Abstract Separators in Geometric Graphs

Let a, b be real numbers such that $0<a<b$ and d a positive integer. A graph $G=(V, E)$ is said to be a d-dimensional a-b-graph if there is a function $f: V \rightarrow \mathbb{R}^{d}$ such that

- $\|f(x)-f(y)\|_{2} \geq a$ for all distinct vertices $x, y \in V$
- $\|f(x)-f(y)\|_{2} \leq b$ for all edges $\{x, y\} \in E$.

Here, $\|x\|_{2}$ denotes the euclidean norm in \mathbb{R}^{d}.
In my talk I will present a separation result for d-dimensional a - b-graphs in the spirit of the planar separator theorem of Lipton and Tarjan [1]. The result is related to a similar result by Linial, London and Rabinovich [2] from 1995.
[1] Lipton, R., Tarjan, R.E., A separator theorem for planar graphs, SIAM Journal on Applied Mathematics, 36 (2) 615-627 (1979).
[2] Linial, N., London, E., and Rabinovich, Y. The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 215-245 (1995).

