Triangle factors in pseudorandom graphs

Patrick Morris (Freie University Berlin)

An (n, d, λ) -graph is an n vertex, d-regular graph with second eigenvalue in absolute value λ . When λ is small compared to d, such graphs have *pseudorandom* properties. A fundamental question in the study of pseudorandom graphs is to find conditions on the parameters that guarantee the existence of a certain subgraph. A celebrated construction due to Alon gives a trianglefree (n, d, λ) -graph with $d = \Theta(n^{2/3})$ and $\lambda = \Theta(d^2/n)$. This construction is optimal as having $\lambda = o(d^2/n)$ guarantees the existence of a triangle in an (n, d, λ) -graph. Krivelevich, Sudakov and Szabó (2004) conjectured that if $n \in 3\mathbb{N}$ and $\lambda = o(d^2/n)$ then an (n, d, λ) -graph G in fact contains a *triangle factor*: vertex disjoint triangles covering the whole vertex set.

In this talk, we discuss a solution to the conjecture of Krivelevich, Sudakov and Szabó. The result can be seen as a clear distinction between pseudorandom graphs and random graphs, showing that essentially the same pseudorandom condition that ensures a triangle in a graph actually guarantees a triangle factor. In fact, even more is true: as a corollary to this result and a result of Han, Kohayakawa, Person and the author, we can conclude that the same condition actually guarantees that such a graph G contains every graph on n vertices with maximum degree at most 2.