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1 Introduction

The optimal infinite-horizon output (or measurement) feedback H∞ control problem is one of
the central tasks in robust control, see, e.g., [12, 13, 22, 28, 30]. For standard state space systems,
where the dynamics of the system are modelled by a linear constant coefficient ordinary differential
equation, the analysis of this problem is well studied and numerical methods have been developed
and integrated in control software packages such as [2, 8, 14]. These methods work well for a
wide range of problems in computing close to optimal (suboptimal) controllers, but the exact
computation of the optimal value γ in H∞ control is considered a challenge [9]. In order to
avoid some of the numerical difficulties that arise when approaching the optimum, in [6,7] several
improvements of the previously known methods were presented. These are based on the solution
of structured eigenvalue problems with structured methods.

In this paper we study the more general case that the dynamics is constrained, i.e. described
by a differential-algebraic equation (DAE) or descriptor system. Descriptor systems arise in the
control of constrained mechanical systems, see e.g. [10, 26], in electrical circuit simulation, see
e.g. [15], and in particular in heterogeneous systems, where different models are coupled [21].

Robust control for descriptor systems has been studied in [23–25] using linear matrix inequal-
ities (LMIs) and employing methods of semidefinite programming to find γmo. This is attractive,
because easy-to-use methods for semidefinite programming are available, see, e.g., [20]. In such
an approach, LMIs in O(n2) variables need to be solved which in general results in a complexity
of O(n6). Despite recent progress in reducing this complexity based on exploiting duality in the
related semidefinite programs [1, 29], the best complexity achievable is still larger than O(n4) as
compared to the O(n3) cost of the procedure discussed here. Robust control for descriptor sys-
tems has also been studied in [27] via generalized Riccati equations and J-spectral factorization.
Unfortunately, there are several numerical difficulties associated with Riccati methods. Primary
among these is the fact that often as γ approaches γmo, one of the ARE solutions XH or XJ either
diverges to ∞ or becomes highly ill-conditioned, i.e., tiny errors in the Hamiltonian matrices H(γ)
or J(γ) may lead to large errors in XH or XJ . In contrast to these approaches, we extend the
analysis and the robust numerical methods that were derived via deflating subspaces in [6,7]. We
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discuss descriptor systems of the form

P :











Eẋ(t) = Ax(t) + B1w(t) + B2u(t), x(t0) = x0,

z(t) = C1x(t) + D11w(t) + D12u(t),

y(t) = C2x(t) + D21w(t) + D22u(t),

(1)

where E, A ∈ Rn×n, Bi ∈ Rn,mi , Ci ∈ Rpi,n, and Dij ∈ Rpi,mj for i, j = 1, 2. (Here, by Rk,l we
denote the set of real k × l matrices.)

In this system, x(t) ∈ Rn is the descriptor vector, u(t) ∈ Rm2 is the control input vector, and
w(t) ∈ Rm1 is an exogenous input that may include noise, linearization errors and un-modelled
dynamics. The vector y(t) ∈ Rp2 contains measured outputs, while z(t) ∈ Rp1 is a regulated
output or an estimation error. Our approach can also be extended to rectangular systems and
systems in behavior formulation, using a remodelling as it was suggested in [17], see also [16], but
here we only study the formulation in (1).

The optimal H∞ control problem is typically formulated in frequency domain. For this we
need the following notation. The space Hp,m

∞ consists of all Cp,m-valued functions that are analytic
and essentially bounded in the complex half plane C+ = {s ∈ C : Re(s) > 0}. For F ∈ Hp,m

∞

the H∞-norm is given by ‖F‖∞ = sups∈C+ σmax(F (s)), where σmax(F (s)) denotes the maximal
singular value of the matrix F (s).

In robust control, ‖F‖∞ is used as a measure of the worst case influence of the disturbances
w on the output z, where in this case F is the transfer function mapping noise or disturbance
inputs to error signals [30].

The optimal H∞ control problem is the task of designing a dynamic controller that minimizes
(or at least approximately minimizes) this measure, leading to a closed-loop system as in the
following figure.

u(t) y(t)

w(t) z(t)

P

K

Figure 1. Plant interconnected with Controller

Put more rigorously, the optimal H∞ control problem is the following.

Definition 1 (The Optimal H∞ control problem). For the descriptor system (1), determine
a controller (dynamic compensator)

K :

{

Ê ˙̂x(t) = Âx̂(t) + B̂y(t),

u(t) = Ĉx̂(t) + D̂y(t)
(2)

with Ê, Â ∈ RN,N , B̂ ∈ RN,p2 , Ĉ ∈ Rm2,N , D̂ ∈ Rm2,p2 , and a transfer function K(s) =
Ĉ(sÊ − Â)−1B̂ + D̂ such that the closed-loop system resulting from the combination of (1) and (2)
as in Figure 1, has the following properties.

1.) Internal stability, i.e., the solution

[

x(t)
x̂(t)

]

of the system with w ≡ 0 is asymptotically stable.



2.) The closed-loop transfer function Tzw(s) from w to z satisfies Tzw ∈ Hp1,m1
∞ and is minimized

in the H∞-norm.

In principle, there is no restriction on the dimension N of the auxiliary state x̂ in (2),
although, smaller dimensions N are preferred for practical implementation and computation.

As in the case of the optimal H∞ control problems for ordinary state space systems it is also
necessary to study two closely related optimization problems, the modified optimal H∞ control
problem and the suboptimal H∞ control problem.

Definition 2 (The modified optimal H∞ control problem). For the descriptor system (1)
let Γ be the set of positive real numbers γ for which there exists an internally stabilizing dynamic
controller of the form (2) so that the transfer function Tzw(s) of the closed loop system satisfies
‖Tzw‖∞ < γ. Determine γmo = inf Γ. (If no internally stabilizing dynamic controller exists, we
set Γ = ∅ and γmo = ∞.)

Note that it is possible that there is no internally stabilizing dynamic controller with the
property ‖Tzw‖∞ = γmo. Moreover, the minimizing controller may be fragile and in practice,
the minimization condition is often relaxed and rather than the optimal H∞ control problem, the
following suboptimal H∞ control problem is solved.

Definition 3 (The suboptimal H∞ control problem.). For the descriptor system (1) and
γ ∈ Γ with γ > γmo, determine an internally stabilizing dynamic controller of the form (2) such
that the closed loop transfer function satisfies ‖Tzw‖∞ < γ. We call such a controller γ-suboptimal
controller or simply suboptimal controller.

To state our results we will also need some notions of controllability and observability for
descriptor systems

Definition 4. Let E, A ∈ Rn×n, B ∈ Rn,m and C ∈ Rp,n. Further, let T∞, S∞ be matrices with
Im T∞ = kerET and Im S∞ = kerE.

i) The triple (E, A, B) is called finite dynamics stabilizable if rank[λE − A, B] = n for all
λ ∈ C+;

ii) (E, A, B) is impulse controllable if rank[E, AS∞, B] = n;

iii) (E, A, B) is strongly stabilizable if it is both finite dynamics stabilizable and impulse con-
trollable;

iv) The triple (E, A, C) is finite dynamics detectable if rank[λET −AT , CT ] = n for all λ ∈ C+;

v) (E, A, C) is impulse observable if rank[ET , AT T∞, CT ] = n;

vi) (λE − A, C) is strongly detectable if it is both finite dynamics detectable and impulse ob-
servable.

The solution and many properties of the free descriptor system (with u, w = 0) can be
characterized in terms of the Weierstraß canonical form (WCF).

Theorem 5. [11] For a regular matrix pencil λE − A, there exist matrices Wf , Vf ∈ Rn,nf ,
W∞, V∞ ∈ Rn,n∞ with the property that W =

[

Wf W∞

]

, V =
[

Vf V∞

]

are square and



invertible, with

WT EV =

[

WT
f

WT
∞

]

E
[

Vf V∞

]

=

[

Inf
0

0 N

]

, (3a)

WT AV =

[

WT
f

WT
∞

]

A
[

Vf V∞

]

=

[

Af 0
0 In∞

]

, (3b)

Af ∈ Rnf ,nf is in real Jordan canonical form and N is a nilpotent matrix, also in Jordan canonical
form. We call nf , n∞ the number of finite or infinite eigenvalues, respectively.

The index of nilpotency of the nilpotent matrix N in (3a) is called the index of the system
and if E is nonsingular, then the pencil is said to have index zero.

To simplify notation, the term eigenvalue is used both for eigenvalues of matrices and for pairs
(α, β) 6= (0, 0) for which det(αE − βA) = 0. These pairs are not unique. If β 6= 0 then we identify
(α, β) with (α/β, 1) and λ = α/β. Pairs (α, 0) with α 6= 0 are called infinite eigenvalues.

By Λ(E, A), we denote the set of eigenvalues of αE − βA including finite and infinite eigen-
values both counted according to multiplicity.

We will denote by Λ−(E, A), Λ0(E, A) and Λ+(E, A) the set of finite eigenvalues of αA−βE
with negative, zero, and positive real parts, respectively. The set of infinite eigenvalues is denoted
by Λ∞(E, A). Multiple eigenvalues are repeated in Λ−(E, A), Λ0(E, A), Λ+(E, A) and Λ∞(E, A)
according to algebraic multiplicity. The set of all eigenvalues counted according to multiplicity is
Λ(E, A) := Λ−(E, A) ∪ Λ0(E, A) ∪ Λ+(E, A) ∪ Λ∞(E, A). Similarly, we denote by Def−(E, A),
Def0(E, A), Def+(E, A) and Def∞(E, A) the right deflating subspaces corresponding to Λ−(E, A),
Λ0(E, A), Λ+(E, A) and Λ∞(E, A), respectively.

2 Main result

In this section we approach the problem of determining γmo for a given system (1). As in the case
of standard state space systems, see [12,13], we need several assumptions on the system matrices.
In the following we set r = rankE.

Assumptions:

A1) The triple (E, A, B2) is strongly stabilizable and the triple (E, A, C2) is strongly detectable.

A2) rank

[

A − iωE B2

C1 D12

]

= n + m2 for all ω ∈ R.

A3) rank

[

A − iωE B1

C2 D21

]

= n + p2 for all ω ∈ R.

A4) For matrices T∞, S∞ ∈ Rn,n−r with ImS∞ = kerE and ImT∞ = kerET the rank conditions

rank

[

T T
∞AS∞ T T

∞B2

C1S∞ D12

]

= n + m2 − r, rank

[

T T
∞AS∞ T T

∞B1

C2S∞ D21

]

= n + p1 − r hold.

It is well known for standard state space systems that Assumption A1) is essential for the existence
of a controller that internally stabilizes the system. We will see that a similar result holds for the
descriptor case. Assumptions A2) and A3) correspond to the typical claim that the system does
not have transmission zeros on the imaginary axis. This is assumed in many works about H∞-
control of standard state space systems, since eigenvalues on the imaginary axis of the Hamiltonian
matrices that are used in the computation of an optimal controller usually lead to problems in the
computation of a semi-stable subspace, see [19].

Further typical assumptions used when treating the H∞-control problem for standard state
space systems are that D12, D

T
21 have full column rank, see [13,30]. The conditions in A4) reduce



to these rank conditions if E is invertible.
In the following we will make use of even matrix pencils as well as of skew-Hamiltonian/Hamiltonian
matrix pencils: a matrix pencil λN−M is called even if N is skew-symmetric and M is symmetric.
A matrix pencil λS−H with S, H ∈ R2n,2n is called skew-Hamiltonian/Hamiltonian if SJ is skew

symmetric and HJ is symmetric, where J =
[

0 In

−In 0

]

. For a brief overview of the properties

of skew-Hamiltonian/Hamiltonian pencils, see, for example [5].
For the solution of the modified optimal H∞ control problem we will make use of the following

two even matrix pencils, which generalize the pencils constructed in [7]. The contruction of these
pencils is based on the observation that the solution of the well known Riccati equations for
H∞ control can be expressed in terms of certain Lagrangian invariant subspaces for Hamiltonian
matrices [30], which in turn are replaced by skew-Hamiltonain/Hamiltonian or by even matrix
pencils to avoid explicit inverses and improve the condition of the problem. We will call a subspace

L ⊂ R2n isotropic if xTJ y = 0 for all x, y ∈ L, where J =
[

0 In

−In 0

]

. An isotropic subspace

with dimL = n is called Lagrangian. Let

λNH + MH(γ) = λ













0 −ET 0 0 0
E 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













+













0 −AT 0 0 −CT
1

−A 0 −B1 −B2 0

0 −BT
1 −γ2Im1

0 −DT
11

0 −BT
2 0 0 −DT

12

−C1 0 −D11 −D12 −Ip1













(4)

and

λNJ + MJ(γ) = λ













0 −E 0 0 0
ET 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













+













0 −A 0 0 −B1

−AT 0 −CT
1 −CT

2 0
0 −C1 −γ2Ip1

0 −D11

0 −C2 0 0 −D21

−BT
1 0 −DT

11 −DT
21 −Im1













. (5)

Our approach is based on considering deflating subspaces of the matrix pencils (4) and (5), where
the subspaces are spanned by the columns of the matrices XH and XJ that are partitioned
conformably with the pencils, i.e.,

XT
H(γ) =

[

XT
H,1(γ) XT

H,2(γ) XT
H,3(γ) XT

H,4(γ) XT
H,5(γ)

]

,

XT
J (γ) =

[

XT
J,1(γ) XT

J,2(γ) XT
J,3(γ) XT

J,4(γ) XT
J,5(γ)

]

,
(6)

with XH,1(γ), XH,2(γ), XJ,1(γ), XJ,2(γ) ∈ Rn,r, XH,4(γ) ∈ Rm2,r, XJ,4(γ) ∈ Rp2,r, XH,3(γ),
XJ,5(γ) ∈ Rm1,r, XH,5(γ), XJ,3(γ) ∈ Rp1,r.

We extend the results in [7] to general descriptor systems and use deflating subspaces of
the even pencils (4) and (5) to characterize the elements of the set Γ in Definition 2. For this
we introduce the following conditions which will be shown to be necessary for the existence of a
controller with the desired properties associated with a parameter γ ∈ Γ.

C1) The index of both pencils (4) and (5) is at most one.

C2) There exists a matrix XH(γ) as in (6) such that

C2.a) Im XH(γ) is a semi-stable deflating subspace of λNH + MH(γ) and Im
[

EXH,1

XH,2

]

is

an r-dimensional isotropic subspace of R2n;

C2.b) rankEXH,1(γ) = r.

C3) There exists a matrix XJ(γ) as in (6) such that

C3.a) Im XJ(γ) is a semi-stable deflating subspace of λNJ + MJ(γ) and Im
[

ET XJ,1

XJ,2

]

is an

r-dimensional isotropic subspace of R2n;



C3.b) rankET XJ,1(γ) = r.

C4) The matrix

Y(γ) =

[ −γXT
H,2(γ)EXH,1(γ) XT

H,2(γ)EXJ,2(γ)

XT
J,2(γ)ET XH,2(γ) −γXJ,2(γ)T ET XJ,1(γ)

]

(7)

is symmetric, positive semi-definite and satisfies rankY(γ) = k̂H + k̂J ,

where k̂H = rankET XH,2(γ) and k̂J = rankEXJ,2(γ).

Using these conditions we can state the following result which is proved in [18].

Theorem 6. Consider system (1) and the even pencils λNH + MH(γ) and λNJ + MJ(γ) as in
(4) and (5), respectively. Suppose that assumptions A1) – A4) hold.

Then there exists an internally stabilizing controller such that the transfer function from w
to z satisfies ‖Tzw‖∞ < γ if and only if γ is such that the conditions C1) – C4) hold.

Furthermore, the set of γ satisfying the conditions C1) – C4) is nonempty.

Sketch of proof:
First, one can show that there exists an index reducing a priori feedback such that the Assumptions
A1) – A4) and the Conditions C1) – C4) remain unchanged. Then the resulting system of index
one can be transformed to Weierstraß canonical form [11] and the resulting special structure can
be used to rewrite the system as a standard system (E = I). It is then possible to show that the
resulting standard system fulfills the well known assumptions and conditions for the existence of
an internally stabilizing controller, given for example in [30], such that the transfer function from
w to z satisfies ‖Tzw‖∞ < γ, if and only if the original system satisfies A1) – A4) and C1) –
C4) respectively. Finally showing that the combination of optimal controller and index reducing
feedback results in the same closed loop system as by applying the optimal controller to the system
written as a standard system concludes the proof.

3 Computation of γmo

In this section we give a numerical method for the computation of γmo that is similar to the
procedure proposed in [7] and uses a bisection method.

Procedure 1: (Classification of γ)
Input: Data of system (1), value γ ≥ 0.
Output: Decision whether γ < γmo or γ ≥ γmo.

1. Form the pencils λNH + MH(γ) and λNJ + MJ(γ).

2. Compute the deflating subspace matrices XH and XJ associated with the eigenvalues in the
closed left half plane.

3. IF the dimension of one/both of these subspaces is less than r, then γ < γmo,

ELSE

IF the rank of EXH,1 and/or ET XJ,1 is less than r, THEN γ < γmo,

ELSE

Form the matrix Y.

IF Y is not positive semi-definite and/or rankY < k̂H + k̂J , THEN γ < γmo,

ELSE γ ≥ γmo.

END

END



END

With this procedure we can determine γmo using a bisection method. The computation of
the deflating subspace matrices XH and YH in Step 2. of Procedure 1 should respect the structure
of the matrix pencils λNH + MH(γ) and λNJ + MJ(γ). This is achieved by using the procedure
described in the following section.

4 Structured Computation of Deflating Subspaces

In this section we will consider skew-Hamiltonian/Hamiltonian matrix pencils rather than even
ones, since an even matrix pencil of even size∗ can be made skew-Hamiltonian/Hamiltonian by
simply multiplying with J of appropriate size from the left leaving the deflating subspaces un-
changed.
If αN − βH is a real skew-Hamiltonian/Hamiltonian pencil, then for any real nonsingular ma-
trix X , (JX TJ )(αN − βH)X is still a real skew-Hamiltonian/Hamiltonian pencil. For a real
skew-Hamiltonian/Hamiltonian pencil αN − βH, we call the condensed form

(JQTJ T )(αN − βH)Q = α

[

N11 N12

0 NT
11

]

− β

[

H11 H12

0 −HT
11

]

a structured Schur form, where Q is real orthogonal, N11 is upper triangular and H11 is quasi upper
triangular. Note that not every skew-Hamiltonian/Hamiltonian pencil has such a structured Schur
form [5]. But using the following generalized symplectic URV decomposition and embedding the
pencil in one of double size we can still efficiently compute the deflating subspaces in a structure
preserving way for all regular skew-Hamiltonian/Hamiltonian pencils.

Theorem 7. Let αS − βH be a regular real skew-Hamiltonian/Hamiltonian pencil. Then there
exist orthogonal matrices Q1,Q2 such that

QT
1 SJQ1J T =

[

S11 S12

0 ST
11

]

, JQT
2 J TSQ2 =

[

T11 T12

0 T T
11

]

, QT
1 HQ2 =

[

H11 H12

0 H22

]

,

where S11, T11, H11 are upper triangular and HT
22 is quasi upper triangular.

A proof can be found in [3]. Based on this theorem, we can now compute a structured Schur
form yielding the desired deflating subspaces if we embed the original pencil in a pencil of double

size, BS =

[

S 0
0 S

]

, BH =

[

H 0
0 −H

]

. Introduce the orthogonal matrices

Yr =

√
2

2

[

I2n I2n

−I2n I2n

]

, P =









In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In









, (8)

and let Xr = YrP . Now setting Q̃ = PT diag(JQ1J T ,Q2)P , we can transform the skew-
Hamiltonian matrix Br

S
:= X T

r BSX and the Hamiltonian matrix Br
H

:= X T
r BHXr to

J Q̃TJ TBr
SQ̃ =









S11 0 S12 0
0 T11 0 T12

0 0 ST
11 0

0 0 0 T T
11









=:

[

S̃11 S̃12

0 S̃T
11

]

,

J Q̃TJ TBr
HQ̃ =









0 H11 0 H12

−HT
22 0 HT

12 0
0 0 0 H22

0 0 −HT
11 0









=:

[

H̃11 H̃12

0 −H̃T
11

]

.

(9)

∗Odd size pencils can be treated analogously [5].



Note that J Q̃TJ TBr
S
Q̃ and J Q̃TJ TBr

H
Q̃ are Hamiltonian and skew-Hamiltonian respectively,

as Q̃ is nonsingular (see above). We now determine orthogonal matrices Q3 and Q4 such that
H11 = QT

4 H̃11Q3, S11 = QT
4 S̃11Q3 are quasi upper triangular and upper triangular, respectively.

Setting Q = Q̃ diag(Q3,Q4) with S12 := QT
4 S̃12Q4 and H12 := QT

4 H̃12Q4, we get the structured
Schur form

B̃r
S := JQTJ TBr

SQ =

[

S11 S12

0 ST
11

]

, B̃r
H := JQTJ TBr

HQ =

[

H11 H12

0 −HT
11

]

.

By a proper reordering of the eigenvalues we can now compute the desired deflating subspaces of
αS − βH due to the following theorem wich is proved in [4].

Theorem 8. Let αS − βH be a skew-Hamiltonian/Hamiltonian pencil and consider the extended
matrices BS = diag(S,S) and BH = diag(H,−H).

Let V ,W be orthogonal matrices such that

WHBSV =

[

S11 S12

0 S22

]

, WHBHV =

[

H11 H12

0 H22

]

, (10)

where S11,H11 ∈ Rm,m, Λ−(BS ,BH) ⊂ Λ(S11,H11) and Λ(S11,H11) ∩ Λ+(BS ,BH) = ∅. Let
[

V1

V2

]

∈ R2n,m be the first m columns of V, then

rangeV1 = Def−(S,H) + L1, L1 ⊆ Def0(S,H) + Def∞(S,H),

rangeV2 = Def+(S,H) + L2, L2 ⊆ Def0(S,H) + Def∞(S,H). (11)

If Λ(S11,H11) = Λ−(BS ,BH), and

[

W1

W2

]

are the first m columns of W, then there exist orthog-

onal matrices QV , QW such that

V1 = [P−

V , 0]QV ,W1 = [P−

W , 0]QW ,

V2 = [0, P+

V ]QV ,W2 = [0, P+

W ]QW ,

and the columns of P−

V and P+

V form orthogonal bases of Def−(S,H) and Def+(S,H), respectively.
Moreover, the matrices P−

W , P+

W have orthonormal columns and the following relations are satisfied

SP−

V = P−

W S̃11, HP−

V = P−

W H̃11,

SP+

V = P+

W S̃22, HP+

V = −P+

W H̃22.
(12)

Here S̃i,i and H̃i,i for i = 1, 2 are matrices such that Λ(S̃11, H̃11) = Λ(S̃22, H̃22) = Λ−(S,H).

Computing the deflating subspaces in this manner not only has the advantage of preserving
the Hamiltonian spectral symmetry, but also evades numerical difficulities of classical methods,
which suffer from bad conditioning especially close to the optimal value of γ.

5 Numerical Example

To illustrate the functionality of our approach, consider the following example from [27] which is
also discussed in [23–25]. The descriptor system is given by (1) with

E =





1 0 0
0 1 0
0 0 0



 , A =





−1 0 1
0 0 1
0 −1 0



 , B1 =





0
1
1



 , B2 =





1
0
1



 ,

C1 =

[

1 1 0
0 1 1

]

, C2 =
[

1 0 1
]

,

D12 =

[

0
1

]

, D21 = 1, D11 = D22 = 0.



The pencil λE −A is of index 2 and the associated pencils λNH + MH(γ) and λNJ + MJ(γ) have
index 1 for γ 6= 0. The goal is to find the minimum value γ that satisfies the conditions C1) – C4).
Using our experimental code for the structured computation of the deflating subspaces associated
with eigenvalues in the closed left half plane and using the Procedure 2 to determine the optimal
value for γ, we computed γopt given by γρ = 0.7678, which is smaller than the sub-optimal values
obtained in [23–25,27].

6 Conclusions

We have developed conditions for optimal and suboptimal H∞-control for descriptor systems of
arbitrary index and expressed criteria for the existence of an internally stabilizing controller in
terms of the deflating subspaces of even pencils. Furthermore we have presented a method to
compute these subspaces in a structure preserving way. Combined, this yields a numerically
robust γ-iteration for descriptor systems.
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