem. Every vertex of degreem is
inX \ S andm− k + 1 ≥ k + 1 > k. Thus the subgraph spanned byX \ S has no
vertex of degree≤ k. This contradictsG ∈ Lk.

Theorem A.9 has been proved.
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Let S(k) (k ≥ 0 is an integer) denote the least natural number such that any
graph G ∈ Lk with σ(G) ≥ S(k) satisfies q(G) = σ(G). Theorem A.9 says that
S(k) ≤ 2k. It is easy to show that S(0) = 0, S(1) = 1, S(2) = 4, and S(3) = 6.
But the author conjectures that for k large enough the estimate of Theorem A.9 may
be improved. It would be interesting to investigate more thoroughly the class L k and
the function S(k).

Theorem A.10 If G is planar and σ(G) ≥ 8, then q(G) = σ(G).

Proof : Because Lemma A.5 it is enough to consider the case σ(G) = 8 to prove
Theorem A.10. So let G be a planar graph with σ(G) = 8 and q(G) = 9. We may
assume that G is critical of degree 8.

Let ni (0 ≤ i ≤ 8) denote the number of vertices of G of degree i. Since G is
critical, n0 = 0 and n1 = 0. Since G is planar,

∑8
i=2 ini ≤ 6(

∑8
i=2 ni − 2).4 It

follows that
2n8 + n7 ≤ n5 + 2n4 + 3n3 + 4n2 − 12. (A.1)

We denote byn8(i1, i2, i3, i4) the number of vertices of degree 8, joined to i1 vertices
of degree 2, i2 vertices of degree 3, i3 vertices of degree 4, and i4 vertices of degree 5.
It follows from Theorem A.6 that if i1+ i2 + i3 + i4 > 0, then i1 + i2 + i3 + i4 ≤ �,
where � is the smallest natural number for which i� > 0.

We denote byn7(j1, j2, j3) the number of vertices of degree 7, joined to j1 vertices
of degree 3, j2 vertices of degree 4, and j3 vertices of degree 5. It follows again from
Theorem A.6 that if j1 + j2 + j3 > 0, then j1 + j2 + j3 ≤ r, where r is the smallest
natural number for which jr > 0. We have

2n2 = n8(1, 0, 0, 0) (A.2)

3n3 = n8(0, 1, 0, 0) + n8(0, 1, 1, 0) + n8(0, 1, 0, 1)
+2n8(0, 2, 0, 0) + n7(1, 0, 0).

(A.3)

Since every vertex of degree 5 is joined to at least two vertices of degree 8, we have:

2n5 ≤ n8(0, 1, 0, 1) + n8(0, 0, 1, 1) + 2n8(0, 0, 1, 2) + n8(0, 0, 2, 1)
+n8(0, 0, 0, 1) + 2n8(0, 0, 0, 2) + 3n8(0, 0, 0, 3) + 4n8(0, 0, 0, 4).

(A.4)

By Property II, a vertex of degree 4 can only be joined to vertices of degree≥ 6; and
by Theorem A.6, any vertex of degree 4 with a neighbor of degree 6 is also joined to
three vertices of degree 8. Therefore, if we denote by n ′4 the number of vertices of
degree 4 with a neighbor of degree 6, then

3n′4 + 4(n4 − n′4) = n8(0, 1, 1, 0) + n8(0, 0, 1, 0)

+n8(0, 0, 1, 1) + n8(0, 0, 1, 2) + 2n8(0, 0, 2, 0) + 2n8(0, 0, 2, 1)

+3n8(0, 0, 3, 0) + n7(0, 1, 0) + n7(0, 1, 1) + 2n7(0, 2, 0).

4Here we use the fact from Euler’s polyhedron formula that the sum of the degrees of a planar graph is at
most 6(n − 2).
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Since every vertex of degree 4 is joined to at most two vertices of degree 7, we have
2(n4 − n′4) ≥ 2n7(0, 2, 0), hence n4 − n′4 ≥ n7(0, 2, 0). Therefore

3n4 ≤ n8(0, 1, 1, 0) + n8(0, 0, 1, 0) + n8(0, 0, 1, 1)
+n8(0, 0, 1, 2) + 2n8(0, 0, 2, 0) + 2n8(0, 0, 2, 1) + 3n8(0, 0, 3, 0)

+n7(0, 1, 0) + n7(0, 1, 1) + n7(0, 2, 0).
(A.5)

From (A.2), (A.3), (A.4), and (A.3) we get

n5 + 2n4 + 3n3 + 4n2 ≤ 2n8 + n7,

which contradicts (A.1).
Theorem A.10 has been proved.

The author has not solved the problem if there exists a planar graph G with
σ(G) = 7 or σ(G) = 6 which has q(G) = σ(G) + 1.

For each integer m, where 2 ≤ m ≤ 5, it is easy to obtain a planar graph with
σ(G) = m and q(G) = m+ 1.
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Notes

VadimG. Vizing was born in Kiev, Ukraine, onMarch 25, 1937. After the war, when
he was 10, his family was forced to move to Siberia because his mother was half-
German. He began his studies at the University of Tomsk in 1954 and graduated in
1959. FromTomsk he thenmoved toMoscow to the famous Steklow Institute to study
for a Ph.D. He did not finish this program, however, and moved back to Siberia, to
work at the Mathematical Institute of the Academy of Sciences in Akademgorodok
outside Novosibirsk, where he stayed until 1968. This was an extremely fruitful
period, where he was influenced and helped by the leading Russian graph theorist A.
A. Zykov, and he obtained a Ph.D. in 1966.

In 1964 Vizing obtained his fundamental results on edge colorings of graphs,
published in Vizing [297, 298, 299]. The main theorem soon became known also in
theWest, as Zykov [327] mentioned it (added in proof), together with other results by
Novosibirsk mathematicians, including Vizing, in the proceedings from the meeting
in Smolenice in Czechoslovakia in 1963, published jointly by the Czechoslovak
Academy of Sciences in Prague and Academic Press in New York and London in
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1964/65. Zykov [328] mentioned again the results of Vizing at the meeting in Rome
in 1966. The theory was still in its beginnings, and during these years Vizing [300]
considered extensions and related unsolved problems.

In 1968 Vizing moved back to Ukraine, where since 1974 he has lived in Odessa.
He is now retired from a position as teacher of mathematics at the Academy for Food
Technology, and he is still active in research in graph theory, see the interview by
Gutin and Toft [122] from 2000.

In his papers Vizing uses the term chromatic class for the edge-chromatic number
of a graph. It is unusual to denote a graph parameter by the word class. The
terminology seems due to Sainte-Laguë [259, 260, 261], who used the term rank
for the vertex-chromatic number and class for the edge-chromatic number. Sainte-
Laguë’s terminology for the edge-chromatic number was adopted by Claude Berge
in his influential first book on graphs [24]. However, in the English translation of
Berge’s book the translator Alison Doig (now Alison Harcourt), then at the London
School of Economics, changed the terminology from class to index. The term index
thereafter became commonly used and is now the preferred term by most authors.

During the fruitful period 1964–1965 in Akademgorodok Vizing produced the
three fundamental papers on edge coloring of which the first and last appear above
in English translations (we thank the Russian Academy of Sciences in Novosibirsk
for permission to publish these translations). In the first paper [297] Vizing dealt
with graphs with multiple edges, and he introduced fans to obtain the inequality
χ′ ≤ Δ+ μ. Moreover he briefly discussed the question for which values ofΔ and
μ equality is possible. In this connection he mentioned without proof that:

Theorem A.11 χ′(G) ≤ Δ(G) + μ(G) − 1 for all graphs with μ(G) ≥ 2 and
Δ(G) = 2μ(G)− 1.

A proof of Theorem A.11 appeared in the second paper [298], which already
in 1965 was translated and published in English. In that paper the main result
of Vizing [297] and its proof was repeated, critical simple graphs were introduced
and the first version of the adjacency lemma was obtained (that each vertex of a
critical simple graph has at least two neighbors of degreeΔ). Moreover, he treated
König’s Theorem on bipartite graphs, and Shannon’s Theorem was proved together
with a characterization of the graphs achieving Shannon’s bound with equality. The
classification of simple graphs into Class 1 and Class 2 graphs was presented, and the
result that all planar simple graphs withΔ(G) ≥ 10 are Class 1, i.e., χ ′(G) = Δ(G),
was proved by an elegant simple proof, using just that any subgraph of a planar graph
has minimum degree at most 5. Also, in the second paper Vizing considered the
problem of repeated recolorings of maximal connected 2-colored subgraphs to get
from one edge coloring to another given coloring. And it treated complementary
graphs.

In the third paper the adjacency lemma was extended, again considering critical
simple graphs, to what we today know as Vizing’s Adjacency Lemma. The proof
again used fans, now defined in a more general way than in Vizing [297]. In addition,
fundamental results about cycle lengths and the number of edges in critical graphs
were obtained. In the third paper again the classification of simple graphs into Class
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1 and Class 2 graphs were considered, and the result that planar simple graphs with
Δ(G) ≥ 8 are Class 1 was proved, using a rather complicated analysis based on
Euler’s Theorem.

In 1968, at the end of Vizing’s period in Akademgorodok he published the paper
[300] containing a wealth of unsolved graph theory problems, including several about
edge colorings. That paper was already the same year translated and published in
English.

Theorem A.11 above was also obtained by Gupta [120], who conjectured for
exactly which values ofΔ(G) and μ(G) the inequality χ ′(G) ≤ Δ(G) + μ(G)− 1
holds (see Gupta’s Conjecture ♣ 4 in Chap. 9). Without knowing Gupta’s work
in detail Favrholdt, Stiebitz, and Toft [91] took the first steps in the direction of
the present book. This preliminary version appeared as a technical report at the
University of Southern Denmark in 2006. That same year Diego Scheide, in his
Diplomarbeit at the Technical University of Ilmenau, supervised by Stiebitz, proved
that Gupta’s Conjecture follows from Goldberg’s Conjecture, thus relating these two
fundamental questions. Scheide’s proof was included in Favrholdt et al. [91].



APPENDIX B

FRACTIONAL EDGE COLORINGS

Fractional graph theory, introduced by Berge [26] in 1978, deals with real-valued
analogues of traditional integral graph parameters and concepts. If a graph parameter
ρ can be expressed as the optimal value of an integer program, a fractional graph
parameter ρ∗ associated with ρ can be defined as the linear programming relaxation
of this integer program.

B.1 THE FRACTIONAL CHROMATIC INDEX

In what follows, let (G, f) be an arbitrary weighted graph, that is, G is a graph and
f : V (G) → IN a vertex function.

An f -matching of G is defined to be an edge set M ⊆ E(G) such that each
vertex v ∈ V (G) satisfies |M ∩ EG(v)| ≤ f(v). The set of all f -matchings of
G is denoted by Mf (G). Clearly, if ϕ ∈ Ck

f (G) is an f -coloring of G, then the
color class Eϕ,α = {e ∈ E(G) | ϕ(e) = α} is an f -matching of G for every color
α ∈ {1, . . . , k}. Hence, an f -coloring of G can be viewed as a partition of E(G)
into f -matchings, and the f -chromatic index χ ′f (G) is the least possible number of
classes in such a partition.

Graph Edge Coloring: Vizing’s Theorem and Goldberg’s Conjecture,
First Edition. By M. Stiebitz, D. Scheide, B. Toft, and L. M. Favrholdt
Copyright c© 2012 John Wiley & Sons, Inc.
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A fractional f -coloring of G is a function w : Mf(G) → [0, 1] such that every
edge e ∈ E(G) satisfies ∑

M∈Mf (G):e∈M
w(M) = 1.

LetRf (G) denote the set of all fractional f -colorings ofG. For a fractional coloring
w ∈ Rf (G), we call ∑

M∈Mf (G)

w(M)

the value of w. The minimum value over all fractional f -colorings of G is the
fractional f -chromatic index of G denoted χ ′∗f (G), i.e.,

χ′∗f (G) = min

⎧⎨
⎩

∑
M∈Mf (G)

w(M) | w ∈ Rf (G)

⎫⎬
⎭.

Theminimumexists, since this is an LP-problembounded from below. A subset of an
f -matching is itself an f -matching, and the f -chromatic index χ ′f (G) is the smallest
number k such that E(G) can be covered by k f -matchings. The linear relaxation of
this formulation leads to the set R′f (G) of all functions w : Mf (G) → IR≥0 such
that every edge e ∈ E(G) satisfies∑

M∈Mf (G):e∈M
w(M) ≥ 1.

Theorem B.1 Every weighted graph (G, f) satisfies

χ′∗f (G) = min

⎧⎨
⎩

∑
M∈Mf (G)

w(M) | w ∈ R′f (G)

⎫⎬
⎭.

Proof : Let R′of (G) denote the set of all functions w ∈ R′f (G) having minimum
value

∑
M∈Mf (G)w(M). SinceRf (G) ⊆ R′f (G), it suffices to show thatRf (G)∩

R′of (G) �= ∅. To this end, define a function p : R′o
f (G) → IN ∪ {0} by

p(w) =

∣∣∣∣∣∣
⎧⎨
⎩e ∈ E(G) |

∑
M∈Mf (G):e∈M

w(M) = 1

⎫⎬
⎭
∣∣∣∣∣∣ .

Letw′ ∈ R′of (G) be a function such that p(w ′) is maximum. If p(w′) = |E(G)|, then
w′ ∈ Rf (G) and we are done. So suppose that p(w ′) < |E(G)|. Then there exists
an edge e0 ∈ E(G) such that

∑
M∈Mf (G):e0∈M w′(M) > 1. LetR0 be the set of all

functions w ∈ R′of (G) such that p(w) = p(w′) and
∑

M∈Mf (G):e0∈M w(M) > 1.

Clearly, w′ belongs toR0. Now define a function q : R0 → IN ∪ {0} by

q(w) = |{M ∈ Mf (G) | e0 ∈ M,w(M) = 0}|.
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To reach a contradiction, we choose a functionw ∈ R0 such that q(w) is maximum.
Since w ∈ R′of (G), there is a f -matching M0 ∈ Mf (G) such that e0 ∈ M0 and
w(M0) > 0. We now define a new function w̃ : Mf(G) → IR by

w̃(M) =

⎧⎨
⎩

w(M)− ε ifM = M0,
w(M) + ε ifM = M0 \ {e0},
w(M) otherwise,

where ε := min
{∑

M∈Mf (G):e0∈M w(M) − 1, w(M0)
}
. Clearly, w̃(M) ≥ 0 for

allM ∈ Mf (G) and we have∑
M∈Mf (G)

w̃(M) =
∑

M∈Mf (G)

w(M).

Furthermore, every edge e �= e0 of G satisfies∑
M∈Mf (G):e∈M

w(M) =
∑

M∈Mf (G):e∈M
w̃(M) ≥ 1

and the edge e0 satisfies∑
M∈Mf (G):e0∈M

w̃(M) =
∑

M∈Mf (G):e0∈M
w(M)− ε ≥ 1.

Consequently, w̃ belongs to the setR′of (G). If

ε =
∑

M∈Mf (G):e0∈M
w(M)− 1,

then p(w̃) = p(w) + 1, a contradiction. Otherwise, ε = w(M0) and, therefore,
w̃ ∈ R0 and q(w̃) = q(w) + 1, a contradiction too. This completes the proof of the
theorem.

Finally, letR∗f (G) be the set of all functions w:Mf (G) → [0, 1] such that every
edge e ∈ E(G) satisfies ∑

M∈Mf (G):e∈M
w(M) ≥ 1.

Evidently, we have
Rf (G) ⊆ R∗f (G) ⊆ R′f (G)

and Theorem B.1 implies that

χ′∗f (G) = min

⎧⎨
⎩

∑
M∈Mf (G)

w(M) | w ∈ R∗f (G)

⎫⎬
⎭.
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B.2 THE MATCHING POLYTOPE

Let (G, f) be an arbitrary vertex-weighted graph, i.e., f : V (G) → IN. For a set U ⊆
V (G), define f(U) =

∑
u∈U f(u). The set V(G) of all functions x : E(G) → IR

form a real vector spacewith respect to the addition of functions and themultiplication
of a function by a real number. If m = |E(G)|, then V(G) has dimension m and
is isomorphic to the standard vector space IRm. For a vector x ∈ V(G) and a set
F ⊆ E(G), let x(F ) =

∑
e∈F x(e). A polytope in V(G) is the convex hull of

finitely many vectors of V(G). For an edge set F ⊆ E(G), let xF : E(G) → IR be
the function defined by

xF (e) =

{
1 if e ∈ F,
0 if e �∈ F.

This function is usually called the incidence vector or the characteristic function
of F . The f -matching polytope Pf (G) of G is then defined as the convex hull of
the incidence vectors of all f -matchings in G, i.e.,

Pf (G) = conv({xF | F ∈ Mf (G)}).

Note that Pf (G) contains the null-vector x∅ = 0. If f(v) = 1 for all v ∈ V (G),
we write P(G) rather than Pf (G). So P(G) is the ordinarymatching polytope of
G. Furthermore, let Pperf(G) denote the perfect matching polytope of G, that is,
the convex hull of the incidence vectors of all perfect matchings of G. Note that
Pperf(G) �= ∅ if and only if G has a perfect matching.

In his pioneering work of 1965, Edmonds [76] gave a full description of the
matching polytope of a given graph by a finite system of linear inequalities. Even
if the number of constraints is exponential in the size of the graph, the description
of the matching polytope has become a very useful tool in combinatorial optimiza-
tion. Over the years, several different proofs and enhancements of the matching
polytope theorem has been given; we refer the reader to the book by Schrijver [277].
The matching polytope theorem follows from a description of the perfect matching
polytope, also given by Edmonds [76].

Theorem B.2 (Edmonds’ perfect matching polytope theorem [76] 1965) For any
graph G, a vector x ∈ V(G) belongs to Pperf(G) if and only if x satisfies the
following systems of linear inequalities:

(a) ∀e ∈ E(G) : 0 ≤ x(e) ≤ 1 (capacity constraint)

(b) ∀v ∈ V (G): x(EG(v)) = 1 (degree equation)

(c) ∀U ⊆ V (G), |U | is odd: x(∂G(U))) ≥ 1 (odd cut constraint)

Theorem B.3 (Edmonds’ matching polytope theorem [76] 1965) For any graph G,
a vector x ∈ V(G) belongs to P(G) if and only if x satisfies the following systems
of linear inequalities:
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(a) ∀e ∈ E(G) : 0 ≤ x(e) ≤ 1 (capacity constraint)

(b) ∀v ∈ V (G): x(EG(v)) ≤ 1 (degree constraint)

(c) ∀U ⊆ V (G), where |U | is odd: x(E(G[U ])) ≤ |U|−1
2 (blossom constraint)

A description of the f -matching polytope by a system of linear inequalities was
given by Edmonds and Johnson [77] in 1970.

Theorem B.4 (Edmonds and Johnson [77] 1970) Let (G, f) be a weighted graph. A
vector x ∈ V(G) belongs to Pf(G) if and only if x satisfies the following systems of
linear inequalities:

(a) ∀e ∈ E(G): 0 ≤ x(e) ≤ 1 (capacity constraint)

(b) ∀v ∈ V (G): x(EG(v)) ≤ f(v) (weighted degree constraint)

(c) ∀U ⊆ V (G), ∀F ⊆ ∂G(U), where f(U) + |F |
is odd: x(E(G[U ])) + x(F ) ≤ f(U)+|F |−1

2 (weighted blossom constraint)

Note that this result does not immediately imply the matching polytope theorem.
For f ≡ 1, some of the weighted blossom constraints are redundant, while a blossom
constraint for a subset U of V (G) with odd cardinality corresponds to a weighted
blossom constraint for the set U and the empty edge set F ⊆ ∂G(U). Whether in
general all weighted blossom constrains are really necessary seems not clear.

From Edmonds’ matching polytope theorem, a combinatorial characterization of
the fractional edge chromatic index can be easily derived. For a graphG, define

κ∗(G) = max

{
Δ(G), max

H⊆G,|V (H)|≥2

|E(H)|⌊
1
2 |V (H)|

⌋
}
. (B.1)

Observe that a graph with at most two vertices satisfies κ∗(G) = Δ(G). In
searching for a subgraph H ⊆ G achieving the maximum in (B.1) we can clearly
restrict H to be an induced subgraph and to have odd order, since for a subgraphH
of even order we have |E(H)|/�|V (H)|/2� ≤ Δ(H) ≤ Δ(G). So (B.1) reduces to

κ∗(G) = max

{
Δ(G), max

X⊆V (G),|X|≥3 odd
2|E(G[X ])|
|X | − 1

}
. (B.2)

Theorem B.5 (Seymour [280] 1979, Stahl [286] 1979) Every graph G satisfies
χ′∗(G) = κ∗(G).

Proof : The statement is evident if G is edgeless. So suppose E(G) �= ∅. Let M
denote the set of all matchings of G.
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To see that χ′∗(G) ≥ κ∗(G), choose a fractional edge coloring w of G with
minimum value. For a vertex v of maximum degree in G, we then obtain

χ′∗(G) =
∑

M∈M
w(M) ≥

∑
M∈M

w(M) |M ∩ EG(v)|

=
∑

e∈EG(v)

∑
M∈M:e∈M

w(M) =
∑

e∈EG(v)

1 = Δ(G).

Moreover, for eachH ⊆ G with |V (H)| ≥ 2, we obtain

χ′∗(G) =
∑

M∈M
w(M) ≥

∑
M∈M

w(M)
|M ∩E(H)|
� 1
2 |V (H)|�

=
1

� 1
2 |V (H)|�

∑
e∈E(H)

∑
M∈M:e∈M

w(M) =
|E(H)|

� 1
2 |V (H)|� .

This proves χ′∗(G) ≥ κ∗(G).
To see that χ′∗(G) ≤ κ∗(G), let x ∈ V(G) be the function with x(e) = 1/κ∗(G)

for all e ∈ E(G). Obviously, x(EG(v)) ≤ 1 for each v ∈ V (G) and x(E(G[U ])) ≤
� 1
2 |U |� for each U ⊆ V (G) with |U | ≥ 2. Hence x belongs to P(G), that is,

x is a convex combination of incidence vectors of matchings. Let 1 ∈ V(G) be
the all-one vector. Then 1 = κ∗(G) · x =

∑
M∈M λMxM for some λM ≥ 0

with
∑

M∈M λM = κ∗(G), implying that the function w : M → [0, 1] with
w(M) = λM for eachM ∈ M is a fractional edge coloring ofG. Hence, we obtain
χ′∗(G) ≤ ∑

M∈M w(M) = κ∗(G).

Theorem B.6 Let G be a graph and let χ′∗(G) = r. Then r is rational and for every
positive integer t we have χ′(tG) ≥ tr, where equality holds if and only if tr is an
integer and there exist a family of tr matchings in G using each edge exactly t times.
Furthermore, there are infinitely many positive integers t such that χ ′(tG) = tr.

Proof : If G is edgeless, the theorem is obviously true. So assume that E(G) �= ∅.
By (B.1) and Theorem B.5, we obtain that r is rational and χ ′(tG) ≥ χ′∗(tG) =
κ∗(tG) = tκ∗(G) = tχ′∗(G) = tr. Clearly, χ′(tG) = tr if and only if tr is an
integer and the edge set of tG can be partitioned into tr matchings. This is equivalent
to the statement that there exists a family of tr matchings in G using each edge
exactly t times, because tG is obtained from G by replacing each edge of G by t
parallel edges and no matching of tG contains two parallel edges.

The fractional edge chromatic index is the optimal value of an linear programwith
integer coefficients, hence there is an optimal fractional edge coloring w of G such
thatw(M) is rational for everymatchingM , whereχ ′∗(G) = r =

∑
M w(M). Let s

denote the least commonmultiple of the denominators of all the valuesw(M). Then
s is a positive integer and kM = sw(M) is a nonnegative integer for all matchingM
of G. Since w is an optimal fractional edge coloring, we conclude that∑

M

kMxM = s1 and
∑
M

kM = sr.
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This means that there is a family of sr matchings in G using each edge s times.
Clearly, this is equivalent to χ′(sG) = sr. If t = ks for a positive integer k, then
there is a family of tr = ksr matchings in G using each edge t = ks times, and so
χ′(tG) = tr. This completes the proof.

As a corollary of Theorem B.6 we obtain the following characterization of the
fractional chromatic index of an arbitrary graphG:

χ′∗(G) = min
t≥1

χ′(tG)

t
= lim

t→∞
χ′(tG)

t
. (B.3)

Because of TheoremB.6 it is sufficient to show that the limit in (B.3) exists. This fol-
lows from the fact that χ′((s+ t)G) ≤ χ′(sG)+χ′(tG) for all s, t ∈ IN and Fekete’s
Lemma [93]. This lemma says that if the sequence g : IN → IR≥0 is subadditive,
that is, g(s+ t) ≤ g(s) + g(t) for all s, t ∈ IN, then the limit limn→∞ g(n)/n exists
and is equal to the infimum of g(n)/n for n ∈ IN. A proof of Fekete’s Lemma can
be found in the book by Scheinerman and Ullman [276, Lemma A.4.1], see also the
book of Jensen and Toft [157, Problem 5.3].

In what follows we will discuss three interesting applications of Edmonds’ mat-
ching polytope theorem and Edmonds’ perfect matching polytope theorem. The
first application is a result due to O. Marcotte. This result is used in the proof of
Theorem 6.24.

Theorem B.7 (Marcotte [208] 1990) Every graph G with W(G) ≤ Δ(G) and
Δ(G) ≥ 1 contains a matching M such that Δ(G−M) = Δ(G)− 1.

Proof : LetΔ = Δ(G) and let x = 1
Δ1. Clearly, x satisfies the capacity constraints

and the degree constrains of Theorem B.3, where for each major vertex the degree
constraint holds with equality. Since Δ ≥ W(G), the vector x also satisfy the
blossoms constraints. So x belongs to the matchin polytope P(G) and is therefore a
convex combination of the matching vectors. If a matching vectorxM occurs in such
a convex combination with a positive coefficient, then xM also satisfies the degree
constraints for each major vertex with equality, that is, each major vertex of G is an
endvertex of some edge belonging to the matchingM . SoΔ(G−M) = Δ(G)−1.

Let G be a graph. The standard scalar product in the vector space V(G) is
denoted by ◦, and the set of perfect matchings ofG is denoted byM perf(G). Recall
that an odd set means a set with odd cardinality. The proof of the following statement
uses Theorem B.2 and is based on standard arguments from convex analysis.

Proposition B.8 (Kaiser, Král’, and Norine [162] 2005) Let G be a graph with at
least one edge and let x ∈ Pperf(G) be a vector. Then there are � ≥ 1 perfect
matchings M1, . . . ,M� ∈ Mperf(G) and positive integers λ1, . . . , λ� such that

x = λ1xM1 + · · ·λ�xM�
and λ1 + · · ·λ� = 1,

where every such convex combination of perfect matchings satisfies the following
statements:
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(a) If U ⊆ V (G) is an odd set such that x(∂G(U)) = 1, then xMi(∂G(U)) = 1
for i = 1, . . . , �.

(b) For every vector c ∈ V(G) there is a perfect matching M ∈ {M1, . . . ,M�}
such that c ◦ xM ≥ c ◦ x.

Let G be a cubic bridgeless graph. Observe that G is a 3-graph, that is, G is
3-regular and |∂G(U)| ≥ 3 for every odd set U ⊆ V (G). If U ⊆ V (G) satisfies
|∂G(U)| = 3, then a simple parity argument shows that U is odd, and we then
call F = ∂G(U) a 3-edge-cut of G. By Petersen’s theorem [241], G has a perfect
matching. For an integer k ≥ 1, define

mk(G) = max

{
|⋃k

i=1 Mi|
|E(G)| | M1, . . . ,Mk ∈ Mperf(G)

}
.

Evidently, m1(G) = 1
3 and a conjecture of C. Berge suggests that m5(G) = 1.

Lower bounds for mk(G) for 2 ≤ k ≤ 5 were established by Kaiser, Král’, and
Norine [162].

Theorem B.9 (Kaiser, Král’, and Norine [162] 2005) Every cubic bridgeless graph
G satisfies m2(G) ≥ 3

5 , where equality holds for the Petersen graph.

Proof : That the Petersen graph P satisfiesm2(P ) = 3/5 follows from the fact that
any two perfect matchings of P have exactly one edge in common.

So let G be an arbitrary cubic bridgeless graph and let x = 1
31 ∈ V(G). By

Theorem B.2, x ∈ Pperf(G) and x(F ) = 1 for each 3-edge-cut F of G. Hence, by
Proposition B.8, there is a perfect matching M1 of G intersecting each 3-edge-cut
in a single edge. We now define a vector y ∈ V(G) by y(e) = 1/5 if e ∈ M1 and
y(e) = 2/5 otherwise. Since M1 contains exactly one edge of each 3-edge-cut, it
follows that y ∈ Pperf(G). Let c = 1− xM1 . Again, by Proposition B.8, there is a
perfect matchingM2 of G such that

c ◦ xM2 ≥ c ◦ y =
2

5
· 2
3
|E(G)| = 4

15
|E(G)|.

Since c◦xM2 = |M2\M1|, it follows that |M1∪M2| = (13+
4
15 )|E(G)| = 3

5 |E(G)|.
This shows thatm2(G) ≥ 3/5 as required.

Using a similar approach, Kaiser, Král’, and Norine [162] proved that

mk(G) ≥ 1−
k∏

i=1

i+ 1

2i+ 1

for every cubic bridgeless graph G and every integer k ≥ 1. For the Petersen graph
P , we have

m2(P ) =
3

5
,m3(P ) =

4

5
,m4(P ) =

14

15
,m5(P ) = 1.
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The third application of the perfect matching polytope theorem deals with the
Petersen graph. In 2007 V. V. Mkrtchyan posted as an open question on the Open
Problem Garden webpage whether any cubic bridgeless graph different from the
Petersen graph contains a 2-factor such that at least one of its cycles is not a 5-cycle,
that is, a cycle of length 5. Within one day M. DeVos found an affirmative answer
and put an outline of a proof on the Open Problem Garden. His proof is based on
standard arguments, particularly on Tutte’s 1-factor theorem, and was published by
DeVoss, Mkrtchyan, and Petrosyan [68]. Shortly after the problem was posed by
Mkrtchyan, D. Král’ (oral communication) also found a solution, but with a shorter
proof. The secret of Král’s proof is to show, by means of the perfect matching
polytope theorem, that a connected cubic bridgeless graph without a desired 2-factor
has so many 5-cycles that it can be only the Petersen graph.

Theorem B.10 Let G be a connected cubic bridgeless graph. Then every 2-factor
of G is the disjoint union of 5-cycles if and only if G is the Petersen graph.

Proof : It is not hard to check that each 2-factor of the Petersen graph is the disjoint
union of two 5-cycles. So assume that G is a connected cubic bridgeless graph of
order n such that every 2-factors ofG is the disjoint union of 5-cycles. We first show
that the number of 5-cycles in G is at least 6n/5, from which we then conclude that
G must be the Petersen graph.

To count the number of 5-cycles in G we apply Edmonds’ perfect matching
polytope theorem (Theorem B.2) to the vector x = 1

31 ∈ V(G). By Theorem B.2,
x ∈ Pperf(G). Then there are � ≥ 1 perfect matchings M1, . . . ,M� ∈ Mperf(G)
and positive integers λ1, . . . , λ� such that

x = λ1xM1 + · · ·λ�xM�
and λ1 + · · ·λ� = 1. (B.4)

For an edge set M ⊆ E(G) defineM = E(G) \M . IfM is a perfect matching
ofG, thenM is (the edge set of) a 2-factor ofG and the hypothesis implies therefore
thatM is the disjoint union of 5-cycles, where the number of these 5-cycles is n/5.

For each i (i = 1, . . . , �) the n/5 5-cycles of M i are each given the weight λi.
The total weight w given to all 5-cycles is then

w = (λ1 + · · ·+ λ�)
n

5
=

n

5
.

Consider a fixed 5-cycle C of G. The total weight given to C is

p =
∑
i∈I

λi,

where I = {i|E(C) ⊆ M i}. To estimate p, consider F = ∂G(V (C)), which is a set
of three or five edges. If |F | = 3, then we deduce from (B.4)

3

3
= x(F ) =

�∑
i=1

λixMi(F ) ≥
∑
i∈I

3λi +
∑
i
∈I

λi ≥ 3p+ (1− p) = 2p+ 1,
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which gives p ≤ 0, i.e., p = 0. If, on the other hand, |F | = 5 then we deduce from
(B.4) that

5

3
= x(F ) =

�∑
i=1

λixMi(F ) ≥
∑
i∈I

5λi +
∑
i
∈I

λi ≥ 5p+ (1 − p) = 4p+ 1,

which gives p ≤ 1/6. Let cn denote the number of 5-cycles of G. Then (1/6)cn ≥
w = n/5, i.e., cn ≥ 6n/5.

In a connected bridgeless graphG any vertex v is contained in at most six 5-cycles,
with equality only if there are exactly six vertices of distance 2 from v joined to each
other by six edges, implying that there are no vertices of distance 3 from v, i.e.,
|V (G)| = 10. The total number of 5-cycles is therefore≤ 6n/5. Since we deduced
above that cn ≥ 6n/5, it follows that cn = 6n/5 and that all vertices v are contained
in exactly six 5-cycles. Then |V (G)| = 10 and it follows easily thatG is the Petersen
graph.

B.3 A FORMULA FOR χ′∗
f

Let (G, f) be an arbitrary vertex-weighted graph. Recall from Chap. 8 that there
are two lower bounds for the f -chromatic index χ ′f (G), namelyΔf (G) andWf (G).
The fractional maximum f -degree of G is defined by

Δ∗f (G) = max
v∈V (G)

dG(v)

f(v)

and the fractional f -density of G is defined by

W∗f (G) = max
U⊆V (G),f(U)≥3odd

2|E(G[U ])|
f(U)− 1

,

whereW∗f (G) = 0 if f(U) = 1 or f(U) is even for all U ⊆ V (G). Furthermore, let
us define

κ∗f (G) = max{Δ∗f (G),W∗f (G)}.
Clearly, �κ∗f(G)� = max{Δf (G),Wf (G)} ≤ χ′f (G) and χ′∗f (G) ≤ χ′f (G). Next,
let us introduce a variation of the f -density. Let T (G) denote the set of all tuples
(U, F ) satisfying ∅ �= U ⊆ V (G), F ⊆ ∂G(U), and f(U) + |F | is odd and≥ 3. We
then define

W̃∗f (G) = max
(U,F )∈T (G)

2(|E(G[U ])|+ |F |)
f(U) + |F | − 1

if T (G) �= ∅ and W̃∗f (G) = 0 otherwise. Furthermore, we define

κ̃∗f (G) = max{Δ∗f (G), W̃∗f (G)}.

Clearly, W∗f (G) ≤ W̃∗f (G) and so κ∗f (G) ≤ κ̃∗f (G). If Δ∗f (G) ≤ 1, then obviously
χ′∗f (G) = χ′f (G) = Δf (G).
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Theorem B.11 Every graph G with Δ∗f (G) ≥ 1 satisfies χ′∗f (G) = κ̃∗f (G).

Proof : First we show that χ′∗f (G) ≥ κ̃∗f (G). To this end, we consider a fractional
f -coloring w ∈ Rf (G) with minimum value. For every f -matchingM ∈ Mf (G)
and every vertex v ∈ V (G), we have |M ∩ EG(v)| ≤ f(v). Let v ∈ V (G) be a
vertex such thatΔ∗f (G) = dG(v)/f(v). Then we obtain

χ′∗f (G) =
∑

M∈Mf

w(M) ≥
∑

M∈Mf

w(M)
|M ∩ EG(v)|

f(v)

=
∑

e∈EG(v)

∑
M∈Mf :e∈M

w(M)

f(v)

=
∑

e∈EG(v)

1

f(v)
=

dG(v)

f(v)
= Δ∗f (G).

To see that χ′∗f (G) ≥ W̃∗f (G), we may assume that T (G) �= ∅, since otherwise we
have W̃∗f (G) = 0 ≤ χ′∗f (G). Then we choose a tuple (U, F ) ∈ T (G) such that

W̃∗f (G) =
2(|E(G[U ])|+ |F |)
f(U) + |F | − 1

.

For the edge set E = E(G[U ]) ∪ F and an arbitrary f -matchingM ∈ Mf(G) we
have

2|M ∩E| ≤
∑
u∈U

f(u) + |M ∩ F | ≤ f(U) + |F |.

Since 2|M ∩E| is even and f(U)+ |F | is odd (because of (U, F ) ∈ T (G)), we have
2|M ∩E| ≤ f(U) + |F | − 1. Then we deduce that

χ′∗f (G) =
∑

M∈M
w(M) ≥

∑
M∈M

w(M)
2|M ∩ E|

f(U) + |F | − 1

=
∑
e∈E

∑
M∈M:e∈M

w(M)
2

f(U) + |F | − 1

=
∑
e∈E

2

f(U) + |F | − 1
=

2|E(G[U ])|+ |F |
f(U) + |F | − 1

= W̃∗f (G).

This proves that χ′∗f (G) ≥ κ̃∗f(G). It remains to show that χ′∗f (G) ≤ κ̃∗f (G). To see
this, let x ∈ V(G) be the function with x(e) = 1/κ̃∗f(G) for all e ∈ E(G). We claim
that x ∈ Pf (G). Clearly, x satisfies the capacity constraints. From κ̃∗f (G) ≥ Δ∗f (G)
we obtain

x(EG(v)) =
dG(v)

κ̃∗f (G)
≤

Δ∗f (G)f(v)

κ̃∗f (G)
≤ f(v)

for all v ∈ V (G). So x satisfies the weighted degree constraints. For any tuple
(U, F ) ∈ T (G) we obtain

x(E(G[U ])) + x(F ) =
|E(G[U ])| + |F |

κ̃∗f (G)
≤ f(U) + |F | − 1

2
,
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since κ̃∗f (G) ≥ W̃∗f (G). So x satisfies the weighted blossom constraints. Then
Theorem B.4 implies that x belongs to Pf (G), that is, x is a convex combination of
incidence vectors of f -matchings. This gives

1 = κ̃∗f (G) · x =
∑

M∈Mf

λMxM

for some λM ≥ 0 with ∑
M∈M

λM = κ̃∗f (G).

This implies that the functionw : Mf (G) → [0, 1]with w(M) = λM for eachM ∈
Mf is a fractional f -coloring of G. Then we obtain χ ′∗f (G) ≤ ∑

M∈M w(M) =
κ̃∗f (G) and the proof is complete.

Every graph G satisfies κ∗f (G) ≤ κ̃∗f (G) = χ′∗f (G) and we are now interested in
conditions for equality. To find at least a partial answer the following inequality can
be used. Let a1, . . . , an, b1, . . . , bn be positive real numbers with n ≥ 1. Then

a1 + · · ·+ an
b1 + · · ·+ bn

≤ max
1≤i≤n

ai
bi

(B.5)

With B = b1 + · · ·+ bn andM = max1≤i≤n
ai

bi
we obtain

∑n
i=1 ai∑n
i=1 bi

=

n∑
i=1

ai
bi

bi
B

≤
n∑

i=1

M
bi
B

= M,

which proves (B.5).
In what follows, let (G, f) be an arbitrary vertex-weighted graph. If T (G) = ∅,

then we clearly have κ̃∗f (G) = Δ∗f (G) and, therefore, κ̃∗f (G) = κ∗f (G). So assume
that T (G) �= ∅. Then there is a tuple (U, F ) ∈ T (G) such that

W̃∗f (G) =
2(|E(G[U ])|+ |F |)
f(U) + |F | − 1

.

By the definition of T (G), ∅ �= U ⊆ V (G), F ⊆ ∂G(U), and f(U) + |F | is odd and
≥ 3. Then we distinguish two cases.

Case 1: f(U) is odd. Then |F | is even. If |F | = 0, we obtain

W̃∗f (G) =
2|E(G[U ])|
f(U)− 1

≤ W∗f (G).

Otherwise, |F | ≥ 2 and, using (B.5), we obtain

W̃∗f (G) ≤ max{2|E(G[U ])|
f(U)− 1

, 2} ≤ max{W∗f (G), 2}.
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Case 2: f(U) is even. Then |F | is odd. If |F | ≥ 3, then based on (B.5) we
deduce that

W̃∗f (G) =
2(|E(G[U ]|+ |F |)
f(U) + |F | − 1

=

∑
u∈U dG[U ](u) + 2|F |
f(U) + |F | − 1

=

∑
u∈U dG(u) + |F |
f(U) + |F | − 1

≤ max

{∑
u∈U dG(u)∑
u∈U f(u)

,
|F |

|F | − 1

}

≤ max

{
max
u∈U

dG(u)

f(u)
,

|F |
|F | − 1

}
≤ max

{
Δ∗f (G),

3

2

}
.

It remains to consider the case |F | = 1. Then we have

W̃∗f (G) =
2|E(G[U ])|+ 2

f(U)
.

If |∂G(U)| ≥ 2, then

2|E(G[U ])|+ 2 =
∑
u∈U

dG[U ](u) + 2 ≤
∑
u∈U

dG(u).

By (B.5), this gives

W̃∗f (G) ≤
∑

u∈U dG(u)∑
u∈U f(u)

≤ Δ∗f (G).

Otherwise, |∂G(U)| = 1 and the only edge in F is a cut-edge (or bridge) ofG. Since
f(U) is even, we have f(U) ≥ 2. Based on (B.5) we then obtain that

W̃∗f (G) =

∑
u∈U dG[U ](u) + 2

f(U)
=

∑
u∈U dG(u) + 1∑

u∈U f(u)

≤ Δ∗f (G) +
1

f(U)
≤ Δ∗f (G) +

1

2
.

Hence, the following result is proved.

Proposition B.12 If (G, f) is a vertex-weighted graph, then

W̃∗f (G) ≤ max{Δ∗f (G) +
1

2
,W∗f (G), 2}.

Furthermore, W̃∗f (G) ≤ max{Δ∗f (G),W∗f (G), 2} provided that G is bridgeless.

Since any χ′f -critical graph with χ′f ≥ Δf + 1 is bridgeless (Proposition 8.30),
Proposition B.12 implies the following result:

Corollary B.13 Let (G, f) be a vertex-weighted graph with χ ′f (G) ≥ Δf (G) + 1
andΔ∗f (G) ≥ 2. If G is χ′f -critical, i.e., χ′f (H) < χ′f (G) for every proper subgraph
H of G, then χ′∗f (G) = κ∗f (G).
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Notes

Fractional graph theory has developed into an important and powerful method in
combinatorics and combinatorial optimization. The first monograph on the subject
was written by Berge [26] in 1978. Another comprehensive monograph, providing
a rational, rather than an integral, approach to the theory of graphs, was written by
Scheinerman and Ullman [276] in 1997.

The formula for the fractional chromatic index in Theorem B.5 can be easily
derived from Edmonds’ matching polytope theorem. This was first noticed by Stahl
[286] in 1979. However, Seymour [281] found a different proof of the formula and
used this result to give a purely combinatorial proof of Edmonds’ matching polytope
theorem.

Pulleyblank and Edmonds [250] characterized the facets of thematching polytope.
In particular, they proved that a blossom constraint for a set U is a facet of P(G)
if and only if G[U ] is 2-connected (i.e., G[U ] is connected and has no cut vertex)
and factor-critical (i.e., G[U ] − v has a perfect matching for every vertex v ∈ U ).
As observed by Marcotte [210], the above characterization implies the following
strengthening of Lemma 6.28 by Fernandes and Thomas [94]: Let G be a graph
with Δ(G) ≤ k for some integer k. Then κ(G) = max{Δ(G),W(G)} ≤ k if and
only if 2|E(G[U ])| ≤ k(|U | − 1) for every vertex set U ⊆ V (G) such that G[U ] is
2-connected and factor-critical.

Corollary B.13 can easily be extended to arbitraryχ ′f -critical graphswithΔ∗f ≥ 2.
A χ′f -critical graph G with χ′∗(G) = Δf (G) ≥ 2 satisfies χ′∗f (G) = Δ∗f (G) =
κ∗f (G) and χ′f (G) = �χ′∗f (G)�. It is also easy to show that a vertex weighted graph
(G, f)withΔf (G) ≤ 2 satisfies χ′f (G) = max{Δf (G),Wf (G)}. Combining these
results with Theorem 8.29, it follows that every weighted graph (G, f) satisfies

χ′f(G) ≤ �χ′∗f (G)�+
√
�χ′∗f (G)�/2.

Zhang, Yu, and Liu [320] proved a strengthening of Theorem B.4 characterizing the
f -matching polytope of a graph G. They proved that if f(v) ≥ dG(v) for every
vertex v of G, then a vector x ∈ V(G) belongs to Pf(G) if and only if x satisfies
the capacity constraints, the weighted degree constraints for all v ∈ V (G), and the
weighted blossom constraints for all tuples (U, F ) ∈ T (G) with F = ∅. As a
consequence, they deduced that χ ′∗f (G) = κ∗f(G) for every weighted graph (G, f)
with f(v) ≥ dG(v) for all v ∈ V (G).

A fractional chromatic index for the fg-color problem can be also defined by
relaxation of the integer program defining χ ′f,g . However, a combinatorial character-
ization of the fractional chromatic index seems not known.



REFERENCES

1. Afshani, P., Ghandehari, M., Ghandehari, M., Hatami, H., Tusserkani,

R. and Zhu, X. (2005). Circular chromatic index of graphs with maximum degree 3.
J. Graph Theory, 49:325–335.

2. Alon, N., McDiarmid, C. J. H. andReed, B. (1991). Acyclic coloring of graphs.
Random Structures and Algorithms, 2:277–288.

3. Alon, N., Sudakov, B. and Zaks, A. (2001). Acyclic edge colorings of graphs. J.
Graph Theory, 37:157–167.

4. Andersen, L. D. (1975). Edge-Colourings of Simple and Non-Simple Graphs. M.Sc.
Thesis, University of Aarhus.

5. Andersen, L. D. (1977). On edge-colourings of graphs. Math. Scand., 40:161–175.
6. Andersen, L. D. (1992). The strong chromatic index of cubic graphs is at most 10.

Discrete Math., 108:231–252.
7. Anderson, B. A. (1973). Finite topologies and Hamiltonian paths. J. Combin. Theory

Ser. B, 14:87–93.
8. Anderson, B. A. (1977). Symmetry groups of some perfect 1-factorization of com-
plete graphs. Discrete Math., 18:227–234.

9. Appel, K. and Haken, W. (1977). Every planar map is 4-colorable. Part I:
Discharging. Illinois J. Math, 21:429–490.

10. Appel, K., Haken, W. and Koch, J. (1977). Every planar map is 4-colorable.
Part II: Reducibility. Illinois J. Math, 21:491–567.

Graph Edge Coloring: Vizing’s Theorem and Goldberg’s Conjecture,
First Edition. By M. Stiebitz, D. Scheide, B. Toft, and L. M. Favrholdt
Copyright c© 2012 John Wiley & Sons, Inc.

295



296 REFERENCES

11. Asratian, A. S. (2009). A note on transformations of edge colourings of bipartite
graphs. J. Combin. Theory Ser. B, 99:814–818.

12. Asratian, A. S. and Kamalian, R. R. (1987). Interval colorings of the edges of a
multigraph (in Russian). Applied Mathematics Erevan University, 5:25–34 & 130–131.

13. Asratian, A. S. and Kamalian, R. R. (1994). Investigation of interval edge-
colorings of graphs. J. Combin. Theory Ser. B, 62:34–43.

14. Balister, P. N., Kostochka, A. V., Li, H. and Schelp, R. H. (2004). Ba-
lanced edge colorings. J. Combin. Theory Ser. B, 90:3–20.

15. Basavaraju, M. and Chandran, L. S. (2009). Acyclic edge coloring of planar
graphs., arXiv:0908.2237v1 [cs.DM].

16. Bazgan, C., Harkat-Benhamdine, A., Li, H. and Woźniak, M. (1999). On
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84. Erdős, P., Rubin, A. L. and Taylor, H. (1979). Choosability in graphs. Proc.

West-Coast Conf. on Combinatorics, Graph Theory and Computing. Congr. Numer.,
XXVI:125–157.
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88. Faudree, R. J., Gyárfás, A., Schelp, R. H. and Tuza, Zs. (1989). Induced
matchings in bipartite graphs. Discrete Math., 78:83–87.

89. Faudree, R. J., Schelp, R. H., Gyárfás, A. and Tuza, Zs. (1990). The
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95. Fiamčik, J. (1978). The acyclic chromatic class of a graph (inRussian). Math. Slovaca,
28:139–145.
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115. Grünewald, S. (2000). Chromatic-index critical multigraphs of order 20. J. Graph
Theory, 33:240–245.
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163. Kaiser, T., Král’, D. and Škrekovski, R. (2004). A revival of the girth conjec-
ture. J. Combin. Theory Ser. B, 92:41–53.

164. Kayathri, K. (1994). On the size of edge-chromatic critical graphs. Graphs Combin.,
10:139–144.

165. Kempe, A. B. (1879). On the geographical problem of four colours. Amer. J. Math.,
2:193–200.

166. Kierstead, H. A. (1984). On the chromatic index of multigraphs without large
triangles. J. Combin. Theory Ser. B, 36:156-160.

167. Kierstead, H. A. (1989). Applications of edge coloring of multigraphs to vertex
coloring of graphs. Discrete Math., 74:117–124.

168. Kierstead, H. A. and Schmerl, J. H. (1983). Some applications of Vizing’s
theorem to vertex colorings of graphs. Discrete Math., 45:277–285.



304 REFERENCES

169. Kierstead, H. A. and Schmerl, J. H. (1986). The chromatic number of graphs
which induce neitherK1,3 norK5 − e. Discrete Math., 58:253–262.

170. Kilakos, K. and Shepherd, F. B. (1996). Subdivisions and the chromatic index
of r-graphs. J. Graph Theory, 22:203–212.

171. Kilakos, K. and Shepherd, F. B. (1996). Excluding minors in cubic graphs.
Combin. Probab. Comput., 5:57–78.

172. King, A. D., Reed, B. A. and Vetta, A. (2007). An upper bound for the
chromatic number of line graphs. European J. Combin., 28:2182–2187.
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302. Wagner, K. (1937). Über eine Eigenschaft der ebenen Komplexe. Math. Ann.,
114:570–590.
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Symbol Index

Edge Coloring ϕ, 2
α, β, γ, δ, ε - colors, 3
Ck(G) - set of allk-edge-colorings

of G, 3
Eϕ,α - color class of all edges

colored α, 3
mϕ,α - number of vertices where

color α is missing, 3
Pv(α, β, ϕ) - (α, β)-chain with

respect to ϕ containing v, 4
ϕ/C - coloring obtained from ϕ

by interchanging colors on
C, 3

ϕ(v) - set of colors present at v,
3

ϕ(v) - set of colors missing at v,
3

GraphG, 1
degG(x, y) - fan-degree of (x, y)

in G, 32
dG(x) - degree of x in G, 2
E(G) - edge set of G, 1
EG(x) - set of all edges incident

with x in G, 1
EG(X,Y ) - set of all edges join-

ingX and Y in G, 1
EG(x, y) - set of all edges joining

x and y in G, 1
G− e - edge deleted subgraph, 2
G− x - vertex deleted subgraph,

2
G[Δ] - major vertex subgraph of

G, 54
G/X - graph obtained fromG by

contractingX , 97
G/Xc = G/(V (G) \X), 97
G[X ] - subgraph of G induced

byX , 2
H ⊆ G - H subgraph of G, 2
KG(x, y) -Kierstead set of (x, y)

in G, 73

L(G) - line graph of G, 5
μG(x, y) - multiplicity of (x, y)

in G, 2
NG(x) - neighborhoodofx inG,

1
∂G(X) - coboundary ofX in G,

1
σG(x, y) =|KG(x, y) |, 73
tG - multiple of G, 2
V (G) - vertex set of G, 1

Improper Edge Coloring ϕ, 213
Ck
f,g(G) - set of all fg-colorings

ofGwith color set{1, . . . , k},
225

Ck
f (G) - set of all f -colorings of

Gwith color set {1, . . . , k},
224

dϕ,α(v) - degree of v in Gϕ,α,
229

dϕ,α(v) = f(v)− dϕ,α(v), 229
dϕ,D - degree function of Gϕ,D,

214
ed(ϕ) - edge deviation, 214
Gϕ,D - subgraphofGwhose edges

are coloredwith a color from
D, 213

μϕ,D - multiplicity function of
Gϕ,D, 214

val(v : ϕ) - color valency of v,
222

ϕ(v) - set of colors present at v,
229

ϕ(v) - set of colors missing at v,
229

vd(ϕ) - vertex deviation, 214
Integers

IN - set of positive integers, 224
IN0 = IN ∪ {0}, 49
IR - set of real numbers, 283
IR≥0 - set of nonnegative real

numbers, 282
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O(G, e, ϕ) - set of test objects, 12

Parameters for G
α(G)- independence number, 89
χ′(G) - chromatic index, 3
χ′′(G) - total chromatic number,

262
χ′c(G) - circular chromatic in-

dex, 255
χ′�(G) - list-chromatic index, 260
χ′∗(G) - fractional chromatic in-

dex, 155
aχ′(G) - acyclic chromatic in-

dex, 263
sχ′(G) - strong chromatic index,

264
χ(G) - chromatic number, 5
col(G) - coloring number, 52
def(G) - deficiency, 95
defk(G) - k-deficiency, 186
Δ(G) - maximum degree, 2
δ(G) - minimum degree, 2
δfa(G) -minimumfan-degree, 33
Δμ(G) - combinedmaximumde-

gree, 22
Fan(G) = max{fan(G),Δ(G)},

34
fan(G) - fan number, 33
g(G) - girth, 121
go(G) - odd girth, 121
κ(G) = max{Δ(G),W(G)}, 187
μ(G) - maximum multiplicity, 2
μ−(G) = maxv μ(G− v), 23
ω(G) - clique number, 5
ψ(G) - cover index, 222
W(G) - density, 6
Wc(G) - codensity, 223

Parameters forWeightedGraphs (G, f, g),
224

χ′f (G) - f -chromatic index, 224
χ′f,g(G) - fg-chromatic number,

225
χ′∗f (G) - fractional f -chromatic

index, 282
Δf (G) -maximumf -degree, 225

Δf,g(G) - maximum fg-degree,
225

Δ∗f (G) - fractional maximum f -
degree, 290

Wf (G) - f -density, 237
W∗f (G) - fractionalf -density, 290

Special Graphs
Cn - cycle on n vertices, 2
Kn - complete graph on n ver-

tices, 2
K−

n = Kn − e , 50
Kn,m - complete bipartite graph

on n andm vertices, 5
Kt

r - complete t-partite graph, 93
Path(v0, e1, v1, . . . , ep, vp) - path,

2
Sd - Shannon graph, 197
T (r, s, t) - triangle graph, 96, 197

Tashkinov triple (T, e, ϕ), 127
h(G) - Tashkinov height of G,

160
t(G) - Tashkinov order ofG, 127
T (G) - set of all Tashkinov triples,

127
T B(G) - set of all balancedTashki-

nov triples, 160
T N (G) - set of all normalTashki-

nov triples, 160
(T, e, ϕ)(y0 → yj), 162
A(T, e, ϕ) - set of all absorbing

vertices, 130
D(T, e, ϕ) - set of all defective

vertices, 132
Eα(T, e, ϕ) = Eϕ,α∩∂G(V (T )),

127
F (T, e, ϕ) - set of all exit ver-

tices, 162
Γd(T, e, ϕ) - set of all defective

colors, 127
Γf(T, e, ϕ) - set of all free colors,

127
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Name Index

Afshani, P., 256
Albertson, M. O., 260
Alon, N., 263
Andersen, L. D., xii, 8, 13, 24, 25,

39, 124, 158, 195, 196, 198,
209, 246, 248, 265

Anderson, B. A., 263
Appel, K., 15
Archdeacon, D., 254
Asratian, A. S., 42, 265

Balister, P. N., 42
Bang-Jensen, J., 265
Basavaraju, M., 263
Bazgan, C., 42
Behzad, M., 261, 262
Beineke, L. W., 49, 112
Berge, C., xii, 41, 50, 194, 198, 252,

279, 288
Bojan, M., 261
Bollobás, B., 260
Borodin, O. V., xiv, 261, 262
Bosák, J., 198
Brinkmann, G., 113
Brooks, R. L., 15
Burris, A. C., 42

Caprara, A., 183, 184
Cariolaro, D., 39, 56, 111
Cariolaro, G., 56, 111
Catlin, P. A., 103
Chandran, L. S., 263
Chartrand, G., 262
Chen, G., 154
Chetwynd, A. G., 55, 64, 66, 70, 111–

113, 258, 259, 261
Chew, K. H., 24
Choudum, S. A., 24, 39, 49, 113
Chu, K., xiv
Chudnovsky, M., 50, 113
Chung, F. R. K., 264
Cohen, N., 263

Collins, K., 260

De Morgan, A., 15
Desargues, G., 255
DeVos, M., 289
Diestel, R., 189
Ding, D., 114
Dinitz, J., 261
Dirac, G. A., 5, 65, 103, 188, 195, 259
Duffin, R. J., 188
Dvořák, Z., 251

Edmonds, J., 156, 193, 210, 246, 248,
294

Ehrenfeucht, A., 24
Erdős, P., 50–52, 103, 260, 264

Faber, V., 24
Fajtlowicz, S., 103
Fan, G., 253
Faudree, R. J., 264, 265
Favrholdt, L. M., xiii, 39, 153, 158,

159, 201
Feige, U., 253
Fernandes, C. G., 188, 189, 192, 196,

294
Fiamčik, J., 263
Finck, H. J., 52
Fiol, M. A., 112, 113
Fiorini, S., xi, 88, 93, 95, 112
Fouquet, J. L., 253
Fournier, J. C., 41, 55
Fradkin, A. O., 113
Frink, O., 252
Fulkerson, D. R., 194, 252

Gallai, T., 157
Galvin, F., 260
Gardner, M., 113
Ghandehari, M., 256
Goddyn, L. A., 252
Goldberg, M. K., xii–xiv, 7, 8, 13,

18, 24, 25, 39, 96, 115, 124,
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126, 158, 193, 195, 196, 199,
246, 249, 262

Grötzsch, H., 251
Grünewald, S., 97, 100, 101, 105, 113,

114, 256, 257
Guenin, B., 251
Gunderson, T., xiv
Gupta, R. P., xii, 18, 22, 195, 196, 201,

202, 204, 210, 222, 223, 246,
248, 260, 267

Guthrie, Francis, 15
Guthrie, Frederic, 15
Gyárfás, A., 50, 264, 265

Häggkvist, R., 261
Hadwiger, H., 101
Hajnal, A., 52
Hajós, G., 93, 94, 103
Haken, W., 15
Hakimi, S. L., 40, 214, 215, 225, 226,

228, 235, 244
Hamann, B., xiv
Hamilton, W. R., 15
Hansen, H. M., 266
Hanson, D., 17, 266
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Škoviera, M., 254–256
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