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1 Introduction
We consider infinite-dimensional descriptor systems

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),
x(0) = x0,

(1)

where E : X → Z, A : D(A) ⊂ X → Z, B : U → Z, C : X → Y , D : U → Y are linear operators
acting on complex Hilbert spaces U , X, Y and Z. This type for instance arises when input-
output systems are considered whose internal behavior is modeled by coupled partial differential
and differential-algebraic equations. Although infinite-dimensional descriptor systems appear in
many applications, research in this field is a very young area, especially inside linear systems
theory [15–18]. Practical examples for infinite-dimensional descriptor systems are electrical circuits
with spatially distributed components [15] or heat exchanger models [12].
In this work, the concept of input-output-passivity (io-passivity) is considered for systems of type
(1). Io-passivity means that U = Y and that the real part of the Lebesgue inner product of input
and output of the trivially initialized system is always non-negative, i.e. for all T > 0 and all
u(·) ∈ L2([0, T ], U), such that (1) with x0 = 0 has a solution x(·) : [0, T ] → X, the output satisfies

Re
∫ T

0

〈y(τ), u(τ)〉Udτ ≥ 0. (2)

The property of io-passivity has been studied in various works (see e.g. [22,23]) and is for instance
very important in the stability analysis of switched systems [14] and in the field of synthesis of
electrical circuits [2]. The expression on the left hand side usually has the physical interpretation
of energy that is lost by the system. Io-passivity therefore means that the system cannot generate
energy.
For finite-dimensional state-space systems (i.e., E = I, A ∈ Cn,n, B, C∗ ∈ Cn,p, D ∈ Cp,p),
io-passivity is equivalently characterized via the positivity of its transfer function. That is, the
rational Cp,p-valued function G(s) = D + C(sI − A)−1B has no pole on the right complex half-
plane C+ := {s ∈ C+ : Re(s) > 0} and additionally, G(s) + G∗(s) is positive semi-definite
(G(s) + G∗(s) ≥ 0) for all s ∈ C+.
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A further criterion for io-passivity of finite-dimensional state-space systems is the existence of
H = H∗ ∈ Cn,n with H ≥ 0 and

[−A∗H −HA C∗ −HB
C −B∗H D + D∗

]
≥ 0. (3)

The linear matrix inequality (3) is called Kalman-Yakubovich-Popov (KYP) inequality. The solv-
ability of the KYP inequality is sufficient for io-passivity. If the system is controllable and ob-
servable, then io-passivity implies the solvability of the KYP inequality for some H ∈ Cn,n with
H ≥ 0. The real version of this criterion is known as the positive real lemma [1, 2].
In this work we review known generalizations for finite-dimensional descriptor systems and infinite-
dimensional state-space systems. We will furthermore consider infinite-dimensional descriptor sys-
tems and present approaches for the characterization of io-passivity. The presented results are
illustrated by means of an example from electrical circuit theory.

2 Infinite-Dimensional State-Space Systems
Characterizations of io-passivity for infinite-dimensional state-space systems are considered in [7,8].
The most general results are in the works [3, 19, 20] by Staffans et al. where linear system
nodes are considered. For sake of simplicity, we review the results of [3] for the slightly smaller
class of well-posed linear systems, which are of the form

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),
x(0) = x0

(4)

and satisfy the following assumptions:

• A : D(A) ⊂ X → X is a generator of a strongly continuous semigroup on X.

• For D(A∗)′ being the dual of D(A∗) equipped with the graph norm of A∗ (the dual of X is
identified with X itself), B : U → D(A∗)′ is linear and bounded.

• C : D(A) → U and D : U → U are linear and bounded.

• For all T > 0 there exists some cT > 0 such that the solutions of (4) satisfy

‖x(t)‖+ ‖y(·)‖L2([0,T ],U) ≤ ct · (‖x0‖+ ‖u(·)‖L2([0,T ],U)). (5)

First we consider a frequency domain characterization for io-passivity of (4), i.e. we consider the
transfer function G(s) = D + C(sI −A)−1B. Note that the well-posedness of the system implies
that G is bounded and analytic on some half-plane C+

ω := {s ∈ C : Re(s) > ω}. The following
result can be obtained from [3,19,20].

Theorem 1. We assume that system (4) is wellposed. Then the following statements are equiva-
lent:

1. For all T > 0 and u(·) ∈ L2([0, T ], U), the output y(·) of (4) with x0 = 0 satisfies

Re〈u(·), y(·)〉L2([0,T ],U) ≥ 0.

2. The transfer function G(s) can be analytically extended to C+ and satisfies G(s)+G∗(s) ≥ 0
for all s ∈ C+.

Another characterization is the generalization of the Kalman-Yakubovich-Popov inequality
(3) to the infinite-dimensional case. The following criterion is formulated in [3]. Note that the



operator A has an extension to a bounded operator mapping from X to D(A∗)′ ⊃ X. Therefore,
for a given u0 ∈ U , the set of x0 ∈ X with Ax0 + Bu0 ∈ X is an affine linear space. We use the
following notation: Hk([0, T ], U) is the Sobolev space of measurable functions f(·) whose first k

distributional derivatives are square integrable. Furthermore, the dual of a space X̃ is denoted by
X̃ ′. The evaluation of x′ ∈ X̃ ′ at x ∈ X̃ is denoted by 〈x′, x〉 eX′, eX .

Criterion 1 (Passive infinite-dimensional state-space systems).
There exists some Hilbert space X̃ ⊂ X and a bounded operator H : X̃ → X̃ ′ with the following
properties:

1. 〈Hx, x〉 eX′, eX is real and non-negative for all x ∈ X̃.

2. For all T > 0 and u(·) ∈ H2([0, T ]) with u(0) = 0, the solution x(·) : [0, T ] → X of (4) with
x0 = 0 is continuously differentiable with x(t), ẋ(t) ∈ D(X̃) for all t ∈ [0, T ].

3. For all u0 ∈ U , x0 ∈ X such that Ax0 + Bu0 ∈ D(X̃) holds

−Re〈Hx0, Ax0 + Bu0〉 eX′, eX + Re〈Cx0, u0〉U + Re〈u0, Du0〉U ≥ 0. (6)

Note that the above criterion slightly differs from that formulated in [3]. However, Criterion
1 is equivalent to the formulation in [3].
The sufficiency of Criterion 1 for io-passivity follows from the fact that for a solution of (4)
described in Part 2, Part 1 and 3 imply that

0 ≤ 〈Hx(T ), x(T )〉 eX′, eX ≤ Re〈u(·), y(·)〉L2([0,T ],U). (7)

It is shown in [3] that for systems which are both approximately controllable and approximately
observable, the validity of Criterion 1 is also necessary for io-passivity.

3 Finite-Dimensional Descriptor Systems
In this section we review some results for descriptor systems (1) with B, C∗ ∈ Cn,p and E, A ∈ Cn,n

such that det(sE − A) does not vanish identically. The characterization of io-passivity for finite-
dimensional descriptor systems is considered in from [4,5,10,21]. Note that these works treat real
finite-dimensional descriptor systems. However, the extension of these results to the complex case
is straightforward.
The output of descriptor systems may contain derivatives of the input. In frequency domain, this
corresponds to the fact that the transfer function G(s) = D + C(sE − A)−1B may have a pole
at infinity. The finite-dimensionality implies that the transfer function is rational. Therefore,
there exists a representation G(s) = Gp(s) +

∑ν
k=1 skMk for some M1, . . . ,Mν ∈ Cp,p and a

rational function Gp which is bounded in some right half plane C+
ω . As in the case of state-

space systems, io-passivity can be characterized via the transfer function. The following result is
presented in [2, 4, 5, 10,21].

Theorem 2. Let a descriptor system (1) be given with B, C∗ ∈ Cn,p and E, A ∈ Cn,n such that
det(sE −A) does not vanish identically. Then the following statements are equivalent:

1. (1) is io-passive, i.e. for all T > 0 and u(·) : [0, T ] → Rp such that (1) with x0 = 0 has a
solution, the output of the system with x0 = 0 satisfies (2).

2. The transfer function G(s) = D + C(sE − A)−1B has no poles in C+. Moreover, for all
s ∈ C+ we have G(s) + G∗(s) ≥ 0.



3. The transfer function G(s) = D+C(sE−A)−1B has a representation G(s) = Gp(s)+sM1,
where M1 = M∗

1 ≥ 0 and Gp is bounded on C+
ω for some ω > 0. Moreover, for all s ∈ C+

we have G(s) + G∗(s) ≥ 0.

In particular, Part 3 implies that G(s) has at most linear growth in C+. In time domain,
this consequences that for all T > 0, there exists some constant cT > 0 such that for all u(·) ∈
H1([0, T ],Rp) with u(0) = 0 we have

‖y(·)‖L2([0,T ],Rp) ≤ ‖u(·)‖H1([0,T ],Rp). (8)

In the following we present a criterion from [5] for io-passivity that generalizes the KYP inequality
(3).

Criterion 2 (Passive finite-dimensional descriptor systems).
There exist matrices H ∈ Cn,n, K ∈ Cn,p with the following properties:

(i) E∗X = X∗E ≥ 0 and E∗K = 0.

(ii)
[ −A∗X −X∗A C∗ −A∗K −X∗B
C −K∗A−B∗X −K∗B −B∗K + D + D∗

]
≥ 0.

The claim (ii) implies that for all u0 ∈ Rp, x0 ∈ Rn with Ax0 + Bu0 ∈ im E we have

[
x∗0 u∗0

] [−A∗X −X∗A C∗ −X∗B
C −B∗X D + D∗

] [
x0

u0

]
≥ 0. (9)

By using the fact that for all t ∈ [0, T ] the solutions of the descriptor system satisfy Ax0 + Bu0 ∈
im E (and thus K∗Ax(t)+K∗Bu(t) = 0), the sufficiency of Criterion 2 for passivity can be shown
analogous to the corresponding result for infinite-dimensional state-space systems.
Furthermore it is shown in [5] that Criterion 2 is necessary for io-passivity, if the descriptor system
is controllable and observable.

4 Infinite-Dimensional Descriptor Systems
The aim is to find a characterization for passivity that generalizes the so far presented criteria
for the case of infinite-dimensional state-space systems as well as for finite-dimensional descriptor
systems. The general assumptions on the descriptor system are

a) U , X, Y and Z are Hilbert spaces and E : X → Z, B : U → Z, C : X → Y and D : U → Y
are linear and bounded;

b) A : D(A) ⊂ X → Z is closed and there exists some complex half-plane C+
ω such that (sE −

A)−1 : Z → X is defined for all s ∈ C+
ω . Moreover, there exists M > 0, ν ∈ N such that for all

s ∈ C+
ω we have ‖(sE −A)−1‖ ≤ M · (1 + |s|)ν .

The above assumptions imply that the transfer function G(s) = D + C(sE − A)−1B of the
descriptor system is well-defined on C+

ω .
Note that for infinite-dimensional descriptor systems, it is no loss of generality to consider bounded
B and C, that is, B does not map to a larger space than Z, and C is defined on whole X. This
is due to the fact that unbounded operators B and C can be avoided by an artificial enlargement
of the spaces X and Z [17].
A natural question is whether the io-passivity is equivalent to the fact that the transfer function G
is positive, i.e. G can be extended analytically to C+ satisfying G(s) + G∗(s) ≥ 0 for all s ∈ C+.
The sufficiency can be shown by Parseval’s identity. The necessity is more complicated and will



be treated in a forthcoming paper [13].
The work [11] treats the class of scalar holomorphic and positive functions, i.e. G : C+ → C with
Re(G(s)) ≥ 0 for all s ∈ C+. It is in particular shown that for all ω > 0, G has at most quadratic
growth on C+

ω . i.e. there exists some Mω such that |G(s)| ≤ Mω(1 + |s|)2 for all s ∈ C+
ω . It is

further shown in [11] that G has at most linear growth on the real axis and lims→∞,s∈R 1
sG(s) = M

for some real M > 0.
Indeed, the quadratic growth of the transfer function causes that an inequality (8) is in general
not possible, but only an estimate of the L2-norm of the output y(·) by the Sobolev-norm H2 of
the input u(·).
We will now generalize Criterion 1 and Criterion 2 to infinite-dimensional descriptor systems. For
a system (1) and a subspace Z̃ ⊂ Z, we introduce the space

S eZ :=
{»

u0
x0

–
∈ U ×D(A) : Ax0 + Bu0 ∈ Z̃ ∩ im E

}
.

Criterion 3 (Passive infinite-dimensional descriptor systems).
There exists some Hilbert spaces X̃ ⊂ X, Z̃ ⊂ Z and some bounded operator H : X̃ → Z̃ ′ with the
following properties:

(i) EX̃ ⊂ Z̃ and 〈Hx, Ex〉eZ′,eZ is real and positive for all x ∈ X̃.

(ii) There exists some k ≥ ν such that for all T > 0 and u(·) ∈ Hk([0, T ], U) with u(0) = u̇(0) =
· · · = u(k−1)(0) = 0, the solution x(·) : [0, T ] → X of system (1) with x0 = 0 is continuously
differentiable with x(t), ẋ(t) ∈ X̃ for all t ∈ [0, T ].

(iii) For all u0 ∈ U , x0 ∈ X such that [u0 , x0 ] ∈ SeZ holds

−Re〈Hx0, Ax0 + Bu0〉eZ′,eZ + Re〈Cx0, u0〉U + Re〈u0, Du0〉U ≥ 0. (10)

Theorem 3. Let a descriptor system (1) satisfying assumptions a) and b) with moreover U = Y
be given. Further, assume that Criterion 3 is fulfilled. Then (1) is io-passive.

Proof. The fact that 〈Hx,Ex〉eZ′,eZ is real and positive for all x ∈ X̃, implies that for all x1, x2 ∈ X̃

holds 〈Hx1, Ex2〉eZ′, eZ = 〈Hx2, Ex1〉eZ′,eZ .
Now let u(·) : [0, T ] → U and x(·) : [0, T ] → X be solutions of system (1) described in (ii) of
Criterion 3. Then we have that

1
2

d
dt 〈Hx(t), Ex(t)〉eZ′, eZ = Re〈Hx(t), Eẋ(t)〉eZ′,eZ .

Moreover, due to Eẋ(t) = Ax(t) + Bu(t) and Eẋ(t) ∈ Z̃, we have [ u(t) , x(t) ]T ∈ SeZ for all
t ∈ [0, T ]. Then we compute

0 ≤ 1
2 · 〈Hx(T ), Ex(T )〉eZ′,eZ = Re

∫ T

0

〈Hx(t), Eẋ(t)〉eZ′,eZdt

= Re
∫ T

0

〈Hx(t), Ax(t) + Bu(t)〉eZ′, eZdt

≤ Re
∫ T

0

〈u(t), Cx(t) + Du(t)〉Udt = Re〈u(·), y(·)〉L2([0,T ],U).

Therefore, the system is passive.

An open question is whether Criterion 3 is also sufficient for passivity. This will be subject of
future research.



5 Example: Electrical Circuits with Transmission Lines
Consider an electrical circuit with voltage sources, current sources, capacitances, inductances,
resistances and transmission lines. The transmission lines (which are assumed to have normalized
length) fulfill the so-called telegraph equations

LT (ξ)İT (ξ, t) = −RT (ξ)IT (ξ, t)− ∂
∂ξ VT (ξ, t),

CT (ξ)V̇T (ξ, t) = −GT (ξ)IT (ξ, t)− ∂
∂ξ VT (ξ, t), t > 0, ξ ∈ [0, 1],

where LT (·), RT (·), CT (·), GT (·) : [0, 1] → RnT ,nT are measurable matrix-valued functions which
are symmetric and positive semi-definite almost everywhere. We further claim that there exists
ε1 > 0, ε2 > 0 such that for almost every ξ ∈ [0, 1] holds ε1InT

> CT (ξ) > ε2InT
and ε1InT

>
LT (ξ) > ε2InT

.
The modified nodal analysis [6] leads to the following equations

ACCAC ė(t) =−ARR−1AT
Re(t)−ALiL(t)−AV iV −AT0IT (0, t)−AT1IT (1, t)−AI iI(t),

Li̇L(t) =AT
Le(t),

0 =AT
V e(t)− uV (t),

(11)

where R, C and L are the resistance, capacitance and inductance matrix, which are positive
definite by assumption. The matrices AC , AR, AL, AV , AI , AT0, AT1 denote the element-related
incidence matrices of capacitances, resistances, inductances, voltage and current sources, initial
and terminal ports of transmission lines. We assume that the input of the system is given by the
voltages of voltage sources and currents of current sources, i.e., u(t) = [ uV (t) , iI(t) ], whereas the
output consists of the negative of currents of voltage sources and voltages of current sources, i.e.
y(t) = [−iV (t) , −uI(t) ]. Defining C0, C1 : H1([0, 1],Rk) → Rk by C0f(·) = f(0), C1f(·) = f(1),
we then obtain a descriptor system (1) with state x(t) = [ e(t) , iL(t) , iV (t) , IT (t, ·) , VT (t, ·) ] and
spaces

X = Rne × RnL × RnV × L2([0, 1],RnT )× L2([0, 1],RnT ),

D(A) = Rne × RnL × RnV ×H1([0, 1],RnT )×H1([0, 1],RnT ),
Z = Rne × RnL × RnV × L2([0, 1],RnT )× L2([0, 1],RnT )× RnT × RnT

(12)

and operators

E =




ACCAT
C 0 0 0 0

0 L 0 0 0
0 0 0 0 0
0 0 0 CT 0
0 0 0 0 LT

0 0 0 0 0
0 0 0 0 0




, A=




−ARR−1AT
R −AL −AV 0 −AT0C0

+AT1C1

AT
L 0 0 0 0

AT
V 0 0 0 0
0 0 0 −GT − ∂

∂ξ

0 0 0 − ∂
∂ξ −RT

AT
T0 0 0 −C0 0

AT
T1 0 0 −C1 0




,

B=




−AI 0

0 0
0 −I
0 0
0 0
0 0
0 0




, C =
[−AT

I 0 0 0 0
0 0 −I 0 0

]
, D=

[
0 0
0 0

]
.

(13)

In [15], it is shown that if AV and [AC AR AL AV AT0 AT1]T have full column rank, then there
exists some M > 0, ω ∈ R such that for all s ∈ C∗ω we have

‖(sE −A)−1‖ < M(|s|+ 1).



The conditions on the incidence matrices correspond to the absence of loops of voltage sources
and cutsets of currents sources [9].
For

X =




I 0 0 0 0
0 I 0 0 0
0 0 0 0 0
0 0 0 I 0
0 0 0 0 I
0 0 0 0 0
0 0 0 0 0




, (14)

we have that E∗X is self-adjoint and positive semidefinite. Therefore, the claim (i) in Criterion 3
is fulfilled for X̃ = X and Z̃ = Z. Defining QC ∈ Rne,ne to be a projector onto kerAT

C , the space
S eX reads





2
666666664

e
iL
iV
VT

IT

iI
uV

3
777777775

∈ Rne+nL+nV ×H1([0, 1],R2nT )× R2nT

∣∣∣∣∣∣∣∣∣∣∣∣

QT
CARR−1AT

Re + QT
CALiL + QT

CAV iV

+QT
CAT0IT (0)−QT

CAT1IT (1) + QT
CAI iI = 0

AT
V e− uV = 0

AT
T0e− VT (0) = 0

AT
T1e− VT (1) = 0





.

(15)
Then for [x0 , u0 ] ∈ S eX holds

− Re〈Hx0, Ax0 + Bu0〉eZ′, eZ + Re〈Cx0, u0〉U + Re〈u0, Du0〉U

=− 2eT ARR−1AT
Re− 2eT ALiL − 2eT AT0IT (0) + 2eT AT1IT (1) + 2iTLAT

Le

− 2
∫ 1

0
V T

T (ξ)GT VT (ξ)dξ − 2
∫ 1

0
V T

T (ξ) ∂
∂ξ IT (ξ)dξ

− 2
∫ 1

0
∂
∂ξ V T

T (ξ)IT (ξ)dξ − 2
∫ 1

0
V T

T (ξ)GT VT (ξ)dξ − eT AI iI − eT AI iI .

Using integration by parts and the equalities in (15), we obtain that this equals to

−2eT ARR−1AT
Re− 2

∫ 1

0
V T

T (ξ)GT VT (ξ)dξ − 2
∫ 1

0
V T

T (ξ)GT VT (ξ)dξ,

which is negative by assumptions on R, C, L and GT (·). Therefore, the system is passive.

6 Conclusion
We have considered the class of input-output-passive infinite-dimensional descriptor systems. Cri-
teria for input-output passivity have been given in terms of the transfer function. Another suf-
ficient condition generalizing the Kalman-Yakubovich-Popov inequality has been presented. The
criteria have been compared to the existing results for infinite-dimensional state-space and finite-
dimensional descriptor systems.
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