Spanning trees of smallest maximum degree in subdivisions of graphs

Jochen Harant (Technische Universität Ilmenau)

Given a positive integer k and a connected graph G, a k-tree of G is a spanning tree of G with maximum degree at most k. It is well-known that, for $k \geq 2$, the problem of deciding whether a graph has a k-tree is $\mathcal{N} \mathcal{P}_{-}$ complete. Consequently, for a graph G, it is hard to determine the smallest integer k, denoted by $f(G)$, such that G contains a k-tree. However, it is proved here that an $f\left(G^{*}\right)$-tree of G^{*} can be found in polynomial time, where G^{*} is obtained from G by subdividing each edge of G exactly once. We consider classes Γ of graphs embeddable into fixed closed surfaces and present results on $\max \left\{f\left(G^{*}\right) \mid G \in \Gamma\right\}$ if it exists.

This is joint work with C. Brause, F. Hörsch, and S. Mohr.

