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Abstract −−−− This work concerns the model reduction of 
continuous-time dynamical systems with real parametric 
uncertainty. An algorithm for the computation of the 
maximal H �  norm difference between the original and 
the reduced system is given. In contrast to the results in 
[2] and references not only upper bounds for this 
number but its exact evaluation is possible. 

The algorithm computes the norm difference via a 
bisection algorithm using the mixed real and complex 
structured singular value in every step. 

An application of this result is a symbolic-numeric 
analysis of parametrized linear time-invariant 
dynamical systems. Especially the symbolic transfer 
functions of electrical networks are generally very 
voluminous expressions, and model reduction methods 
are indispensable. 

 
1 INTRODUCTION 
The parametrized dynamical systems in which we 

are interested are linear, time-invariant, finite-
dimensional, evolving in continuous time and 
depending rationally on finitely many parameters 

kpp ,...,1 . Such a system can be described by a 

rational matrix valued transfer function 
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s  is supposed to be the frequency variable. 
Further it is assumed that the system is stable for all 

possible parameter variations in an interval having 

the nominal value iv  in its center, i.e. 
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This means that the transfer function is proper and 
has no pole in the closed right complex halfplane, 

Now, the task is to set several parameters ip  to their 

nominal value iv , and to determine the maximal 

error e in the H� -norm between the original and the 
simplified system, i.e.  
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The H� -norm is intensively treated in [9], and is a 

common distance measure for stable transfer 
functions. 

2 ERROR COMPUTATION 

3.1  Parameter Transformation 

The foundation of the algorithm is to consider the 
function ��
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and write this function in terms of a linear fractional 
representation, i.e. 
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for some real matrices A, B, C, D and the parameters 
are extracted in  

),...,,( 11 1 kNNn IIzI δδ=∆  . 

This is also called realization of the multivariate 

rational matrix function G
~

. It is proven in [3], [5] 
and [6], that such a representation exists if and only if 

the multivariate function G
~

 is rational and has no 
pole at the origin. Therefore the given transfer 
function possesses a realization because it has no 
poles at the origin due to the fact that stability of G  
for all allowed parameter variations is assumed. 
Realization algorithms for this problem are presented 
e.g. in  [3], [5] and [6]. However, for special classes of 
parametrized dynamical systems like e.g. electrical 
networks, a realization can be done directly without 
using these realization algorithms (see [5] and [8] for 
details). 

From the matrices, there can be easily constructed a 
matrix quadruple )
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This construction is without any numerical effort 
and intensively explained in [9].  

The Algorithm is based of the structured singular 
value, which is defined below. 
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 and let A be a l×k matrix. Then the  
structured singular value )(A�� ��µ  is defined as 

follows: 
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unless no �� ��∈∆  makes ∆

���  singular, in which 
case 0)( =A�� ��µ . More details about the structured 

singular value can be found in [4]. 
The following statement is the basis for the 

formulation of a bisection algorithm which computes  
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where e is the error which<h we want to compute 
and 
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The result of this theorem makes it possible to test if 
a norm exceeds a given bound via a calculation of the 
structured singular value. Having an upper and a 
lower bound for the error, the error e can be 
determined via a bisection algorithm. A lower bound 
for e is simply given by 0. An upper bound for e are 
provided by methods presented in [2], [5] and [7]. 
There the bound is provided by linear matrix 
inequality methods. 

The condidtion 1)
~

(~ <A-- --µ  is not restrictive since it 

is fulfilled by nearly all stable systems. 

3.1  Example 

In the following, we apply the method to the an 
equivalent circuit diagram of a transistor. 

 

The voltage U1 is taken as input and the output is U2. 
The exact parametrized transfer function is then 
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The nominal values of all ten parameters are assumed 
to be 1 and the allowed variations are in the interval 
[0.9,1.1]. Then  
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For instance, the approximate transfer function 
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is considered. 
Constructing the matrix quadruple )
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representing the multidimensional realization of the 
difference system, the Matlab µ-Analysis and 
Synthesis Toolbox yields 
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for A =0.666 and 
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 for A =0.632, thus the error is in the interval 
[0.632,0.666]. 

Since the H� -norm of the nominal system is 
approximately 2, the relative error of the simplified 
transfer function is between 31.6% and 33.3%. 

4 CONCLUSIONS 

In this paper, a method for the simplification of 
parametrized transfer function has been presented. 
The kind of simplification is to set several parameters 
to their nominal value, i.e. to treat them numerically 
instead of keeping them as symbolic expressions. 
The measure for the error of the simplified transfer 
function has been the maximal difference of the 
original and simplified transfer function in the H� -
norm for the parameters varying in a neighbourhood 
of their nominal value. This is a reasonable measure 
since the H� -norm expresses the energy gain of a 
system.  
The algorithm to compute this error is a bisection 
algorithm using a mixed real/complex µ-calculation 
in every step. The command “mu”  of the Matlab µ 
Analysis and Synthesis Toolbox (see [1]) provides 
this. 
In contrast to other publications like e.g. [2] and [5], 
not only conservative upper bounds for the error are 
provided by the algorithm but a calculation of its 
exact value up to an artbitrary precision.    
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