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Linear-quadratic infinite
time horizon optimal
control for
differential-algebraic
equations - a new
algebraic criterion

T. Reis∗ and M. Voigt†

1 Introduction
We revisit the linear-quadratic infinite time horizon optimal control problem for
linear constant coefficient differential-algebraic systems

Eẋ(t) = Ax(t) +Bu(t), Ex(t0) = Ex0 (1)

with x0 ∈ Rn, B ∈ Rn,m and E,A ∈ Rn,n, such that the pencil sE − A ∈ R[s]n,n
is regular, that is, det(sE −A) 6= 0. For systems governed by ordinary differential-
equations (that is, E is the identity matrix), a rigorous analysis of this problem
has its origin in the 60s of the 20th century [6, 8–10, 13, 15, 21]. In particular,
the article [20] by Willems gives a complete characterization of linear-quadratic
optimal control of ordinary systems by means of solvability of an associated algebraic
Riccati equation and feasibility of a certain linear matrix inequality.

Mainly two approaches to the generalization of this theory exist for the diffe-
rential-algebraic case: The articles [11,12,14] by Kawamoto et al. and Kurina
on the one hand, and [4] by Bender and Laub on the other hand introduce different
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kinds of generalized algebraic Riccati equations. Both theories present only suffi-
cient but not necessary criteria for the existence of an optimal control. In particular,
both approaches require the input being fully and positively weighted in the cost
functional. This assumption is however very restrictive for linear-quadratic infinite
time horizon optimal control arising in the analysis of dissipative systems [7, 19].
In the case of ordinary differential equations, the algebraic Riccati equation is then
replaced with a certain linear matrix inequality, which is also known as Kalman-
Yakubovich-Popov lemma [20]. A straightforward generalization of this lemma to
the differential-algebraic case is not readily possible and only leads to sufficient
criteria [7, 19].

The aim of this article is to present a suitable generalization of this algebraic
criterion to differential-algebraic equations that gives necessary and sufficient crite-
ria for optimizability under only very slight conditions related to controllability of
the system (1).

Throughout this article we use the following notation:

R, (R≥0, R≤0) set real (non-negative, non-positive) numbers,

R[s] the ring of real polynomials,

Rn,m the set of n ×m matrices with entries in the ring
R,

In, 0m,n identity and zero matrix of size n and m×n, resp.
(subscripts can be omitted, if clear from context),

MT transpose of M ∈ Rm,n,

ḟ distributional derivative of f : I → Rn with I ⊆ R,

L2
loc(I;Rn) the set of measurable and locally square integrable

functions f : I → Rn on the set I ⊆ R,

H1
loc(I;Rn) =

{
f ∈ L2

loc(I;Rn)
∣∣∣ ḟ ∈ L2

loc(I;Rn)
}
.

2 Behavior and cost functionals
A trajectory (x, u) : R → Rn × Rm is said to be a solution of (1) if, and only if, it
belongs to the behavior of (1):

B[E,A,B] :=
{
(x(·), u(·)) ∈ L2

loc(R;Rn)× L2
loc(R;Rm)

∣∣
Ex(·) ∈ H1

loc(R;Rn) and (x, u) fulfills

Eẋ(t) = Ax(t) +Bu(t) ∀ t ∈ R
}
.

We first recall different concepts related to controllability for differential-algebraic
equations (1).

Definition 1. Let a system (1) with E,A ∈ Rn,n and B ∈ Rn,m be given. Then,
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(1) is called

(i) impulse controllable ⇐⇒ ∀ x0 ∈ Rn, t0 ∈ R, ∃ (x, u) ∈ B[E,A,B]

with Ex(t0) = Ex0,

(ii) strongly controllable ⇐⇒ ∀ x0, x1 ∈ Rn, t0 < t1 ∈ R, ∃ (x, u) ∈ B[E,A,B]

with Ex(t0) = Ex0 and Ex(t1) = Ex1.

As in the case of standard standard systems, these properties can be equiva-
lently characterized by means of algebraic criteria generalizing the Hautus test [17,
Chap. 3].

Proposition 2. [5] Let a system (1) with E, A ∈ Rn,n and B ∈ Rn,m be given.
Further, let r = rank(E) and S∞ ∈ Rn,n−r be a matrix with imS∞ = kerE. Then,
(1) is called

(i) impulse controllable ⇐⇒ rank[E, AS∞, B] = n,

(ii) strongly controllable ⇐⇒ rank[sE −A,B] = n for all s ∈ C
and rank[E, AS∞, B] = n.

For a set I ⊂ R and matrices Q ∈ Rn,n, S ∈ Rn,m, R ∈ Rm,m with Q = QT

and R = RT , consider the cost functional

J I
[Q,S,R](x, u) =

∫
I

(
x(τ)
u(τ)

)T [
Q S
ST R

](
x(τ)
u(τ)

)
dτ.

As in [20], we consider the following minimization problems:

a) V +
f (Ex0) = inf

{
J R≥0

[Q,S,R](x, u)
∣∣∣ (x, u) ∈ B[E,A,B] with Ex(0) = Ex0

}
,

b) V +(Ex0) = inf
{
J R≥0

[Q,S,R](x, u)
∣∣∣

(x, u) ∈ B[E,A,B] with Ex(0) = Ex0 and lim
t→∞

Ex(t) = 0
}
,

c) V −(Ex0) = − inf

{
J R≤0

[Q,S,R](x, u)

∣∣∣∣
(x, u) ∈ B[E,A,B] with Ex(0) = Ex0 and lim

t→−∞
Ex(t) = 0

}
,

d) V +
n (Ex0) = inf

{
J [0,T ]
[Q,S,R](x, u)

∣∣∣ T ≥ 0, (x, u) ∈ B[E,A,B] with Ex(0) = Ex0

}
.
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One aim of this article is to characterize finiteness of V +
f (Ex0), V

+(Ex0), V
−(Ex0)

and V +
n (Ex0) for all x0 ∈ Rn. It is obvious that impulse controllability of (1) is

necessary for V +
f (Ex0), V

+(Ex0), V
−(Ex0), V

+
n (Ex0) ∈ R for all x0 ∈ Rn. Note

that the assumption of strong controllability is just for sake of brevity, and can
be relaxed to stabilizability together with some slight additional technical condi-
tion [16]. To present equivalent criteria on the cost functional and the system, we
consider a class of functions V : im(E) → R which satisfies the dissipation inequality

J [t0,t1]
[Q,S,R](x, u) + V (Ex(t1)) ≥ V (Ex(t0))

∀(x, u) ∈ B[E,A,B], t0, t1 ∈ R with t0 ≤ t1.

(2)

This is equivalent to(
x(t)
u(t)

)T [
Q S
ST R

](
x(t)
u(t)

)
≥ −V ′(Ex(t))Eẋ(t) = −V ′(Ex(t))(Ax(t) +Bu(t))

∀(x, u) ∈ B[E,A,B], t ∈ R,
(3)

where V ′(Ex(t)) ∈ R1,n is the Jacobian of V in Ex(t).
As we present in the following, the existence of certain functions satisfying the

dissipation inequality will be related to finiteness of the above introduced function-
als. The proofs are left to a forthcoming article [16].

Theorem 3. Let E, A, Q ∈ Rn,n, B, S ∈ Rn,m and R ∈ Rm,m such that sE−A is
regular and Q = QT , R = RT . Assume that the system (1) is strongly controllable.
Then the following statements are equivalent:

(i) J [0,T ]
[Q,S,R](x, u) ≥ 0 for all T ∈ R≥0, (x, u) ∈ B[E,A,B] with Ex(0) = 0;

(ii) V −(Ex0) ∈ R≤0 for all x0 ∈ Rn;

(iii) V +
f (Ex0) > −∞ for all x0 ∈ Rn;

(iv) V +
n (Ex0) > −∞ for all x0 ∈ Rn;

(v) There exists some functional V : im(E) → R≤0 that satisfies the dissipation
inequality (2).

Furthermore, if the above conditions are fulfilled, then for all x0 ∈ Rn, there holds

−∞ < V −(Ex0) ≤ V +
n (Ex0) ≤ V +

f (Ex0) ≤ V +(Ex0) < ∞.

Property (i) is often called dissipativity [18]. The most important special cases
of dissipativity are bounded realness and positive realness [1–3].

We now present criteria which are equivalent to V + and V − being finite.

Theorem 4. Let E, A, Q ∈ Rn,n, B, S ∈ Rn,m and R ∈ Rm,m such that sE−A is
regular and Q = QT , R = RT . Assume that the system (1) is strongly controllable.
Then the following statements are equivalent:
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(i) J [0,T ]
[Q,S,R](x, u) ≥ 0 for all T ∈ R≥0, (x, u) ∈ B[E,A,B] with Ex(0) = 0 and

Ex(T ) = 0;

(ii) V +(Ex0) > −∞ for all x0 ∈ Rn;

(iii) V −(Ex0) < ∞ for all x0 ∈ Rn;

(iv) There exists some functional V : im(E) → R that satisfies the dissipation
inequality (2).

Moreover, if the above conditions are fulfilled, then for all x0 ∈ Rn, there holds

−∞ < V −(Ex0) ≤ V (Ex0) ≤ V +(Ex0) < ∞.

3 Algebraic criteria
As for the case of standard systems, one can show that, in case of existence, the
function V : im(E) → R which satisfies the dissipation inequality (2) can be chosen
quadratically. More precisely, we can make the ansatz

V (Ex0) = xT
0 X

TEx0,

where X ∈ Rn,n is a matrix with XTE = ETX (the latter property makes V (Ex0)
well-defined). The dissipation inequality (3) is now equivalent to(

x(t)
u(t)

)T [
ATX +XTA+Q XTB + S

BTX + ST R

](
x(t)
u(t)

)
≥ 0 ∀ (x, u) ∈ B[E,A,B], t ∈ R.

By using impulse controllability of (1), one can show that{ (
x(t)
u(t)

) ∣∣∣∣ (x, u) ∈ B[E,A,B], t ∈ R
}

= V[E,A,B],

where

V[E,A,B] =

{ (
x
u

)
∈ Rn × Rm

∣∣∣∣ Ax+Bu ∈ im(E)

}
.

This leads to the new matrix inequality criterion(
x
u

)T [
ATX +XTA+Q XTB + S

BTX + ST R

](
x
u

)
≥ 0 ∀ (x, u) ∈ V[E,A,B], (4)

that is sufficient for the validity of the equivalent statements in Theorem 3 and
Theorem 4. The following results state that these criteria are necessary as well.

Theorem 5. Let E, A, Q ∈ Rn,n, B, S ∈ Rn,m and R ∈ Rm,m such that sE − A
is regular and Q = QT , R = RT . Assume that the system (1) is strongly control-
lable. Then the assertions (i)-(v) in Theorem 3 are fulfilled, if, and only if, there
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exists some X ∈ Rn,n such that XTE is symmetric and negative semi-definite and,
moreover, (4) is fulfilled.

Theorem 6. Let E, A, Q ∈ Rn,n, B, S ∈ Rn,m and R ∈ Rm,m such that sE−A is
regular and Q = QT , R = RT . Assume that the system (1) is strongly controllable.
Then the assertions (i)-(iv) in Theorem 4 are fulfilled, if, and only if, there exists
some X ∈ Rn,n such that XTE is symmetric and, moreover, (4) is fulfilled.

One can further show that the set of matrices X ∈ Rn,n with ETX = XTE
and (4) has the property of containing extremal elements, that is, there are solutions
X−, X+ ∈ Rn,n such that for all other solutions X, there holds

xT
0 X

T
−Ex0 ≤ xT

0 X
TEx0 ≤ xT

0 X
T
+Ex0 ∀x0 ∈ Rn.

In particular, there holds

V −(Ex0) = xT
0 X

T
−Ex0, V −(Ex0) = xT

0 X
T
+Ex0 ∀x0 ∈ Rn.

4 Conclusions
We have presented a step-by-step generalization of some results on dissipativity
and linear-quadratic optimal control to differential-algebraic equations. Under the
assumption of strong controllability, new equivalent criteria for dissipativity and
finiteness of the the optimal value have been presented.



“ReiVoi˙MTNS12˙final”
2012/4/3
pagei

i
i

i

i
i

i
i

Bibliography

[1] B.D.O. Anderson. Algebraic description of bounded real matrices. Electronics
Letters, 2(12):464–465, 1966.

[2] B.D.O. Anderson. A system theory criterion for positive real matrices. SIAM
J. Control, 5(2):171–182, 1967.

[3] B.D.O. Anderson and S. Vongpanitlerd. Network Analysis and Synthesis –
A Modern Systems Theory Approach. Prentice-Hall, Englewood Cliffs, N. J.,
1973.

[4] D.J. Bender and A.J. Laub. The linear-quadratic optimal regulator for descrip-
tor systems. IEEE Trans. Automat. Control, 32:672 – 688, August 1987.

[5] T. Berger and T. Reis. Controllability of linear differential-algebraic systems -
a survey and some new results, 2012. In preparation.

[6] R.W. Brockett. Path integrals, lyapunov functions, and quadratic minimiza-
tion. In Proc. 4th Annu. Allerton Conf. Circuit and System Theory, pages
685–689, 1966.

[7] R.W. Freund and F. Jarre. An extension of the positive real lemma to descriptor
systems. Optim. Methods Softw., 19(1):69–87, 2004.

[8] R.E. Kalman. Contributions to the theory of optimal control. Bol. Soc. Mat.
Mex., 5:102–199, 1960.

[9] R.E. Kalman. Lyapunov functions for the problem of Lur’e in automatic con-
trol. Proc. Nat. Acad. Sci U.S.A., 49:201–205, 1963.

[10] R.E. Kalman. When is a linear system optimal? Trans. ASME, Basic Eng.,
ser. D, 8:51–60, 1964.

[11] A. Kawamoto and T. Katayama. The semi-stabilizing solution of generalized
algebraic Riccati equation for descriptor systems. Automatica, 38:1651 – 1662,
2002.

[12] A. Kawamoto, K. Takaba, and T. Katayama. On the generalized algebraic
Riccati equation for continuous-time descriptor systems. Lin. Alg. Appl., 296:1–
14, 1999.



“ReiVoi˙MTNS12˙final”
2012/4/3
pagei

i
i

i

i
i

i
i

[13] D.L. Kleinman. On the linear regulator problem and the matrix riccati equa-
tion. Electron. Syst. Lab., M.I.T., Cambridge, Rep. ESL-R-271, Rep. ESL-R-
271, 1966.

[14] G.A. Kurina. On regulating by descriptor system on infinite interval. Izvestija
RAN. Tehnicheskaja kibernetika, 6:33–38, 1993. In Russian.

[15] V.M. Popov. Hyperstability and optimality of automatic systems with several
control functions. Rev. Roum. Sci. Tech., Ser. Electrotech. Energ., 9:629–690,
1964.

[16] T. Reis and M. Voigt. Spectral factorization and linear-quadratic optimal
control for differential-algebraic systems, 2012. In preparation.

[17] H.L. Trentelman, A.A. Stoorvogel, and M. Hautus. Control Theory for Linear
Systems. Communications and Control Engineering. London, 2001.

[18] H.L. Trentelman and J.C. Willlems. The Riccati equation, chapter The dissi-
pation inequality and the algebraic Riccati equation, pages 197–242. Springer,
1991.

[19] H.-S. Wang, C.-F. Yung, and F.-R. Chang. Bounded real lemma and h∞ control
for descriptor systems. In Control Theory and Applications, IEE Proceedings,
volume 145, pages 316–322, 1998.

[20] J.C. Willems. Least squares stationary optimal control and the algebraic Ric-
cati equation. IEEE Trans. Automat. Control, 16:621–634, 1971.

[21] D.C. Youla. On the factorization of rational matrices. IRE Trans. Inform.
Theory, IT-7:172–189, 1961.


