## Triangle factors in pseudorandom graphs

Patrick Morris (Freie University Berlin)

An $(n, d, \lambda)$-graph is an $n$ vertex, $d$-regular graph with second eigenvalue in absolute value $\lambda$. When $\lambda$ is small compared to $d$, such graphs have pseudorandom properties. A fundamental question in the study of pseudorandom graphs is to find conditions on the parameters that guarantee the existence of a certain subgraph. A celebrated construction due to Alon gives a trianglefree ( $n, d, \lambda$ )-graph with $d=\Theta\left(n^{2 / 3}\right)$ and $\lambda=\Theta\left(d^{2} / n\right)$. This construction is optimal as having $\lambda=o\left(d^{2} / n\right)$ guarantees the existence of a triangle in an $(n, d, \lambda)$-graph. Krivelevich, Sudakov and Szabó (2004) conjectured that if $n \in 3 \mathbb{N}$ and $\lambda=o\left(d^{2} / n\right)$ then an $(n, d, \lambda)$-graph $G$ in fact contains a triangle factor: vertex disjoint triangles covering the whole vertex set.

In this talk, we discuss a solution to the conjecture of Krivelevich, Sudakov and Szabó. The result can be seen as a clear distinction between pseudorandom graphs and random graphs, showing that essentially the same pseudorandom condition that ensures a triangle in a graph actually guarantees a triangle factor. In fact, even more is true: as a corollary to this result and a result of Han, Kohayakawa, Person and the author, we can conclude that the same condition actually guarantees that such a graph $G$ contains every graph on $n$ vertices with maximum degree at most 2 .

