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Abstract. In this paper a model of linear electrical circuits with transmission lines is de-
rived. The equations obtained by the modified nodal analysis (MNA) are boundary-coupled with
the telegraph equations who describe the behavior of the transmission lines. The resulting system of
equations turns out to be an abstract differential-algebraic system and it is formulated as a descriptor
system whose (generalized) state space is an infinite dimensional Hilbert space.
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Introduction. Nowadays, electrical circuits consist of a very large number (≈
107) of components like resistors, capacitors, inductors, free and controlled voltage and
current sources. Additionally, these circuits are operated in some higher frequency
domains. As a consequence, several longer connections between components cannot
be modelled as a short circuit anymore but rather as a transmission line (see [8]) The
model of such a transmission line is shown in Figure 0.1.
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Fig. 0.1. Transmission Line

l is the length of the line and G, R, L, C are the conductivity, resistance, inductance
and capacity per length unit. Due to the passivity of the line, G and R are assumed
to be non-negative and L and C strictly positive. These components are continuously
and homogeneously distributed along the line.
The current and the voltage along the transmission line fulfill the telegraph equations:

∂

∂t
V (x, t) = −G

C
V (x, t)− 1

C

∂

∂x
I(x, t) (0.1)

∂

∂t
I(x, t) = − 1

L

∂

∂x
V (x, t)− R

L
I(x, t), x ∈ [0, l] (0.2)

The aim of this work is to develop a model for electrical circuits containing several of
these transmission lines. It is organized as follows: In the first section, the modified
nodal analysis (MNA) for circuits with only lumped linear elements is presented as a
descriptor system model. A state space model for the transmission lines is derived in
the second section. The last section is about modelling linear circuits with lumped
elements and transmission lines as a descriptor system while using the results of the
first two sections.
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1. Circuits with Lumped Elements. The circuits are modelled as directed
graph whose edges are weighted with the voltage-current relations of the electrical
components (like e.g. Ohm’s law). See e.g. [9], [7] or [4] for details.
Kirchhoff’s current law (KCL) says that the net current outflow vanishes at any vertex
of the graph, i.e.

A′i = 0,

where i is the vector containing the currents flowing through the circuit and A′ is the
reduced incidence matrix of the graph. According to Kirchhoff’s voltage law (KVL),
every voltage can be derived from the node potential vector ϕ. In particular, we have

u = A′Tϕ.

u is the vector having the edge voltages as components.
One of the most powerful techniques in industrial circuit simulation is the so-called
modified nodal analysis (MNA). There, the relations of the electrical components are
split into a part that can be solved for i and a part that can be solved for u. In the
linear case, we have the form(

I P1

0 P2

)(
i1
i2

)(
Q1 0
Q2 I

)(
u1

u2

)
=

(
c1
c2

)
for some coefficient matrices P1, P2, Q1, Q2. With the corresponding partition, we
obtain from Kirchhoff’s laws

A′
1i1 +A′

2i2 = 0 and

(
u1

u2

)
=

(
A′T

1

A′T
2

)
ϕ.

This yields the MNA equations(
A′

1Q1A
′T
1 A′

1P1 −A′
2

Q2A
′T
1 +A′

2 P2

)(
ϕ
i2

)
=

(
A′

1c1
c2

)
. (1.1)

Let now A′ = (ARACALAIAV ) be the incidence matrix generated by the graph of
the given circuit. AR, AC , AL, AI , AV contain the resistive, capacitive, inductive
branches and those of the current and voltage sources, respectively. Let iR, iC , iL, iI
and iV the corresponding current vectors. Using the partition

i1 =

(
iR
iC

)
, i2 =

iL
iI
iV


this leads to the following system of equations:

ACCAT
C

d

dt
ϕ+ARR

−1AT
Rϕ+ALiL +AV iV +AI iI = 0

AT
Lϕ− L

d

dt
iL = 0

AT
V ϕ− uV = 0.

C, R and L are diagonal matrices whose entries are the capacities, resistances and
inductances.
The voltage sources are divided into the free and controlled ones, i.e.

uV = νV A
′Tϕ+ νCCAT

C

d

dt
ϕ+ νLiL + νIV iV + νfuf , (1.2)
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where uf represents the free voltages. νV , νC , νL, νIV , νf are matrices which rep-
resent the amplifying gains of the controlled sources whose controlling variables are
voltages and capacitive currents, inductive currents and currents of voltage sources.
Since resistive currents depends algebraically on their voltages, the resistive-current-
controlled voltage sources can be seen as voltage-controlled voltage sources.
In the same way, we have the relation

AI iI = AIV µV A
′Tϕ+AICµCCAT

C

d

dt
ϕ+AILµLiL +AIiV µIiV iV +Afµf if , (1.3)

whereAI = (AIV AICAILAIiV Af ) and some amplifying gain matrices µV , µC , µL, µIiV , µf .
Using the equations (1.2) and (1.3), we obtain the system Eẋ = Ax+Bu with

x =

 ϕ
iL
iV

 , u =

(
uf

if

)
,

E =

ACCAT
C +AICµCA

T
C 0 0

0 L 0
νCCAT

C 0 0

 ,

A =

−ARR
−1AT

R −AIV µV A
′T −AL −AILµL −AV −AIiV µIiV

AT
L 0 0

AT
V − νV A

′T −νL −νIV

 ,

B =

 0 −Af

0 0
−νf 0

 .

Remark 1.1. Differential-algebraic control systems of the form Eẋ = Ax + Bu
are called descriptor systems. They are e.g. treated in [2].

2. The Transmission Lines. In this section a state space model for transmis-
sion lines is derived. Let the equations (0.1) and (0.2) be given. We always assume
without loss of generality that the length of the line is normalized, i.e. l = 1. This
can be done by a transformation of the parameters. For convenience, we assume that
the parameters C, L, G and R are constant along the line.

As input, we choose

(
uT0(t)
iT1(t)

)
:=

(
V (0, t)
I(1, t)

)
and output of the system is supposed to

be

(
uT1(t)
iT0(t)

)
:=

(
V (1, t)
I(0, t)

)
.

The partial differential equations (0.1) and (0.2) can be formulated as an abstract ordi-

nary differential equation in the function space L2
2[0, 1] =

{(
x1

x2

)
: x1, x2 ∈ L2[0, 1]

}
:

d

dt

(
V (x, t)
I(x, t)

)
=

(
−G

C − 1
C

∂
∂x

− 1
L

∂
∂x −R

L

)
︸ ︷︷ ︸

U

(
V (x, t)
I(x, t)

)
(2.1)

with initial data (
V (·, 0)
I(·, 0)

)
=

(
V0

I0

)
∈ L2

2[0, 1]. (2.2)
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and boundary conditions (
V (0, t)
I(1, t)

)
=

(
uT0(t)
iT1(t)

)
. (2.3)

The differential operator

U : D(U) ⊂ L2
2[0, 1] → L2

2[0, 1](
V
I

)
7→

(
−G

CV − 1
C

∂
∂xI

− 1
L

∂
∂xV − R

L I

)
is unbounded and its domain is

D(U) =

{(
V
I

)
∈ L2

2[0, 1] with V, I are absolutely continuous, and
∂

∂x
V,

∂

∂x
I ∈ L2[0, 1]

}
,

which is dense in L2
2[0, 1].

Altogether the equations (2.1), (2.2) and (2.3) can be reformulated as an abstract
boundary control problem(see [1], p.121 ff.)

d
dt

(
V
I

)
= U

(
V
I

)
Pz(t) = u(t),

(2.4)

where P : D(P) → C2,

(
V
I

)
7→

(
V (0)
I(1)

)
is the so-called boundary operator and it

is defined on

D(P) =

{(
V
I

)
∈ L2

2[0, 1] : V is continuous in x = 0 and I is continuous in x = 1

}
⊂ D(U)

and has the kernel

ker(P) =

{(
V
I

)
∈ D(P) : V (0) = I(1) = 0

}
Theorem 2.1. The control system (2.4) is a boundary control system, i.e. the

following assertions hold.
1. The operator A : D(A) → L2[0, 1]

2 with D(A) = D(P) ∩D(U) and

Az = Uz for z ∈ D(A) (2.5)

is an infinitesimal generator of a C0 semigroup on L2
2[0, 1].

2. There exists a B ∈ L(C2,L2
2[0, 1]) such that for all u ∈ C2, Bu ∈ D(U), the

operator UB is an element of L(C2,L2
2[0, 1]) and

PBu = u, u ∈ C2 (2.6)

Proof.
1. The fact that A generates a C0-semigroup on L2

2[0, 1] can be proven using the
Lumer-Philips-Theorem [6].
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2. A right inverse B : C2 → L2
2[0, 1] of P is e.g. given by

B

(
V1

I2

)
=

(
V1 · 1[0,1]
I2 · 1[0,1]

)
,

whereas 1[0,1] is the constant function mapping to 1.

As state of the system we take z(t) =

(
V (·, t)
I(·, t)

)
− Bu(t). For weakly differentiable

inputs u, it satisfies the following abstract differential equation in L2
2[0, 1] (see [1]).

ż(t) = Az(t)−Bu̇(t) + UBu(t)

z0 =

(
V (0, ·)
I(0, ·)

)
−Bu(0).

(2.7)

Since A generates a C0-semigroup, the unique solvability of the the initial value prob-
lem (2.7) is guaranteed.
The output y is then determined by

y(t) = Cz(t) +Du(t) (2.8)

with C

(
z1(·)
z2(·)

)
=

(
z1(1)
z2(0)

)
and D =

(
1 0
0 1

)
.

Remark 2.1. C : L2
2[0, 1] → C2 is the output operator and not a capacity. In the

rest of this paper it will be always clear from the context which of both is meant.
The equations 2.7 and 2.8 can also be rewritten in the following way:

ż = Az − d
dtBT10uT0 +BT11uT0 − d

dtBT21iT1 +BT21IT1

uT1 = CT1z + uT0

iT0 = CT0z + iT1,
(2.9)

with BT10 =

(
1[0,1]
0

)
, BT20 =

(
0

1[0,1]

)
, BT11 =

(
−G

C 1[0,1]
0

)
, BT21 =

(
0

−R
L1[0,1]

)
,

CT1

(
V
I

)
= V (1) and CT0

(
V
I

)
= I(0).

3. The Setup of the Network Equations. LetA′ = (ARACALAV AT0AT1AI)
be the reduced incidence matrix of the circuit. AT0 and AT1 include the branches
of the left and right boundaries of the transmission lines and iT0, iT1 are the corre-
sponding current vectors.
The MNA equations read then

d

dt
ACCAT

Cϕ+ARR
−1AT

Rϕ

+ALiL +AV iV +AT0iT0 +AT1iT1 +AI iI = 0 (3.1)

AT
Lϕ− L

d

dt
iL = 0 (3.2)

AT
V ϕ− uV = 0. (3.3)
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Now let the circuit have nT transmission lines which are modelled as in the previous
section with

żi = Aiz − d
dtBT10iuT0i +BT11iuT0i − d

dtBT21iiT1i +BT21iiT1i

uT1i = CT1iz + uT0i

iT0i = CT0iz + iT1i for i = 1 . . . n.

We define

AT := diag(A1, . . . , AnT
),

BT10 := diag(B101, . . . , B10nT
),

BT11 := diag(B111, . . . , B11nT ),

BT20 := diag(B201, . . . , B20nT
),

BT21 := diag(B211, . . . , B21nT ),

CT0 := diag(CT01, . . . , CT0nT
),

CT1 := diag(CT11, . . . , CT1nT
) and

z :=

 z1
...

znT

 .

Then we have

d

dt
z −AT z −

d

dt
BT10A

T
T0ϕ+BT20A

T
T0ϕ− d

dt
BT11iT1 +BT21iT1 = 0 (3.4)

CT1z + uT0 − uT1 = 0 (3.5)

CT0z + iT1 − iT0 = 0. (3.6)

The equations for the controlled sources are

uV = νV A
′Tϕ+ νCCAT

C

d

dt
ϕ+ νLiL + νIV iV + νT0iT0 + νT1iT1 + νfuf ,

AI iI = AIV µV A
′Tϕ+AICµCCAT

C

d

dt
ϕ+AILµLiL +AIiV µiV iV

+AIT0µT0iT0 +AIT1µT1iT1 +AIfµf if .

Plugging these two equations and the relation (3.6) into the equations (3.1) and (3.3),
we obtain the following differential-algebraic system:

Eẋ = Ax+Bu,

with

x =


ϕ
iL
iV
iT1

z

 , u =

(
uf

if

)
.

The generalized state space of this system is then X = Rnϕ+nL+nV +nT ×L2[0, 1]
2nT ,

where nϕ, nL, nV , nT are the the numbers of nodes, inductances, voltage sources and
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transmission lines.

The operators E, A and B are given by

E =


ACCAT

C + AICµCCAT
C 0 0 0 0

0 L 0 0 0

νCCAT
C 0 0 0 0

0 0 0 0 0

BT10AT
T0 0 0 BT11 I

 , B =


0 −AIf

µf

0 0
−νf 0

0 0
0 0



A =



−ARR−1AT
R − AIV µV A′T −AL − ALµL −AV − AIiV

µIiV
AT

L 0 0

AT
V − νV A′T −νL −νIV
AT

T0 − AT
T1 0 0

BT20AT
T0 0 0

−AT0 − AT1 − AIT0µIT0 − AIT1µIT1 −AIT1µIT1CT0 − AT0CT0
0 0

−νT0 − νT1 νT0CT0
0 CT1

BT21 AT



with E : X → X, A : D(A) = Rnϕ+nL+nV +nT ×D(A1)
nT ⊂ X → X, B : RnVf

+nIf →
X, where nVf

and nIf are the numbers of free voltage and current sources.

Conclusion. In this work, a generalized state space model for circuits with trans-
mission lines and lumped linear elements was derived. The state space turned out to
be an infinite dimensional Hilbert space. Such systems are also known as abstract
differential-algebraic systems (ADAS) and are treated e.g. in [5]. There typical prob-
lems of differential algebraic equations like index concepts and consistent initialization
are generalized to the infinite dimensional case and can be applied to the system pre-
sented in this paper.
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