
Technische Universität Ilmenau
Fakultät für Mathematik und Naturwissenschaften
Arbeitsgruppe Analysis und Systemtheorie

Optimal control of differential-algebraic systems
via Lur’e equations

Masterarbeit zur Erlangung des akademischen Grades

Master of Science

Karen Höhler
Philipp Sauerteig

betreut von
Prof. Dr. Achim Ilchmann

Jun.-Prof. Dr. Karl Worthmann

Ilmenau, den 11. September 2017





i

Kurzfassung
Diese Arbeit ist eine ausführliche Aufbereitung des Papers "The Kalman-Yakubovich-
Popov inequality for differential-algebraic systems"von Timo Reis, Olaf Rendel und
Matthias Voigt aus dem Jahre 2015. Mit diesen Resultaten ist es unser Ziel, das
linear-quadratische Optimalsteuerungsproblem mit differentiell-algebraischen Neben-
bedingungen handhabbar zu machen. Dem Vorgehen liegt das Kalman-Yakubovich-
Popov Lemma zugrunde, welches die positive Semidefinitheit der Popov-Funktion auf
der Imaginärachse mit der Lösbarkeit einer linearen Matrixungleichung verknüpft.
Das Auffinden spezieller Lösungen führt zum Konzept der Lur’e Gleichung, welche
wiederum mithilfe von abnehmenden Unterräumen gewisser Matrixbüschel gelöst
werden kann. Diese Lösungen ermöglichen es, sowohl den optimalen Kostenwert zu
bestimmen als auch die Lösung des Optimalsteuerungsproblems zu charakterisieren.





iii

Abstract
This thesis is an elaboration of the paper "The Kalman-Yakubovich-Popov inequal-
ity for differential-algebraic systems" by Timo Reis, Olaf Rendel, and Matthias Voigt
from 2015. Based on their results, we aim to handle the linear-quadratic optimal con-
trol problem with differential-algebraic constraints. The considered approach uses
the Kalman-Yakubovich-Popov lemma, which relates the positive semi-definiteness
of the Popov function on the imaginary axis to the solvability of a linear matrix in-
equality. Particular solutions of this inequality are provided by the Lur’e equation,
which in turn can be solved via deflating subspaces of certain matrix pencils. These
solutions enable both the calculation of the optimal costs and the characterization
of the solution of the optimal control problem.
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1 Introduction
We consider the linear-quadratic optimal control problem for differential-algebraic
equations (DAEs) based on the paper

T. Reis, O. Rendel, and M. Voigt: The Kalman-Yakubovich-Popov inequality
for differential algebraic systems, Linear Algebra Appl. 485, pp. 153-193, 2015.

The task is to minimize the quadratic cost functional

J (x, u) =

∫ ∞

0

(
x(t)
u(t)

)∗ [
Q S
S∗ R

](
x(t)
u(t)

)
dt

subject to a linear differential-algebraic system

d
d t

(Ex(t)) = Ax(t) +Bu(t)

and further technical constraints. In this context E, A, B are the system matrices
and Q, R, S are weighting matrices.

To handle the optimal control problem the elaborated approach is based on the
rational matrix-valued Popov function

Φ(s) :=

[
(−s̄E − A)−1B

Im

]∗ [
Q S
S∗ R

] [
(sE − A)−1B

Im

]
,

a matrix inequality called Kalman-Yakubovich-Popov inequality, and the so-called
Lur’e equation. These concepts enable us to characterize the cost functional J and
the minimal costs.

Outline of the thesis
To get an overview of the connections of the main results of this thesis, they are
collected and visualized in Figure 1.1.

In Chapter 2 we provide the mathematical preliminaries to understand the follow-
ing chapters. Besides introducing differential-algebraic systems, we explain pencils
and equivalence relations on them. They lead to a special pencil form called the
feedback equivalence form, which is fundamental for later proofs. Based on regular
pencils/systems we present system properties, like behavioural controllability and
behavioural stabilizability. Further, we set them into relation to the well-known
properties for ordinary differential equations (ODEs). To study relations on a cer-
tain subspace we introduce the system space in Section 2.4.
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Figure 1.1: Overview of the main results

Chapter 3 is dedicated to the Kalman-Yakubovich-Popov (KYP) inequality.
We state Theorem 3.2, also known as the KYP lemma for differential-algebraic sys-
tems. It provides a relationship between positive semi-definiteness of the Popov func-
tion on the imaginary axis and the existence of a solution of the KYP inequality.
The theorem is proved at the end of the chapter. For this proof we use the KYP
lemma for ODE systems. To apply this ODE result we relate the solvability of the
KYP inequality of a DAE system to that of an associated ODE system.

Special solutions of the KYP inequality are studied in Chapter 4. They are, loosely
speaking, rank-minimizing and solve the Lur’e equation. Theorem 4.4 provides
a characterization of the solvability of this equation via deflating subspaces of cor-
responding even matrix pencils. To prove Theorem 4.4 we use an equivalent result
for ODEs again, cf. Section 4.3. This result and some further statements about the
existence of solutions are content of Section 4.4. A guideline to construct a solution
of the Lur’e equation via deflating subspaces is given and illustrated by means of an
example in Section 4.6.

Finally, in Chapter 5 we summarize the results to point out the consequences for
the linear-quadratic optimal control problem. We introduce the optimal control
problem and the associated optimal value function that determines the minimal costs
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for each admissible initial value. Together with a solution of the KYP inequality,
Proposition 5.2 provides that the absolute value of this function is finite for every
initial value. A solution of the Lur’e equation provides even more: in Theorem 5.3
an explicit characterization of the optimal value function is derived. If in addition
the solution of the Lur’e equation is stabilizing, Theorem 5.5 yields that the opti-
mal costs can be determined without knowing the optimal solution. Furthermore,
the optimal solution can be characterized by a differential-algebraic boundary value
problem.

Whenever possible we refer to well-known results for ODEs. For this reason, we study
the relation between DAEs and ODEs several times, for instance in Lemma 3.12 and
Lemma 4.15.

Our contribution
To offer graduates and non-experts a self-contained version of [RRV15] we carry out
intermediate steps more explicitly. For instance in the proof of Theorem 4.4 we illus-
trate the proofs structure by means of figures. Furthermore, auxiliary calculations
are elaborated, e.g. the ÊF-neutrality of the (n+m)-dimensional subspace im ŶF and
the proof of (4.31), where only literature was provided.

Moreover, we restructure the given proofs by dividing them into several parts to
guarantee transparency. In particular, by using the notation of premimages we give
the proof of Proposition 2.43 an entirely new structure. Further, we provide some
additional findings that make the topic more accessible, such as Proposition 2.10,
Proposition 2.17, Proposition 2.19, Remark 2.33, Proposition 2.38, Proposition 2.40,
Proposition 2.45, Proposition 3.8 and Lemma 3.9.

Additionally to the contents in [RRV15], we motivate the concept of pencils via
Laplace transformation in Section 2.2. Furthermore, we illustrate the findings with
several examples and elaborate the guidelines to construct a solution of the Lur’e
equation.
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2 Mathematical preliminaries
This chapter is designed to set a fundamental understanding for differential-algebraic
systems (DAE systems). In the first section DAE systems are introduced. Related
on this, the meaning of a solution trajectory and the set of admissible initial values
is explained. Most of the time we do not refer to the DAE system but to the
associated matrix pencil. We illustrate this concept in Section 2.2. A special class
of pencils are regular pencils, on which we place strong focus in this thesis. We
further define an equivalence relation called feedback equivalence, which leads to
a special form of pencils called feedback equivalence form. In Section 2.3 several
system properties for DAE systems are characterized and with them properties of
the feedback equivalence form are described. This form is an important tool for later
proofs. Finally, in Section 2.4 we introduce the system space and discuss some of its
attributes. Based on this space the so-called KYP inequality and the Lur’e equation
are evaluated in the following chapters.

2.1 Introduction to DAE systems
Subject of this work are differential-algebraic systems, also known as descriptor
systems, of the form

d
d t

(Ex(t)) = Ax(t) +Bu(t) (2.1)
where E, A ∈ Kℓ×n and B ∈ Kℓ×m (where K = R or K = C). Often the system is
denoted by [E,A,B]. The function u : R → Km is called input of the system and
x(t) ∈ Kn is called (generalized) state of the system at time t ∈ R.

One could argue that it is not correct to call u input. The common understanding
of "input" is that the components are free variables. However, due to the implicit
nature of (2.1), it might be that some components of u are uniquely determined,
while some others are free. Furthermore, the input function u needs to be sufficiently
smooth. The following example illustrates these facts.

Example 2.1. Consider the differential-algebraic initial value control problem

d
d t

0 1 0
0 0 0
0 0 0

x1(t)
x2(t)
x3(t)

 =

1 0 0
0 1 0
0 0 0

x1(t)
x2(t)
x3(t)

+

1 0 0
0 1 0
0 0 1

u1(t)
u2(t)
u3(t)

 ,

which is equivalent to the decoupled system

ẋ2(t) = x1(t) + u1(t), 0 = x2(t) + u2(t), 0 = u3(t).

We see that x3 is not restricted at all and the condition u3 ≡ 0 holds true. Thus, the
third component of u is no input in the usual sense. Furthermore, u2 = −x2 holds
and hence u̇2 = −x1 − u1, i.e. u2 needs to be differentiable. ♢
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As some components of u might be uniquely determined already, we have to enlarge
the term of solutions. In the context of DAEs, a solution trajectory is a tuple
(x, u) : R → Kn ×Km of locally L2-integrable functions x and u that fulfil

Ex ∈ AC loc(R → Kn) and d
d t

(Ex) ∈ L2
loc(R,Kn) (2.2)

and solve (2.1) for almost all t ∈ R. The set of solution trajectories (x, u) induces
the behaviour of (2.1), which is

B[E,A,B] :=

(x, u) ∈ L2
loc(R,Kn)× L2

loc(R,Km)

∣∣∣∣∣∣
(x, u) fulfils (2.2)
and solves (2.1)

for almost all t ∈ R

 . (2.3)

Studying ordinary differential equations (ODEs) often u ∈ L2
loc(R≥0,Km) is consid-

ered. The extension to the negative time axis in the DAE case works completely
analogous. We will see that the concepts of stabilizability and controllability on R
are generalizations of that on R≥0 (cf. Remark 2.28).

Remark 2.2. For a system [E,A,B] it is sometimes necessary to consider the cor-
responding backward system [−E,A,B]. Their behaviours are related as follows:

(x(·), u(·)) ∈ B[E,A,B] ⇔ (x(−·), u(−·)) ∈ B[−E,A,B].

♢

Based on the behaviour a space containing admissible initial values is defined.

Definition 2.3. For a given system [E,A,B], where E, A ∈ Kℓ×n and B ∈ Kℓ×m,
the space

Vdiff :=
{
x0 ∈ Kn

∣∣ ∃(x, u) ∈ B[E,A,B] such that Ex(0) = Ex0

}
is called space of consistent initial differential variables of [E,A,B]. ♢

Remark 2.4. Consider the ODE case, i.e. E = I. Since for all x0 ∈ Kn the
homogeneous initial value problem

d
d t

x(t) = Ax(t), x(0) = x0

has a solution x ∈ C1(R,Kn), it holds that Vdiff = Kn. ♢

2.2 Pencils and equivalences
Instead of differential-algebraic equations we often study an associated matrix pencil.
To explain the derivation of this concept we need Laplace transformation.
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Definition 2.5 (Laplace transformation). Denote C>α := { s ∈ C | Re(s) > α } for
α ∈ R and Dα(Kn) := { f ∈ L1

loc(R≥0,Kn) | e−α·f(·) ∈ L1(R≥0,Kn) }. Then the
Laplace transformation is defined by

L : Dα(Kn) → { F : C>α → Cn } ,

f(·) 7→
(
s 7→ L(f)(s) :=

∫ ∞

0

f(t)e−stdt

)
.

♢

Laplace transformation provides some useful properties.

Lemma 2.6. The following statements hold true:

(i) The Laplace transformation L is linear.

(ii) If f ∈ Dα(Kn) is differentiable and f ′ denotes its derivative, it holds that

L(f ′)(s) = sL(f)(s)− f(0), Re s > α.

Proof: See [LR14, Appendix A.4].

Laplace transformation enables us to deduce matrix pencils from a DAE system.
Consider system (2.1) and assume that x and u are Laplace transformable. Then
we get sE L(x)(s)− Ex0 = AL(x)(s) +B L(u)(s) and thus

(sE − A)L(x)(s) = B L(u)(s) + Ex0.

Define functions x̂(s) := L(x(·))(s) and û(s) := L(u(·))(s) and set x0 = 0. Then it
holds (sE − A) x̂(s) = B û(s), which can be transformed into

[
sE − A −B

](x̂(s)
û(s)

)
= 0.

To make statements on properties of DAE systems we often refer to their algebraic
characterizations. For that reason it is convenient to study associated matrix pencils.
This work actually deals with matrices of the form

[
sE − A −B

]
instead of the

associated DAEs. In case that no input is considered, meaning a homogeneous
system, the matrix reduces to [sE − A]. Those matrices lead to the concept of
pencils. A (matrix) pencil is a matrix polynomial of degree at most one. They can
be divided into two classes.

Definition 2.7. A pencil sE − A ∈ K[s]ℓ×n is called

(i) regular if ℓ = n and rkK(s)(sE − A) = n,

(ii) singular if ℓ ̸= n or rkK(s)(sE − A) < n.
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The DAE system (2.1) is called regular (singular) if, and only if, the corresponding
matrix pencil is regular (singular). Further, a complex number λ ∈ C is called
(generalized) eigenvalue of the pencil sE − A if

rk(λE − A) < rkK(s)(sE − A).

If E has one or more eigenvalues λ = 0, then the pencil is said to have one or more
eigenvalues at infinity. ♢

Note that in the ODE case, i.e. E = I, there exist no eigenvalues at infinity.

Remark 2.8. As we use different types of ranks we give a short overview on our
notions.

(i) The rank, denoted by rk, of a matrix H ∈ Km×k is defined by the number of
linear independent rows/columns, resp.

(ii) The rank rkK(s) of H(s) ∈ K(s)m×k over the field of rational functions is
defined analogously to (i), where linear independence is considered with respect
to K(s).

(iii) In some papers the rank rkK(s) is called normalrank. We use this expression
when referring to such literature.

(iv) For regular pencils the condition rkK(s)(sE − A) = n can be proved by

det(sE − A) ∈ K[s]\{0K[s]}.

Therefore, these conditions are used equivalently. Moreover, for a polynomial
matrix H(s) ∈ K[s]ℓ×n the equality

rkK(s) H(s) = rkK[s] H(s)

holds, whereby rkK[s]H(s) := maxλ∈K rkH(λ). ♢

On the set of pencils
{
sE − A

∣∣ E,A ∈ Kℓ×n
}

we define an equivalence relation.
Thus, it suffices to show properties for one representative of each equivalence class.

Definition 2.9. Two pencils sE1−A1, sE2−A2 ∈ K[s]ℓ×n are called pencil equivalent
if

∃W ∈ Glℓ(K) ∃T ∈ Gln(K) : W (sE1 − A1)T = sE2 − A2.

We write sE1 − A1 ≃ sE2 − A2 or if required sE1 − A1

W,T
≃ sE2 − A2. ♢

Proposition 2.10. The relation ≃ defined above is an equivalence relation on the
set of pencils

{
sE − A

∣∣ E,A ∈ Kℓ×n
}

.
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Proof: Reflexivity is clear for W = Iℓ and T = In. Symmetry is also clear because
sE1 − A1

W,T
≃ sE2 − A2 if, and only if, sE2 − A2

W−1,T−1

≃ sE1 − A1. Transitivity
holds, as for sE1 −A1

W1,T1≃ sE2 −A2 and sE2 −A2

W2,T2≃ sE3 −A3 it is obvious that
sE1 − A1

W2W1,T1T2≃ sE3 − A3.

Remark 2.11. Regularity is invariant under pencil equivalence. This statement
can be verified easily: if sE1 − A1

W,T
≃ sE2 − A2 for W, T ∈ Gln(R) and sE1 − A1 is

regular, then we have

det(sE1 − A2) = det(W (sE1 − A1)T ) = det(W ) det(sE1 − A1) det(T ) ̸= 0.

In other words: (sE1 − A1) is regular if, and only if, (sE2 − A2) is regular. ♢
In each equivalence class of a regular pencil sE − A ∈ K[s]n×n there is one with a
simple form, where the pencil decomposes into two parts: an ODE system and a
system of linear (algebraic) equations.

Definition 2.12. A pencil sE−A ∈ K[s]n×n is said to be in quasi Weierstraß form
(QWF) if, and only if, it has the following structure:

sE − A = s

[
Iñ1 0
0 E22

]
−
[
A11 0
0 Iñ2

]
=

[
sIñ1 − A11 0

0 sE22 − Iñ2

]
, (2.4)

where E22 ∈ Kñ2×ñ2 is nilpotent, A11 ∈ Kñ1×ñ1 , and n = ñ1+ ñ2 with ñ1, ñ2 ∈ N0. ♢
Remark 2.13. In [BIT12, Remark 2.7 (ii)] it is shown how the matrices A11 and E22

can be calculated by using Wong sequences. Furthermore, [BIT12, Remark 2.7 (iii)]
provides that A11 and E22 are unique up to similarity. ♢
The quasi Weierstraß form with the nilpotent matrix E22 motivate the following
definition.

Definition 2.14. The index of a regular pencil sE − A is defined by

ind(sE − A) =

{
0, if E is regular
nil indE22, else

,

where nil indH := min
{
k ∈ N

∣∣ Hk = 0
}

denotes the nilpotency index of a nilpo-
tent matrix H ∈ Kℓ×ℓ, ℓ ∈ N. ♢
Between the QWF (2.4) and regularity of a pencil there is a crucial connection, more
precisely: equivalence to a pencil in QWF characterizes regularity.

Theorem 2.15. Let sE − A ∈ K[s]n×n. Then it holds that

sE − A is regular ⇔ sE − A ≃ s

[
Iñ1 0
0 N

]
−
[
J 0
0 Iñ2

]
in QWF (2.4),

where ñ1 is unique.



10 2 Mathematical preliminaries

Proof: In [BIT12, Theorem 2.6] it is proved that regularity of a pencil implies the
existence of an equivalent pencil in QWF (2.4) with unique ñ1.

Besides pencil equivalence we introduce further equivalence relations, which include
the input. Based on feedback equivalence later we will show that in every equivalence
class there exists a pencil in feedback-equivalence form. This pencil has a "simple"
structure and is used in nearly every proof of the following chapters.

Definition 2.16. Let [E1, A1, B1], [E2, A2, B2] ∈ Kn×n×Kn×n×Kn×m be given such
that sE1 − A1 and sE2 − A2 are regular. The systems are called

(i) system equivalent if there exist W,T ∈ Gln(K) such that

W
[
sE1 − A1 B1

] [T 0
0 Im

]
=
[
sE2 − A2 B2

]
.

We write [E1, A1, B1]
W,T
≃se [E2, A2, B2].

(ii) feedback equivalent if there exist W,T ∈ Gln(K) and F ∈ Km×n such that

W
[
sE1 − A1 B1

] [ T 0
−FT Im

]
=
[
sE2 − A2 B2

]
. (2.5)

We write [E1, A1, B1]
W,T,F
≃fe [E2, A2, B2]. ♢

Proposition 2.17. System and feedback equivalence are equivalence relations.

Proof: To prove these two equivalence relations it suffices to show that feedback
equivalence is an equivalence relation. The statement for system equivalence then
follows by choosing F = 0m×n.
Let regular systems [E1, A1, B1], [E2, A2, B2] ∈ Kn×n × Kn×n × Kn×m be feedback
equivalent. According to (2.5) there exist W,T ∈ Gln(K), F ∈ Km×n such that[

W (sE1 − (A1 +B1F ))T WB1

]
=
[
sE2 − A2 B2

]
.

Reflexivity is clear for matrices W = In, T = In and F = 0m×n. For symmetry we
have [E1, A1, B1]

W,T,F
≃fe [E2, A2, B2]. Starting from equation (2.5), inverting matrices

yields
[
sE1 − A1 B1

]
= W−1

[
sE2 − A2 B2

] [ T−1 0
(FT−1)T Im

]
. Thereby for matri-

ces W̃ = W−1, T̃ = T−1, F̃ = −FT−1 the equivalence [E2, A2, B2]
W̃ ,T̃ ,F̃
≃fe [E1, A1, B1]

holds. With [E1, A1, B1]
W1,T1,F1≃fe [E2, A2, B2] and [E2, A2, B2]

W2,T2,F2≃fe [E3, A3, B3]
transitivity can be verified through[

sE3 − A3 B3

]
= W2

[
sE2 − A2 B2

] [ T2 0
−F2T2

]
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= W2W1

[
sE1 − A1 B1

] [ T1 0
−F1T1 Im

] [
T2 0

−F2T2 Im

]
= W2W1

[
sE1 − A1 B1

] [ T1T2 0
−(F1 + F2T

−1
1 )T1T2 Im

]
.

Using matrices W3 = W2W1, T3 = T1T2 ∈ Gln(K) and F3 = F1 + F2T
−1
1 ∈ Km×n

yields [E1, A1, B1]
W3,T3,F3≃fe [E3, A3, B3].

Remark 2.18. In general, regularity is not invariant under feedback equivalence.
For example, let the regular system [E,A,B] ∈ Kn×n ×Kn×n ×Kn×m with rkE < n
and rkB = n be given. Then the transformation matrices W,T ∈ Gln(K) and
F := −B+A, where B+ denotes the right inverse of B, lead to

W (A+BF )T = W (A−BB+A)T = 0

and thus

det(sWET −W (A+BF )T ) = det(sWET ) = det(sE) = 0.

Nevertheless, regularity of [E,A,B] ∈ Kn×n × Kn×n × Kn×m and the additional
assumption on sE − (A + BF ) to be regular guarantee regularity of the system
[WET,W (A+BF )T,WB]. ♢

We will often consider the solution behaviour and the space of consistent initial
differential values. As it is easier to consider pencils with a "simple" structure, it is
necessary to show the connections between the original behaviour and the behaviour
of the system/feedback equivalent pencil (cf. [Ber14, p. 108]).

Proposition 2.19. Let [E1, A1, B1], [E2, A2, B2] ∈ Kn×n ×Kn×n ×Kn×m be regular.

(a) If [E1, A1, B1]
W,T
≃se [E2, A2, B2], then it holds that

(a1) (Tx, u) ∈ B[E1,A1,B1] ⇔ (x, u) ∈ B[E2,A2,B2] and

(a2) T−1V [E1,A1,B1]
diff = V [E2,A2,B2]

diff .

(b) If [E1, A1, B1]
W,T,F
≃fe [E2, A2, B2], then it holds that

(b1) (Tx, FTx+ u) ∈ B[E1,A1,B1] ⇔ (x, u) ∈ B[E2,A2,B2] and

(b2) T−1V [E1,A1,B1]
diff = V [E2,A2,B2]

diff .

Proof: Statement (a) considers system equivalent systems, whereas (b) contains
feedback equivalent systems. Pairwise, the proofs run analogously. As feedback
equivalence is of greater interest in this work, we prove the implications in (b).
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(b1) Let [E1, A1, B1]
W,T,F
≃fe [E2, A2, B2], i.e.

[E2, A2, B2] = [WE1T,W (A1 +B1F )T,WB1]. (2.6)

To show the equivalence the proof is split into two parts.
(A) Let (Tx, FTx+ u) ∈ B[E1,A1,B1] be given, i.e.

(A1) (Tx, FTx+ u) ∈ L2
loc(R,Kn)× L2

loc(R,Km),
(A2) d

d t
(E1 Tx) ∈ L2

loc(R,Kn) and

(A3) d
d t

(E1 Tx)
a.e.
= A1Tx+B1(FTx+ u).

Since T is regular and according to (A1) the function Tx is locally L2, it holds
that x ∈ L2

loc(R,Kn). Even u is in L2
loc(R,Kn) due to linearity and (A1). Be-

cause of (A2) together with regularity of W we obtain that d
d t

(WE1 Tx) is in
L2

loc(R,Kn). From (A3) it can be inferred that (x, u) fulfils the DAE belonging
to the system [WE1T,W (A1 + B1F )T,WB1]. Thus, applying (2.6), we have
(x, u) ∈ B[E2,A2,B2].

(B) Let (x, u) ∈ B[E2,A2,B2] be given, i.e.

(B1) (x, u) ∈ L2
loc(R,Kn)× L2

loc(R,Km),
(B2) d

d t
(WE1T x) ∈ L2

loc(R,Kn) and

(B3) d
d t

(WE1T x)
a.e.
= W (A1 +B1F )Tx+WB1u = WA1Tx+WB1(FTx+ u)

hold. (B1) and linearity yield (Tx, FTx+u) ∈ L2
loc(R,Kn)×L2

loc(R,Km). Since
(B2) holds and W is regular the function d

d t
(E1T x) has to be in L2

loc(R,Kn).
Multiplying the inverse of W to the right side of (B3) we obtain

d
d t

(E1Tx)
a.e.
= A1(Tx) +B1(FTx+ u),

which means (Tx, FTx+ u) fulfils the DAE d
d t

(E1x̃) = A1x̃+B1ũ. Thus, we
conclude (Tx, FTx+ u) ∈ B[E1,A1,B1].

(b2) Let x̂ ∈ T−1V [E1,A1,B1]
diff . There exists some x0 ∈ V [E1,A1,B1]

diff with x̂ = T−1x0.
In other words, there exists (x, u) ∈ B[E1,A1,B1] such that E1x(0) = E1x0 and
x̂ = T−1x0. Applying (ii) first and using the regularity of W , leads to

∃ (x, u) ∈ B[E2,A2,B2] : WE1Tx(0) = WE1x0 and x̂ = T−1x0.

According to the definition of feedback equivalence it is E2 = WE1T and
we obtain E2x(0) = E2T

−1x0 and x̂ = T−1x0 for a tupel (x, u) ∈ B[E2,A2,B2].
Substituting T−1x0 with x̂ leads to x̂ ∈ V [E2,A2,B2]

diff . Therefore, the proof is
completed.
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Remark 2.20. An equivalent form of statement (ii) in Proposition 2.19 is

(x, u) ∈ B[E1,A1,B1] ⇔ (T−1x, u− Fx) ∈ B[E2,A2,B2].

This can be verified easily by substitutions x̃ = Tx and ũ = FTx+ u. ♢

Previously, we considered the QWF (2.4), which is a simple structure of pencils
associated with homogeneous systems. Analogously, there exists a simple form for
inhomogeneous systems, where again the pencil is decomposed into its ODE part
and an algebraic part (cf. QWF). Due to the influence of the input the algebraic
part is further divided into two parts, which provides additional information about
the structure of the pencil.

Definition 2.21. The system [E,A,B] with E,A ∈ Kn×n and B ∈ Kn×m is said to
be in feedback equivalence form (FEF) if

[
sE − A B

]
=

sIn1 − A11 0 0 B1

0 −In2 sE23 B2

0 0 sE33 − In3 0

 , (2.7)

where E33 ∈ Kn3×n3 is nilpotent. ♢

Later we will show that this form can be derived by feedback equivalence transfor-
mation for every regular pencil.

Remark 2.22. Note that the pencil sE − A of a system [E,A,B] in FEF (2.7) is
regular: Since E33 is nilpotent, it holds

det(sE − A) = (−1)n2+n3 det(sIn1 − A11) ̸= 0K[s].

♢

To ensure the existence of some solution of DAE (2.1) with regard to the optimal con-
trol problem (see Chapter 5) some additional assumptions are required. In [KM06,
Theorem 2.28] it is shown that for a sufficiently smooth inhomogeneity f regularity
of the pencil sE − A suffices to guarantee the existence and uniqueness of some x
such that

d
d t

(Ex(t)) = Ax(t) + f(t) (2.8)

holds.

Theorem 2.23. Let E,A ∈ Kn×n commute, i.e.

EA = AE, (2.9)

and satisfy
kerE ∩ kerA = ∅. (2.10)
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Furthermore, let f ∈ Cν(R,Kn) with ν = ind (sE − A) and t0 ∈ R be given. Then
x ∈ C1(R,Cn) defined by

x(t) =

∫ t

t0

eE
DA(t−τ)EDf(τ) dτ − (I − EDE)

ν−1∑
i=0

(EAD)iADf (i)(t)

is a particular solution of (2.8).

Remark 2.24. The theorem above requires some explanation.

(a) The matrix ED denotes the so-called Drazin inverse of E, which is uniquely
determined (see [KM06, Theorem 2.19]).

(b) "Using a nice trick due to Campbell (see [Cam80]), the general case (i.e.,
without (2.9)) can be easily reduced to the special case."[KM06, page 32]

(c) Note that for commuting matrices E and A, condition (2.10) is equivalent to
the regularity of the pencil sE − A (cf. [KM06]). ♢

For this purpose we examine regular systems only. Starting from now we merely
consider systems of the kind

d
d t

(Ex(t)) = Ax(t) +Bu(t),

where E, A ∈ Kn×n and B ∈ Kn×m such that the
pencil sE − A ∈ K[s]n×n is regular.

Notion: [E,A,B] ∈ Σn,m(K).

(2.11)

2.3 Controllability and stabilizability
Controllability and stabilizability of DAE systems are important concepts for this
thesis. As the considered system has a different structure, the concepts differ slightly
from those we already know for ODEs. At first, we state the definitions for DAE sys-
tems and then, we mention how they correspond to ODE systems. With these con-
cepts we are able to show that FEF can be derived through feedback equivalence
transformation. Furthermore, we prove important statements for FEF.

Definition 2.25. A system [E,A,B] ∈ Σn,m(K) with the space of consistent initial
differential variables Vdiff is called



2.3 Controllability and stabilizability 15

(a) impulse controllable if

∀x0 ∈ Kn ∃ (x, u) ∈ B[E,A,B] with Ex(0) = Ex0,

which equals Vdiff = Kn;

(b) behaviourally stabilizable if

∀ (x, u) ∈ B[E,A,B] ∃ (x̂, û) ∈ B[E,A,B] :

(x, u) |(−∞,0)= (x̂, û) |(−∞,0) and lim
t→∞

ess supτ>t∥(x̂(τ), û(τ))∥ = 0;

(c) behaviourally anti-stabilizable if

∀ (x, u) ∈ B[E,A,B] ∃ (x̂, û) ∈ B[E,A,B] :

(x, u) |(0,∞)= (x̂, û) |(0,∞) and lim
t→−∞

ess supτ<t∥(x̂(τ), û(τ))∥ = 0;

(d) behaviourally controllable if

∀ (x1, u1), (x2, u2) ∈ B[E,A,B] ∃T > 0, (x, u) ∈ B[E,A,B]

with (x(t), u(t)) =

{
(x1(t), u1(t)) for t < 0,

(x2(t), u2(t)) for t > T.

♢

Remark 2.26. Let a measure space (X ,L, µ) and a Banach space Y be given. Note
that the essential supremum of a measurable function f : X → Y on a subset X ⊂ X
is defined by

ess supx∈X∥f(x)∥ := inf
N⊆X,µ(N)=0

sup
x∈X\N

∥f(x)∥.

Considering Definition 2.25 (b), (c) we have X = R, Y = Kn+m and µ = λ, the
Lebesgue measure. ♢

The definitions in Definition 2.25 are analytical, but there are algebraic characteri-
zations as well. Actually, these are so-called Hautus criteria, which will turn out to
be quite useful later.

Proposition 2.27. Let the system [E,A,B] ∈ Σn,m(K) be given and r = rk(E). Let
S∞ ∈ Kn×(n−r) be a matrix with im(S∞) = ker(E). Then [E,A,B] is

(a) impulse controllable ⇔ rk
[
E AS∞ B

]
= n,

(b) behaviourally stabilizable ⇔ ∀λ ∈ C+ : rk
[
λE − A B

]
= n,

(c) behaviourally anti-stabilizable ⇔ ∀λ ∈ C− : rk
[
λE − A B

]
= n,

(d) behaviourally controllable ⇔ ∀λ ∈ C : rk
[
λE − A B

]
= n.



16 2 Mathematical preliminaries

We need these characterizations, but they are only a technical tool for later proofs.
Therefore, we simply state them here and refer to the literature for further infor-
mation and proofs. Berger proves these criteria of Hautus type in [Ber14, Sec. 3.3]
in a more general fashion. In Remark 3.3.5 he discusses the criterion of impulse
controllability, while Remark 3.3.6 contains behavioural controllability. The charac-
terization of behavioural controllability is shown in [PW97, Theorem 5.2.10] as well.
So is behavioural stabilizability in [PW97, Theorem 5.2.30]. The equivalence for
behavioural anti-stabilizability then follows easily through considering the backward
system.

Remark 2.28. Compare the criteria (b), (c), and (d) in Proposition 2.27 with the
well-known Hautus criteria for ODEs. For E = I it is clear that behavioural control-
lability and behavioural (anti-)stabilizability reduce to the concepts of controllability
and (anti-)stabilizability. ♢

Remark 2.29. Proposition 2.27 yields that [E,A,B] is behaviourally stabilizable
if, and only if, the backward system [−E,A,B] is behaviourally anti-stabilizable. ♢

By Proposition 2.27 (d) a system [I, A,B] ∈ Σn,m(K) obviously is impulse control-
lable, i.e. Vdiff = Kn. Note that this does not hold true in general.

Example 2.30. Consider the system [E,A,B] with n = 3, m = 1 and system
matrices

E =

1 0 0
0 1 0
0 0 0

 , A =

0 0 1
0 0 0
0 1 0

 , and B =

01
0

 ,

which yields
ẋ1

a.e.
= x3, x2

a.e.
= 0, and ẋ2

a.e.
= u

for any solution (x, u) ∈ B[E,A,B].
First, note that for S∞ =

[
0 0 1

]⊤ we obtain

rk
[
E AS∞ B

]
= rk

1 0 0 1 0
0 1 0 0 1
0 0 0 0 0

 = 2 < n,

i.e. [E,A,B] is not impulse controllable.
However, x1 ∈ AC(R,K) is arbitrary and x3 ∈ L2

loc(R,K) with x3
a.e.
= ẋ1. Further, it

is x2 ∈ AC(R,K) with x2
a.e.
= 0, i.e. x2 = 0. Hence, u ∈ L2

loc(R,K) with u
a.e.
= 0 holds

true. Therefore, we conclude Vdiff = K× {0} ×K. ♢

Based on the algebraic characterizations we define uncontrollable modes and intro-
duce the concept of behavioural sign-controllability, which is a purely linear algebraic
condition. It does not have an interpretation in terms of the behaviour B[E,A,B]. We
use this concept later for the KYP lemma, see 3.2.
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Definition 2.31. Let the system [E,A,B] ∈ Σn,m(K) be given.

(a) A number λ ∈ C is called an uncontrollable mode of the system [E,A,B] if

rk
[
λE − A B

]
< n.

(b) The system [E,A,B] is called behavioural sign-controllable if for all λ ∈ C it
holds:

rk
[
λE − A B

]
= n or rk

[
−λ̄E − A B

]
= n.

♢

Example 2.32. Consider the DAE system (2.1) with system matrices

E =

[
1 0
0 0

]
, A =

[
1 0
1 1

]
and B =

[
0
1

]
,

where n = 2 and m = 1. Since for λ1 = 1 it holds that

rk
[
λ1E − A B

]
= rk

[
0 0 0
−1 −1 1

]
= 1 < 2 = n,

λ1 is an uncontrollable mode of the system [E,A,B]. Hence, [E,A,B] is not be-
haviourally controllable. However, due to

rk
[
−λ̄1E − A B

]
= rk

[
−2 0 0
−1 −1 1

]
= 2 = n

and
rk
[
λE − A B

]
= 2 = n ∀λ ∈ C \ {1}

the system is behaviourally sign-controllable. ♢

Remark 2.33. The system properties impulse controllability, behavioural (anti-)
stabilizability, behavioural (sign-)controllability, and the set of uncontrollable modes
are invariant under feedback equivalence. This follows from Proposition 2.27:

(i) Impulse controllability: Let [E1, A1, B1]
W,T,F
≃fe [E2, A2, B2] and S∞,1 ∈ Kn×(n−r)

with imS∞,1 = kerE1 and S∞,2 ∈ Kn×(n−r) with imS∞,2 = kerE2 be given.
At first, we show that imS∞,2 = im(T−1S∞,1) holds. Due to E2 = WE1T with
W ∈ Gln(K) we have kerE2 = kerWE1T = kerE1T . Thus, it is

x ∈ kerE2 ⇔ x ∈ kerE1T ⇔ Tx ∈ kerE1

⇔ Tx = S∞,1y for some y ∈ Kn−r

⇔ x = T−1S∞,1y ∈ im(T−1S∞,1).
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Hence, we obtain

n = rk
[
E1 A1S∞1 B1

]
⇔ n = rk

W
[
E1 A1S∞,1 B1

] T 0 0
0 In−r 0
0 FTS∞,2 Im


= rk

[
WE1T W (A1S∞,1 +B1FTS∞,2) WB1

]
= rk

[
WE1T W (A1TS∞,2 +B1FTS∞,2) WB1

]
= rk

[
E2 A2S∞,2 B2

]
.

(ii) From

rk
[
λE − A B

]
= rkW

[
λE − A B

] [ T 0
FT Im

]
it follows invariance of behavioural (anti-)stabilizability, behavioural (sign-)
controllability and the set of uncontrollable modes. ♢

Feedback equivalence, which we introduced in Definition 2.16, enables us to show
some statements on FEF (2.7).

Proposition 2.34. Let [E,A,B] ∈ Σn,m(K) be given. Then there exist matrices
W, T ∈ Gln(K) and F ∈ Km×n such that

W
[
sE − A B

] [ T 0
FT Im

]
=

sIn1 − A11 0 0 B1

0 −In2 sE23 B2

0 0 sE33 − In3 0

 , (2.12)

where E33 ∈ Kn3×n3 is nilpotent, i.e. [WET,W (A + BF )T,WB] is in FEF (2.7).
Moreover, n1 is unique.
Furthermore, the following statements hold true:

(a) (x, u) ∈ B[E,A,B] ⇔ (x1, u− Fx) ∈ B[In1 ,A11,B1], where x = T

 x1

B2(Fx− u)
0

 .

(b) The space of consistent initial differential variables fulfils

Vdiff = T

(
Kn1+n2 × ker

[
E23

E33

])
.

(c) It holds that

rk
[
λE − A B

]
= n2 + n3 + rk

[
λIn1 − A11 B1

]
∀λ ∈ C.

In particular, λ ∈ C is an uncontrollable mode of [E,A,B] if, and only if, λ is
an uncontrollable mode of [In1 , A11, B1].
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(d) If [E,A,B] is impulse controllable, then W , T , and F can be chosen such that
n3 = 0.

To prove the existence of matrices leading to FEF, we use a result for system equiv-
alence. Similar to FEF, there exists a simple form. This result is provided in [IR17,
Proposition 2.9].

Definition 2.35. A system [E,A,B] ∈ Σn,m(K) is said to be in system equivalence
form (SEF) if the pencil has the structure[

sE − A B
]
=

[
sE11 − A11 sE12 − A12 B1

0 sN − Ik 0

]
, (2.13)

where N ∈ Kk×k is nilpotent and [E11, A11, B1] is impulse controllable. ♢
Proposition 2.36. Let [E,A,B] ∈ Σn,m(K) be given. Then there exist matrices
W,T ∈ Gln(K) such that the system [WET,WAT,WB] is in SEF (2.13), i.e.

W
[
sE − A B

] [T 0
0 Im

]
=

[
sE11 − A11 sE12 − A12 B1

0 sN − Ik 0

]
,

where N ∈ Kk×k is nilpotent.

Proof of Proposition 2.34: In a first step we show the existence of some matri-
ces W,T ∈ Gln(K) and F ∈ Km×n such that (2.12) holds. According to [IR17,
Prop. 2.12] there exist some matrices Ŵ , T̂ ∈ Gln(K) and F̂ ∈ Km×n fulfilling

Ŵ
[
sE − A B

] [ T̂ 0

−F̂ T̂ Im

]
=

sIn1 − A11 0 sE13 − A13 B1

0 −In2 sE23 − A23 B2

0 0 sN − In3 0

 (2.14)

for some nilpotent N ∈ Kn3×n3 . To achieve (2.12), a way to eliminate E13, A13 and
A23 is shown. Then, in a second step, statements (a) to (d) are proved.

Step 1.1: By Proposition 2.36, for [E,A,B] ∈ Σn,m(K) there exist W1, T1 ∈ Gln(K)
such that

W1(sE − A)T1 =

[
sẼ11 − Ã11 sẼ12 − Ã12

0 sN − In3

]
, WB =

[
B̃1

0

]
, (2.15)

where [Ẽ11, Ã11, B̃1] is impulse controllable and N ∈ Kn3×n3 is nilpotent. According
to [BR13, Theorem 5.2], the system [Ẽ11, Ã11, B̃1] is impulse controllable if, and only
if, there exists F̃1 ∈ Km×n such that the index of sẼ11−(Ã11+B̃1F̃1) is at most one. In
case of ind(sẼ11−(Ã11+B̃1F̃1)) = 0, by definition of index it holds det(Ẽ11) ̸= 0 and
therefore (sẼ11−(Ã11+B̃1F̃1)) ≃se (sI−Ā). In case of ind(sẼ11−(Ã11+B̃1F̃1)) = 1
we know accordingly to QWF that

(sẼ11 − (Ã11 + B̃1F̃1)) ≃se

[
sI − J 0

0 sN − I

]
,
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where N is nilpotent with ind(N) = 1, which equals N = 0. Note that in both cases
mentioned above n1 is unique.
Summarized, due to system equivalence there exist some W̃1, T̃1 ∈ Gln−n3(K) such
that

W̃1(sẼ11 − (Ã11 + B̃1F̃1))T̃1 =

[
sIn1 − Ā 0

0 −In2

]
.

Finally T̂ := T1T̃1, Ŵ := W̃1W1 and F̂ := F̃1T
−1
1 yield (2.14).

Step 1.2: After we arrived at (2.14), we still need to show that E13, A13 and A23

can be eliminated through fitting transformation matrices. In [BT13, Corollary 2.3],
Berger and Trenn illustrate the existence of such matrices, where they use a nor-
mal form called quasi-Kronecker form. Therefore, there exist some matrices W2,
T2 ∈ Gln(K) such that W2ŴB = ŴB and the matrices E13, A13 are eliminated in
W2Ŵ (sE − (A + BF̂ ))T̂ T2. Further, the remaining matrix A23 can be eliminated
by a transformation of W2Ŵ (sE − (A+BF̂ ))T̂ T2 with T3 ∈ Gln(K) from the right.
Summarized, W = W2Ŵ , T = T̂ T2T3, and F = F̂ yield (2.12).

Step 2: Now we prove the statements (a) to (d). Let [E,A,B] ∈ Σn,m(K) be given

and let [E,A,B]
W,T,F
≃fe [EF, AF, BF].

(a) By using Remark 2.20 and x = T

 x1

B2(Fx− u)
0

 we obtain

(x, u) ∈ B[E,A,B] ⇔

 x1

B2(Fx− u)
0

 , u− Fx

 ∈ B[EF,AF,BF].

Calculating straight forward with the matrices EF, AF, BF and using the
definition of the behaviour as in (2.3) then leads to

(x, u) ∈ B[E,A,B] ⇔ ẋ1 ∈ L2
loc(R,Kn) and ẋ1 = A11x1 +B1(u− Fx),

which is (x1, u− Fx) ∈ B[In1 ,A11,B1].

(b) This assertion is a direct consequence of (a).

(c) Since E33 is nilpotent, we have rk(λE33 − In3) = n3 for all λ ∈ C. Therefore,

rk
[
λE − A B

]
= rk

sIn1 − A11 0 0 B1

0 −In2 sE23 B2

0 0 sE33 − In3 0


= n2 + n3 + rk

[
λIn1 − A11 B1

]
∀λ ∈ C.
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(d) Let [E,A,B] ∈ Σn,m(K) be impulse controllable. Then the system already is
in form of (2.15), where n3 = 0. This completes the proof.

In the following chapters we study regular pencils with an arbitrary structure. In
proofs we refer to pencils in FEF. Therefore, we switch between arbitrary pencils
and FEF quite often. To make clear whether we talk about an arbitrary pencil or
one in FEF, we use a special notation with an index F for a system in FEF.

Computing the left side of (2.12) leads to a polynomial matrix of the form[
sWE1T −W (A1 +B1F )T WB1

]
.

Defining matrices

EF = WE1T, AF = W (A1 +B1F )T, BF = WB1

and using equation (2.12), we obtain

[
sEF − AF BF

]
=

sIn1 − A11 0 0 B1

0 −In2 sE23 B2

0 0 sE33 − In3 0

 .

In other words, the matrices of the system [EF, AF, BF] in FEF (2.7) have the fol-
lowing structure:

EF =

In1 0 0
0 0 E23

0 0 E33

 , AF =

A11 0 0
0 In2 0
0 0 In3

 , BF =

B1

B2

0

 , (2.16)

where E33 is nilpotent.

Remark 2.37. Let [E,A,B] ∈ Σn,m(K) in FEF (2.7) be given. Then [E,A,B]
is behaviourally stabilizable (anti-stabilizable, sign-controllable) if, and only if, the
ODE system [In1 , A11, B1] is stabilizable (anti-stabilizable, sign-controllable). This
result follows from Proposition 2.34 (c) together with the algebraic characterisations
in Proposition 2.27 and Remark 2.28. ♢

2.4 The system space
Previously we introduced the behaviour, which is the set that collects the solu-
tion trajectories (x, u) ∈ L2

loc(R,Kn) × L2
loc(R,Km) of a system. This section is

dedicated to the system space, which is a subspace containing vectors of the form
(x(t)⊤, u(t)⊤)⊤ ∈ Kn+m instead of functions. Based on this space we will consider
linear matrix inequalities/equations in the following chapters.
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Proposition 2.38. Let [E,A,B] ∈ Σn,m(K) be given. Then there exists a subspace
V∗ ⊆ Kn+m such that

∀ (x, u) ∈ B[E,A,B] and for almost all t ∈ R :

(
x(t)
u(t)

)
∈ V∗ (2.17)

and for all subspaces V ⊆ Kn+m fulfilling (2.17) it holds V∗ ⊆ V.

Proof: Define

F :=
{
V ⊆ Kn+m

∣∣ V is a linear subspace of Kn+m and fulfils (2.17)
}
.

Since Kn+m ∈ F and hence F is non-empty, it suffices to show that F has a minimal
element.
Let V1,V2 ∈ F be given. Then V1 ∩ V2 is a linear subspace of Kn+m. Furthermore,
for all (x, u) ∈ B[E,A,B] it holds that (x(t)⊤, u(t)⊤)⊤ ∈ V1 for almost all t ∈ R and
(x(t)⊤, u(t)⊤)⊤ ∈ V2 for almost all t ∈ R. Since the union of two null sets is a null
set, we see that (x(t)⊤, u(t)⊤)⊤ ∈ V1 ∩ V2 for almost all t ∈ R. Thus, (F ,∩) is a
commutative semi-group, where all elements are idempotent, i.e. V ∩ V = V for all
V ∈ F .
Since F ⊆ Kn+m is non-empty, there exists some V∗ ∈ F such that dimV∗ ≤ dimV
for all V ∈ F . Furthermore, for all V ∈ F it holds that V ∩ V∗ ∈ F and hence

dimV∗ ≤ dim(V ∩ V∗) ≤ dimV∗,

i.e. dim(V ∩ V∗) = dimV∗. Due to V ∩ V∗ ⊆ V∗ this implies V ∩ V∗ = V∗ and thus
V∗ ⊆ V for all V ∈ F , i.e. V∗ is a minimal element of F .

Definition 2.39. For [E,A,B] ∈ Σn,m(K) the smallest subspace Vsys ⊆ Kn+m such
that (2.17) holds, is called system space. ♢

The system space of a system in FEF (2.7) can be characterized as follows.

Proposition 2.40. Let [E,A,B] ∈ Σn,m(K) in FEF (2.7) be given. Then the system
space fulfils

Vsys = ker

[
0 In2 0 B2

0 0 In3 0

]
. (2.18)

Proof: Since [E,A,B] is in FEF (2.7), Proposition 2.34 (a) yields

(x, u) ∈ B[E,A,B] ⇔ (x1, u) ∈ B[In1 ,A11,B1] with x =

 x1

−B2u
0

 ,

i.e.

B[E,A,B] =


 x1

−B2u
0

 , u

 ∣∣∣∣∣∣ (x1, u) ∈ B[In1 ,A11,B1]

 .
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Thus, the definition of Vsys provides

Vsys =




x1

−B2u
0
u

 ∈ Kn+m

∣∣∣∣∣∣∣∣ x1 ∈ Kn1 , u ∈ Km


=

{(
x
u

)
∈ Kn+m

∣∣∣∣ (x2 +B2u
x3

)
= 0

}
= ker

[
0 In2 0 B2

0 0 In3 0

]
,

which completes the proof.

In Proposition 2.19 we related the behaviours of two systems, which are feedback
equivalent. There is a relation between the system spaces of two feedback equivalent
systems as well. This relation is treated in the following proposition.

Proposition 2.41. Let [E,A,B] ∈ Σn,m(K) with system space Vsys ⊆ Kn+m and
transformation matrices W,T ∈ Gln(K) and F ∈ Km×n be given such that the pencil
sE − (A + BF ) is regular. Moreover, let Vsys,fe be the system space of the system
[WET,W (A+BF )T,WB] ∈ Σn,m(K). Then the system spaces are related as follows

Vsys =

[
T 0
FT Im

]
· Vsys,fe. (2.19)

Proof: Follows from Proposition 2.19 (b1).

Remark 2.42. Let [E,A,B] ∈ Σn,m(K) and transformation matrices W,T ∈ Gln(K)
and F ∈ Km×n such that [EF, AF, BF] := [WET,W (A+BF )T,WB] is in FEF (2.7)
be given. Then by Remark 2.22 the pencil sEF − AF is regular. ♢

We need these results to prove the following proposition, which provides a geometric
characterization for the system space.

Proposition 2.43. Let [E,A,B] ∈ Σn,m(K) with system space Vsys ⊆ Kn+m be
given. Let (Vk) be a sequence of subspaces defined by

V0 := Kn+m

Vk+1 :=
[
A B

]−1 [
E 0

]
Vk, k ∈ N0,

where
[
A B

]−1 denotes the preimage of
[
A B

]
. Then Vk+1 ⊆ Vk holds for all

k ∈ N0 and there exists some k0 ∈ N0 such that

Vsys = Vk0 = Vk0+i ∀i ∈ N0.
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Proof: Due to Proposition 2.41 together with Remark 2.42 it suffices to consider
[E,A,B] in FEF (2.7). We divide the proof into three steps. At first, we show
a set equality to characterize Vk in Step 2. Then the statement is derived via
Proposition 2.40.
Step 1: Divided into two steps we show that

Mk :=

[
0 0 E23 0
0 0 E33 0

] [
0 In2 0 B2

0 0 In3 0

]−1 [
0 E23

0 E33

]k
Kn2+n3 =

[
0 E23

0 E33

]k+1

Kn2+n3

(2.20)
holds for all k ∈ N0. First note that the statement is evident for k = 0. Further, for
all k ∈ N it is [

0 E23

0 E33

]k
=

[
0 E23E

k−1
33

0 Ek
33

]
. (2.21)

Step 1.1: We show Mk ⊆
[
0 E23

0 E33

]k+1

Kn2+n3 . Let k ∈ N and
(
y2
y3

)
∈ Mk be given.

Then there exist some x2 ∈ Kn2 and x3 ∈ Kn3 such that(
y2
y3

)
=

[
0 0 E23 0
0 0 E33 0

] [
0 In2 0 B2

0 0 In3 0

]−1 [
0 E23

0 E33

]k (
x2

x3

)
(2.21)
=

[
0 0 E23 0
0 0 E33 0

] [
0 In2 0 B2

0 0 In3 0

]−1(
E23E

k−1
33 x3

Ek
33x3

)

=

[
0 0 E23 0
0 0 E33 0

]
0

E23E
k−1
33 x3

Ek
33x3

0


=

(
E23E

k
33x3

Ek+1
33 x3

)
(2.21)
∈
[
0 E23

0 E33

]k+1

Kn2+n3 .

Step 1.2: We show
[
0 E23

0 E33

]k+1

Kn2+n3 ⊆ Mk.

Let k ∈ N and
(
y2
y3

)
∈
[
0 E23

0 E33

]k+1

Kn2+n3 be given. Then there exist some x2 ∈ Kn2

and x3 ∈ Kn3 such that(
y2
y3

)
=

[
0 E23

0 E33

]k+1(
x2

x3

)
(2.21)
=

(
E23E

k
33x3

Ek+1
33 x3

)

=

[
0 0 E23 0
0 0 E33 0

]
0

E23E
k−1
33 x3

Ek
33x3

0


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=

[
0 0 E23 0
0 0 E33 0

] [
0 In2 0 B2

0 0 In3 0

]−1(
E23E

k−1
33 x3

Ek
33x3

)
(2.21)
=

[
0 0 E23 0
0 0 E33 0

] [
0 In2 0 B2

0 0 In3 0

]−1 [
0 E23

0 E33

]k (
x2

x3

)
∈ Mk,

which completes Step 1.

Step 2: We show that

Vk =

[
0 In2 0 B2

0 0 In3 0

]−1 [
0 E23

0 E33

]k
Kn2+n3 (2.22)

holds for all k ∈ N0. Note that the statement is trivial for k = 0. Since [E,A,B] is
in FEF (2.7) we get

V1 =
[
A B

]−1 [
E 0

]
Kn+m =

A11 0 0 B1

0 In2 0 B2

0 0 In3 0

−1 In1 0 0 0
0 0 E23 0
0 0 E33 0

 Kn+m

=

A11 0 0 B1

0 In2 0 B2

0 0 In3 0

−1(
Kn1 ×

[
0 0 E23 0
0 0 E33 0

]
Kn+m

)

=

[
0 In2 0 B2

0 0 In3 0

]−1 [
0 0 E23 0
0 0 E33 0

]
Kn2+n3

for k = 1. Due to the recursive definition of Vk+1 this yields

Vk+1 =

[
0 In2 0 B2

0 0 In3 0

]−1 [
0 0 E23 0
0 0 E33 0

]
Vk

for k ∈ N0. By induction we conclude

Vk+1 =

[
0 In2 0 B2

0 0 In3 0

]−1 [
0 0 E23 0
0 0 E33 0

] [
0 In2 0 B2

0 0 In3 0

]−1 [
0 E23

0 E33

]k
Kn2+n3

(2.20)
=

[
0 In2 0 B2

0 0 In3 0

]−1 [
0 E23

0 E33

]k+1

Kn2+n3 ,

which completes Step 2.

Step 3: Since E33 is nilpotent with nilpotency index ν ∈ N, the characterization
in (2.22) yields Vk+1 ⊆ Vk for all k ∈ N0. Moreover, for k0 = ν + 1 and all i ∈ N0 it
holds that

Vk0+i = Vk0 = Vν+1
(2.21)
=

(2.22)
ker

[
0 In2 0 B2

0 0 In3 0

]
(2.18)
= Vsys.
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Proposition 2.43 yields further properties of Vsys. The first one is an algebraic char-
acterization of the system space.

Corollary 2.44. Let [E,A,B] ∈ Σn,m(K) with system space Vsys ⊆ Kn+m be given.
Then the following statements hold true:

(a) Vsys =
∩

k∈N0
Vk, where the subspaces Vk are defined as in Proposition 2.43;

(b) The system space Vsys,F of a system in FEF (2.7) fulfils

Vsys,F = ker

[
0 In2 0 B2

0 0 In3 0

]
=




x1

−B2u
0n3×1

u


∣∣∣∣∣∣∣∣ x1 ∈ Kn1 , u ∈ Km

 ; (2.23)

(c) dimVsys = dimVsys,F = n1 +m, where n1 is given by FEF (2.7);

(d) If in addition [E,A,B] is impulse controllable, the system space fulfils

Vsys =
[
A B

]−1
EKn;

(e) In the ODE case, i.e. E = I, it holds Vsys = Kn+m.

Proof: The first assertion follows immediately from Proposition 2.43 and the second
from Proposition 2.40. Further, (b) ⇒ (c) and (d) ⇒ (e) holds. Thus, it suffices to
show assertion (d):
Proposition 2.34 (d) allows to choose n3 = 0 in FEF (2.7). Hence, the matrix[
0 E23

0 E33

]
in the proof of Proposition 2.43 simplifies to

[
0 E23

0 E33

]
= 0n2×n2 . Thus,

equation (2.22) yields

Vk =
[
0 In2 0 B2

]−1
0kn2×n2

Kn2

=

[
A11 0 0 B1

0 In2 0 B2

]−1 [
In1 0
0 0

]
Kn

=
[
A B

]−1
EKn

for k ≥ 1. Then (a) provides (d).

According to Corollary 2.44 the system space of a system in QWF (2.4) can be
characterized as follows.

Proposition 2.45. Let [E,A,B] ∈ Σn,m(K) be given such that the pencil sE −A is
in QWF (2.4). Then the system space fulfils

Vsys = ker
[
0 Iñ2 B̃2

]
, where B =

[
B̃1

B̃2

]
. (2.24)
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Remark 2.46. Compare (2.24) to (2.18). As in our introducing comments on
FEF (2.7) one can see again that the FEF provides more information on the structure
of the system space than the QWF does. ♢

Proof of Proposition 2.45: Since sE − A is in QWF (2.4), we have

[
sE − A B

]
=

[
sIn1 − A11 0 B̃1

0 sE22 − Iñ2 B̃2

]
.

We determine Vsys via the chain Vk as in Proposition 2.43. The Vk are given by

V0 = Kn+m,

V1 =

[
A11 0 B̃1

0 Iñ2 B̃2

]−1 [
In1 0 0
0 E22 0

]
Kn+m

=

[
A11 0 B̃1

0 Iñ2 B̃2

]−1{(
a

E22b

) ∣∣∣∣ a ∈ Kn1 , b ∈ Kñ2

}
= Kn1 ×

[
Iñ2 B̃2

]−1
E22Kñ2 ,

V2 =

[
A11 0 B̃1

0 Iñ2 B̃2

]−1 [
In1 0 0
0 E22 0

](
Kn1 ×

[
Iñ2 B̃2

]−1
E22Kñ2

)
= Kn1 ×

[
Iñ2 B̃2

]−1 [
E22 0

] ([
Iñ2 B̃2

]−1
E22Kñ2

)
= Kn1 ×

[
Iñ2 B̃2

]−1 (
E22I

−1
ñ2

E22Kñ2
)

= Kn1 ×
[
Iñ2 B̃2

]−1
E2

22Kñ2 .

By induction we conclude

Vk = Kn1 ×
[
Iñ2 B̃2

]−1
Ek

22Kñ2 .

Due to the nilpotency of E22, Corollary 2.44 (a) yields the assertion.

Next we state a lemma which will turn out to be quite useful in context of optimal
control (see Chapter 5). It provides a set inclusion of the system space.

Lemma 2.47. Let [E,A,B] ∈ Σn,m(K) with system space Vsys ⊆ Kn+m be given.
Then the inclusion

im

[
(λE − A)−1B

Im

]
⊆ Vsys (2.25)

holds for all λ ∈ C with det(λE − A) ̸= 0.

Proof: According to Corollary 2.44 (a), it suffices to show that

im

[
(λE − A)−1B

Im

]
⊆ Vk ∀λ ∈ C with det(λE − A) ̸= 0 (2.26)
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is fulfilled for all k ∈ N0. This is done by induction. For k = 0 the subset re-
lationship (2.26) is evident. Let k ≥ 1 and suppose (2.26) holds for k − 1. The
equality

A(sE − A)−1B = (sE − (sE − A))(sE − A)−1B = sE(sE − A)−1B −B

leads to [
A B

]
im

[
(λE − A)−1B

Im

]
= im

(
λE(λE − A)−1B

)
=
[
E 0

]
im

[
(λE − A)−1B

Im

]
⊆
[
E 0

]
Vk−1

for all λ ∈ C with det(λE−A) ̸= 0. Thus, for all
(
x
u

)
∈ im

[
(λE − A)−1B

Im

]
we have

Ax+Bu ∈
[
E 0

]
Vk−1. Due to the definition of Vk, this completes the proof.

The following example illustrates how to determine the system space for a system
that is not impulse controllable.

Example 2.48. Consider the DAE system

d
d t

1 0 0
0 1 0
0 1 0

x(t)

 =

1 0 0
1 1 1
1 0 1

x(t) +

1 1
0 1
0 1

u(t).

For S∞ = (0, 0, 1)⊤ we see that

rk
[
E AS∞ B

]
= rk

1 0 0 0 1 1
0 1 0 1 0 1
0 1 0 1 0 1

 = 2 < 3,

i.e. the system is not impulse controllable and hence Corollary 2.44 (d) is not ap-
plicable. However, to determine the system space, we calculate the chain (Vk) as in
Proposition 2.43.

k = 0: V0 = R5 by definition.
k = 1:

V1 =
[
A B

]−1 [
E 0

]
R5

=

1 0 0 1 1
1 1 1 0 1
1 0 1 0 1

−1 1 0 0 0 0
0 1 0 0 0
0 1 0 0 0

 R5
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=

1 0 0 1 1
1 1 1 0 1
1 0 1 0 1

−1
a
b
b

 ∣∣∣∣∣∣ a, b ∈ R


=
{ (

x1 0 x3 u1 u2

)⊤ ∣∣∣ x1, x3, u1, u2 ∈ R
}

k = 2:

V2 =
[
A B

]−1 [
E 0

]
V1

=

1 0 0 1 1
1 1 1 0 1
1 0 1 0 1

−1
a
0
0

 ∣∣∣∣∣∣ a ∈ R


=
{ (

x1 0 x3 u1 u2

)⊤ ∣∣∣ x1 + x3 + u2 = 0, x2 = 0, u1 ∈ R
}

k = 3:

V3 =
[
A B

]−1 [
E 0

]
V2 =

1 0 0 1 1
1 1 1 0 1
1 0 1 0 1

−1
a
0
0

 ∣∣∣∣∣∣ a ∈ R

 = V2

Thus, Proposition 2.43 provides

Vsys = V2 =
{ (

x1 0 x3 u1 u2

)⊤ ∣∣∣ x1 + x3 + u2 = 0, x2 = 0, u1 ∈ R
}
.

♢





31

3 The Kalman-Yakubovich-Popov
inequality

In this chapter we derive a relationship between positive semi-definiteness of the
Popov function on the imaginary axis and solvability of the Kalman-Yakubovich-
Popov (KYP) inequality. The Popov function and the KYP inequality are introduced
in Section 3.1. The relationship mentioned above is content of the KYP lemma for
DAE systems. It is stated in Section 3.1 together with an alternative version of
the KYP inequality. To prove both, some auxiliary findings are required, which are
presented in Section 3.4. They are studied in Section 3.3 which is split into three
parts. At first, some general knowledge is presented, followed by the KYP lemma for
ODE systems. Lemma 3.12 then provides a relation between a DAE Lur’e equation
and its associated ODE Lur’e equation, which enables us to apply ODE results.

3.1 Introduction to Popov function and KYP
inequality

Let [E,A,B] ∈ Σn,m(K) and weighting matrices Q = Q∗ ∈ Kn×n, S ∈ Km×n and
R = R∗ ∈ Km×m be given. The function Φ : C → K(s)m×m, where

Φ(s) :=

[
(−s̄E − A)−1B

Im

]∗ [
Q S
S∗ R

] [
(sE − A)−1B

Im

]
, (3.1)

is called Popov function. If rkK(s) Φ(s) = m holds, we call Φ nonsingular.

Positive semi-definiteness of the Popov function on the imaginary axis can be related
to the solvability of the so-called Kalman-Yakubovich-Popov inequality[

A∗PE + E∗PA+Q E∗PB + S
B∗PE + S∗ R

]
≥Vsys 0, P = P ∗ (3.2)

for some P ∈ Kn×n.

Remark 3.1. Note that the relations =V and ≥V associated with a linear subspace
V ⊆ Kℓ are defined by

M =V N :⇔ x∗Mx = x∗Nx ∀x ∈ V ,
M ≥V N :⇔ x∗Mx ≥ x∗Nx ∀x ∈ V .

♢
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3.2 KYP lemma for DAE systems
The following theorem is a generalization of the KYP lemma for ODE systems
(cf. Theorem 3.10 and Theorem 3.11). It states the already mentioned relationship
between Popov function (3.1) and KYP inequality (3.2).

Theorem 3.2 (KYP lemma for DAE systems). Let [E,A,B] ∈ Σn,m(K) with weight-
ing matrices Q = Q∗ ∈ Kn×n, S ∈ Kn×m, R = R∗ ∈ Km×m be given. Let
Φ(s) ∈ K(s)m×m be the Popov function as in (3.1). Then the following relations
hold true:

(a) If there exists some P ∈ Kn×n such that (3.2) holds, then

Φ(iω) ≥ 0 ∀ω ∈ R with det(iωE − A) ̸= 0. (3.3)

(b) If (3.3) and at least one of the two properties
(b1) [E,A,B] is behaviourally sign-controllable and rkK(s)Φ(s) = m;
(b2) [E,A,B] is behaviourally controllable;
is satisfied, then there exists some P ∈ Kn×n that solves the KYP inequal-
ity (3.2).

The following simple example illustrates the use of the KYP lemma.

Example 3.3. Consider the DAE (2.1) with n = 2, m = 1, system matrices

E =

[
1 2
0 0

]
, A =

[
1 0
1 1

]
, B =

[
1
−1

]
and weighting matrices

Q =

[
1 −1
−1 1

]
, R = 1, S =

[
0
0

]
.

First note that due to

det(sE − A) = det

[
s− 1 2s
−1 −1

]
= s+ 1 ̸= 0K[s]

the pencil sE − A is regular.
Since [E,A,B] is impulse controllable by

rk
[
E AS∞ B

]
= rk

[
1 2 −2 1
0 0 −1 −1

]
= 2 = n for S∞ =

[
−2
1

]
,

Corollary 2.44 (d) yields

Vsys =
[
A B

]−1
EKn =

[
1 0 1
1 1 −1

]−1 [
1 2
0 0

]
K2
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=

[
1 0 1
1 1 −1

]−1{(
a
0

) ∣∣∣∣ a ∈ K
}

=


 a

b
a+ b

 ∣∣∣∣∣∣ a, b ∈ K

 .

As
rk
[
λE − A B

]
= rk

[
λ− 1 2λ 1
−1 −1 −1

]
= 2 = n

holds for all λ ∈ C, the system [E,A,B] is behaviourally controllable. Furthermore,
the Popov function Φ fulfils

rkΦ(s) = rkK(s)

([
(−s̄E − A)−1B

1

]∗ [
Q S
S∗ R

] [
(sE − A)−1B

1

])

= rkK(s)

[2s+1
s−1

−s−2
s−1

1
]  1 −1 0

−1 1 0
0 0 1

 2s−1
s+1
−s+2
s+1

1


= rkK(s)(10) = 1 = m.

Thus, Theorem 3.2 provides that the KYP inequality (3.2) has a solution. ♢

As an alternative characterization of the KYP inequality we state the following
proposition.

Proposition 3.4. Let [E,A,B] ∈ Σn,m(K) with system space Vsys ⊆ Kn+m, and
matrices Q = Q∗ ∈ Kn×n, S ∈ Kn×m, R = R∗ ∈ Km×m be given. If Y ∈ Kn×n fulfils[

A∗Y + Y ∗A+Q Y ∗B + S
B∗Y + S∗ R

]
≥Vsys 0, E∗Y = Y ∗E, (3.4)

then there exists some P ∈ Kn×n that solves the KYP inequality (3.2) with

E∗PE = E∗Y.

Further, if P ∈ Kn×n solves the KYP inequality (3.2), then Y = PE fulfils (3.4).

As mentioned above, these statements are proved in Section 3.4.

3.3 Auxiliary results
This section provides several results to prove the KYP lemma for DAE systems.
At first, we collect some general knowledge in Subsection 3.3.1. Then, we state
some results for the ODE case in 3.3.2 and connect the ODE to the DAE case in
Subsection 3.3.3.
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3.3.1 General knowledge
In this subsection some well-known findings are collected. For the proof of the first
lemma we refer to [Wer11, Proposition II.1.11]. It is about the so-called Neumann
series.

Lemma 3.5 (Neumann series). Assume (X , ∥·∥) to be an normed vector space and
let X : X → X be linear and bounded. If the Neumann series

∑∞
k=0X

k converges
with respect to the operator norm, then the inverse of (I−X) exists and the following
identity holds:

(I −X)−1 =
∞∑
k=0

Xk.

Another result we need to prove Lemma 3.12 and Theorem 3.2 is the Sherman-
Morrison-Woodbury identity.

Lemma 3.6 (Sherman-Morrison-Woodbury identity). Let K ∈ Glk(K), L ∈ Kk×j,
M ∈ Glj(K) and N ∈ Kj×k be given such that K + LMN ∈ Glk(K). Then it holds

(K + LMN)−1 = K−1 −K−1L(M−1 +NK−1L)−1NK−1.

Proof: The statement can be verified by a simple matrix multiplication. It is

(K + LMN)
[
K−1 −K−1L(M−1 +NK−1L)−1NK−1

]
= I − L(M−1 +NK−1L)−1NK−1 + LMNK−1 − LMNK−1L(M−1 +NK−1L)−1NK−1

= I + LMNK−1

−
[
L(M−1 +NK−1L)−1NK−1 + LMNK−1L(M−1 +NK−1L)−1NK−1

]
= I + LMNK−1 − (L+ LMNK−1L)(M−1 +NK−1L)−1NK−1

= I + LMNK−1 − LM(M−1 +NK−1L)(M−1 +NK−1L)−1NK−1

= I + LMNK−1 − LMNK−1

= I.

Remark 3.7. Note that the statement holds true for K = sE−A ∈ K[s]n×n, where
rkK(s)(sE − A) = n. The proof stays the same. ♢

To prove Proposition 3.4 we use the following result on matrix decomposition.

Proposition 3.8. Let matrices M ∈ Kk×ℓ, N ∈ Kℓ×k with k ≤ ℓ and MN = (MN)∗

be given. Then there exists some matrix G = G∗ ∈ Kℓ×ℓ such that

MN = MGM∗.

At first, we show the statement for a special case, where the matrices M and N have
full rank.
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Lemma 3.9. Let matrices M ∈ Km×k and N ∈ Kk×m with rkM = rkN = k and
MN = (MN)∗ be given. Then there exists some G = G∗ ∈ Kk×k such that

MN = MGM∗. (3.5)

Proof: Since M∗ has full row rank its right inverse is (M∗)+ = M(M∗M)−1. Define
G := N(M∗)+. Due to MGM∗ = MN(M∗)+M∗ and the full row rank of M it
suffices to show that

N(M∗)+M∗ = N (3.6)

holds true.
Define D := (M∗)+M∗. The proof of equation (3.6) is divided into three steps. In
the first two steps we show kerD = kerN = (imM)⊥. Then we complete the proof
via simple conclusions.

Step 1: First, note that since M and N have full rank, it is ker(MN) = kerN and
im(MN) = imM . Let x ∈ Km be given. Then the following equivalences hold:

x ∈ kerD ⇔ (M∗)+M∗x = 0 ⇔ M∗x = x∗M = 0

⇔ ∀ y ∈ Kk : x∗My = 0 ⇔ ∀ z ∈ Km : x∗MNz = 0 ⇔ x∗MN = 0

⇔ (MN)x = (MN)∗x = 0 ⇔ x ∈ ker(MN) = kerN,

i.e. kerD = kerN .

Step 2: Analogously to Step 1 we receive that for all x ∈ Kn

x ∈ (imM)⊥ ⇔ ∀ y ∈ Kk : My⊥x ⇔ ∀ y ∈ Kk : y∗M∗x = 0

⇔ ∀ z ∈ Km : z∗(MN)∗x = z∗(MN)x = 0

⇔ x ∈ ker(MN) = ker(N)

holds, which is kerN = (imM)⊥.

Step 3: Now we show (3.6) via Km = kerN⊕(kerN)⊥. Let x ∈ Km be arbitrary. We
differentiate between two cases. If x ∈ kerN = kerD, it is NDx = 0 = Nx. If on
the other hand x ∈ (kerN)⊥ = imM , there exists some y ∈ Kk such that x = My.
Thus, we get

NDx = N(M∗)+M∗My = NM(M∗M)−1M∗My = NMy = Nx.

Hence, NDx = Nx holds true for all x ∈ Kn, i.e. ND = N , which completes the
proof of (3.6).

Hermiticity of G then follows from (3.5) together with the assumptions rkM = k
and (MN)∗ = MN .
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Proof of Proposition 3.8: Choose some unitary matrix U ∈ Kℓ×ℓ such that

MN = MUU∗N =
[
M1 0

] [N1

N2

]
=
[
M1 0

] [N1

0

]
holds, where M1 ∈ Kk×ℓ1 with rkM1 = ℓ1 and N1 ∈ Kℓ1×k. Then there further exists
some unitary V ∈ Kℓ1×ℓ1 such that

[
M1 0

] [N1

0

]
=
[
M1 0

] [V V ∗ 0
0 0

] [
N1

0

]
=
[
M2 M̃2 0

] N2

0
0

 = M2N2

holds, where M2 ∈ Kk×ℓ2 and N2 ∈ Kℓ2×k with rkM2 = rkN2 = ℓ2. Thus, Lemma 3.9
provides some G̃ = G̃∗ ∈ Kℓ2×ℓ2 such that

M2N2 = M2G̃M∗
2 =

[
M2 M̃2 0

] G̃ 0 0
0 0 0
0 0 0

 [M2 M̃2 0
]∗

=
[
M1V 0

] [G̃ 0
0 0

]
0

0 0

 [M1V 0
]∗

=
[
M1 0

] V [G̃ 0
0 0

]
V ∗ 0

0 0

 [M1 0
]∗

= M

U

V [G̃ 0
0 0

]
V ∗ 0

0 0

U∗

M∗

= MGM∗

holds for G = G∗ = U

V [G̃ 0
0 0

]
V ∗ 0

0 0

U∗, which completes the proof.

3.3.2 The KYP lemma for ODE systems
To prove the KYP lemma for DAE systems we will apply two theorems for the ODE
case from [CALM97]. Consider [I, A,B] ∈ Σn,m(K) and the linear matrix inequality[

A∗P + PA+Q PB + S
B∗P + S∗ R

]
≥ 0, P = P ∗, (3.7)

where Q and R are Hermitian. Note that since E = I and hence Vsys = Kn+m,
this is simply the KYP inequality (3.2). Then [CALM97] prove the following two
theorems, which yield an ODE version of the KYP lemma.
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Theorem 3.10. If (I, A,B) is behaviourally sign-controllable and the Popov function
Φ is nonsingular, then the following statements are equivalent:

(i) Φ is positive semi-definite on the imaginary axis;

(ii) there exists a Hermitian solution P of (3.7).

Theorem 3.11. If (I, A,B) is behaviourally controllable, then the following state-
ments are equivalent:

(i) Φ is positive semi-definite on the imaginary axis;

(ii) there exists an Hermitian solution P of (3.7).

3.3.3 Relation between DAE and ODE case
Whenever possible, we apply well-known results for ODEs to make statements on
DAEs. The following lemma relates the solvability of the KYP inequality (3.2) to
the solvability of a KYP inequality for an associated ODE system.

Lemma 3.12. Let [E,A,B] ∈ Σn,m(K) with the system space Vsys ⊆ Kn+m, weight-
ing matrices Q = Q∗ ∈ Kn×n, S ∈ Kn×m, R = R∗ ∈ Km×m, and the Popov function
Φ(s) ∈ K(s)m×m be given. Let W , T ∈ Gln(K) and F ∈ Km×n be matrices such
that (2.12) holds. Define the following matrices

EF = WET, AF = W (A+BF )T, BF = WB,

QF = T ∗(Q+ SF + F ∗S∗ + F ∗RF )T, SF = T ∗(S + F ∗R), RF = R, (3.8)

where QF and SF are partitioned according to block structure of FEF (2.7) as

QF =

Q11 Q12 Q13

Q∗
12 Q22 Q23

Q∗
13 Q∗

23 Q33

 , SF =

S1

S2

S3

 .

(a) For ΘF(s) := Im + FT (sEF − AF)
−1BF ∈ K(s)m×m the rational function

ΦF(s) =

[
(−s̄EF − AF)

−1BF

Im

]∗ [
QF SF

S∗
F RF

] [
(sEF − AF)

−1BF

Im

]
fulfils

ΦF(s) = Θ∗
F(−s̄)Φ(s)ΘF(s). (3.9)

Moreover, it holds that

ΦF(s) =

[
(−s̄In1 − A11)

−1B1

Im

]∗ [
Q11 S1 −Q12B2

S∗
1 −B∗

2Q
∗
12 B∗

2Q22B2 −B∗
2S2 − S∗

2B2 +R

]
×
[
(sIn1 − A11)

−1B1

Im

]
. (3.10)
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(b) Let P ∈ Kn×n and define

PF = W−∗PW−1 =

P11 P12 P13

P ∗
12 P22 P23

P ∗
13 P ∗

23 P33

 ∈ Kn×n, (3.11)

which is partitioned according to the block structure of the FEF (2.7). Then
the following holds true:
P ∈ Kn×n solves the KYP inequality (3.2) if, and only if, P is Hermitian and[

A∗
11P11 + P11A11 +Q11 P11B1 + S1 −Q12B2

B∗
1P11 + S∗

1 −B∗
2Q

∗
12 B∗

2Q22B2 −B∗
2S2 − S∗

2B2 +R

]
≥ 0, P11 = P ∗

11.

(3.12)

Remark 3.13. Note that by definition of the matrices in (3.8) we have the following
relationship between the weighting block matrices of Φ(s) and ΦF(s)[

T ∗ T ∗F ∗

0 Im

] [
Q S
S∗ R

] [
T 0
FT Im

]
=

[
T ∗Q+ T ∗F ∗S∗ T ∗S + T ∗F ∗R

S∗ R

] [
T 0
FT Im

]
=

[
T ∗QT + T ∗F ∗S∗T + T ∗SFT + T ∗F ∗RFT T ∗S + T ∗F ∗R

S∗T +RFT R

]
=

[
QF SF

S∗
F RF

]
.

♢

Proof of Lemma 3.12:
(a) We divide the proof of (a) into two steps. At first, we show equation (3.9)
and then (3.10).
Step 1: Due to Remark 3.13 we have

ΦF(s) =

[
(−s̄EF −AF)

−1BF

Im

]∗ [
QF SF

S∗
F RF

] [
(sEF −AF)

−1BF

Im

]
=

[
(−s̄EF −AF)

−1BF

Im

]∗ [
T ∗ T ∗F ∗

0 Im

] [
Q S
S∗ R

] [
T 0
FT Im

] [
(sEF −AF)

−1BF

Im

]
.

(3.13)

We show the following equality

H(s) :=

[
T 0
FT Im

] [
(sEF − AF)

−1BF

Im

]
=

[
(sE − A)−1B

Im

]
ΘF(s). (3.14)

The bottom block rows in (3.14) coincide by definition of ΘF(s). Further,

T (sEF − AF)
−1BF = T (sWET −W (A+BF )T )−1WB
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= T (W (sE − (A+BF ))T )−1WB

= ((sE − A)−BF )−1B

holds. The Sherman-Morrison-Woodbury identity from Lemma 3.6 for K := sE−A,
L := −B, M := Im and N := F yields

((sE−A)−BF )−1B = (sE−A)−1B+(sE−A)−1B(Im−F (sE−A)−1B)−1F (sE−A)−1B.

Applying Lemma 3.5 to (Im − F (sE − A)−1B)−1 we get

(sE −A)−1B + (sE −A)−1B

∞∑
k=1

(
F (sE −A)−1B

)k
= (sE −A)−1B + (sE −A)−1B

(
F (sE −A)−1B +

∞∑
k=2

(
F (sE −A)−1B

)k)

= (sE −A)−1B + (sE −A)−1BF (sE −A)−1B + (sE −A)−1B

∞∑
k=2

(
F (sE −A)−1B

)k
Lem. 3.5

= (sE −A)−1B + (sE −A)−1BF (sE −A)−1B

+ (sE −A)−1BF (sE −A)−1B(Im − F (sE −A)−1B)−1F (sE −A)−1B

= (sE −A)−1B

×
[
Im + F (sE −A)−1B + F (sE −A)−1B(Im − F (sE −A)−1B)−1F (sE −A)−1B

]
.

Applying Lemma 3.6 once more yields

T (sEF − AF)
−1BF = (sE − A)−1B

[
Im + F ((sE − A)−BF )−1B

]
,

which completes the proof of (3.14).

Equation (3.14) provides

H∗(−s) =

[
(−sEF − AF)

−1BF

Im

]∗ [
T ∗ T ∗F ∗

0 Im

]
= Θ∗

F(−s)

[
(−sEA)

−1B
Im

]∗
.

Thus, (3.13) yields (3.9).

Step 2: We verify (3.10). Note that for regular W,X and Z we haveW 0 0
0 X Y
0 0 Z

−1

=

W−1 0 0
0 X−1 −X−1Y Z−1

0 0 Z−1

 .

Thus,

(sEF − AF)
−1BF =

(sIn1 − A11)
−1 0 0

0 −In2 −sIn2E23(sE23 − In3)
−1

0 0 (sE33 − In3)
−1

B1

B2

0


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=

(sIn1 − A11)
−1B1

−B2

0n3×m

 . (3.15)

Now we can prove the desired result (3.10) by using the definition of ΦF, the matrices
as in (3.8), and (3.15). Hence

ΦF(s) =

[
(−s̄EF − AF)

−1BF

Im

]∗ [
QF SF

S∗
F RF

] [
(sEF − AF)

−1BF

Im

]

=


(−s̄In1 − A11)

−1B1

−B2

0n3×m

Im


∗ [

QF SF

S∗
F RF

]
(sIn1 − A11)

−1B1

−B2

0n3×m

Im


=
[
((−s̄In1 − A11)

−1B1)
∗ −B∗

2 0m×n3 Im
]

×


Q11 Q12 Q13 S1

Q∗
12 Q22 Q23 S2

Q∗
13 Q∗

23 Q33 S3

S∗
1 S∗

2 S∗
3 R



(sIn1 − A11)

−1B1

−B2

0n3×m

Im

 .

Thus,

ΦF(s) =
[
((−s̄In1 − A11)

−1B1)
∗ −B∗

2 Im
] Q11 Q12 S1

Q∗
12 Q22 S2

S∗
1 S∗

2 R

(sIn1 − A11)
−1B1

−B2

Im


=
[
((−s̄In1 − A11)

−1B1)
∗ Im

] [ Q11 S1 −Q12B2

S∗
1 −B∗

2Q
∗
12 B∗

2Q22B2 −B∗
2S2 − S∗

2B2 +R

]
×
[
(sIn1 − A11)

−1B1

Im

]
.

The last equation holds since one can multiply the second row by −B∗
2 from the left,

the second column by −B2 from the right, and then combine the second and the
forth row/column, resp. This proves (3.10).

(b) We divide the proof into two steps. At first, we relate the solvability of the
KYP inequality (3.2) to that of the KYP inequality for the corresponding system in
FEF (2.7). Then, we show the equivalence in (b).

Step 1: We show that P solves the KYP inequality for the system [E,A,B] if, and
only if, PF solves the KYP inequality for the system [EF, AF, BF] in FEF (2.7).
By (3.8) the following calculations hold true:[

T ∗ T ∗F ∗

0 Im

] [
A∗PE + E∗PA+Q E∗PB + S

B∗PE + S∗ R

] [
T 0
FT Im

]
=

[
X1 X2

X3 X4

]
, (3.16)
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where

X1 := T ∗A∗PET + T ∗E∗PAT + T ∗(Q+ F ∗B∗PE + F ∗S∗ + E∗PBF + SF + F ∗RF )T

= T ∗A∗PET + T ∗E∗PAT + T ∗(F ∗B∗PE + E∗PBF )T +QF

= T ∗(T−∗A∗
FW

−∗ − F ∗B∗)W ∗PFWET + T ∗E∗W ∗PFW (W−1AFT
−1 −BF )T

+ T ∗(F ∗B∗PE + E∗PBF )T +QF

= A∗
FPFEF − T ∗F ∗B∗PET + E∗

FPFAF − T ∗E∗PBFT

+ T ∗(F ∗B∗PE + E∗PBF )T +QF

= A∗
FPFEF + E∗

FPFAF +QF,

X2 := T ∗E∗PB + T ∗S + T ∗F ∗R = T ∗E∗W ∗PFWB + T ∗(S + F ∗R) = E∗
FPFBF + SF,

X3 := B∗W ∗PFWET + (S∗ +RF )T = B∗
FPFEF + S∗

F and
X4 := R = RF.

In combination with Proposition 2.41 this provides

0 ≤Vsys,F

[
X1 X2

X3 X4

]
⇔ 0 ≤Vsys,F

[
A∗

FPFEF + E∗
FPFAF +QF E∗

FPFBF + SF

B∗
FPFEF + S∗

F RF

]
(3.17)

⇔ 0 ≤ x∗
[
A∗

FPFEF + E∗
FPFAF +QF E∗

FPFBF + SF

B∗
FPFEF + S∗

F RF

]
x ∀x ∈ Vsys,F

(3.16)⇔ 0 ≤ x∗
[
T ∗ T ∗F ∗

0 Im

] [
A∗PE + E∗PA+Q E∗PB + S

B∗PE + S∗ R

] [
T 0
FT Im

]
x ∀x ∈ Vsys,F

(2.19)⇔ 0 ≤ y∗
[
A∗PE + E∗PA+Q E∗PB + S

B∗PE + S∗ R

]
y ∀ y ∈ Vsys

⇔ 0 ≤Vsys

[
A∗PE + E∗PA+Q E∗PB + S

B∗PE + S∗ R

]
(3.18)

for all Hermitian P ∈ Kn×n.

Step 2: We prove the equivalence in (b) via two implications.
Step 2.1: Let P ∈ Kn×n fulfil the KYP inequality (3.2). In particular, P is Hermitian.
Thus,

P ∗
F =

(
W−∗PW−1

)∗
= W−∗PW−1 = PF

and thereby PF and P11 are Hermitian.
According to the definition of EF, AF, BF, QF, SF, RF and PF we obtain[

A∗
FPFEF + E∗

FPFAF +QF E∗
FPFBF + SF

B∗
FPFEF + S∗

F RF

]

=


A∗

11P11 + P11A11 +Q11 P12 +Q12 M13 P11B1 + P12B2 + S1

P ∗
12 +Q∗

12 Q22 M23 S2

M∗
13 M∗

23 M33 M34

B∗
1P11 +B∗

2P
∗
12 + S∗

1 S∗
2 M∗

34 R

 (3.19)
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for some M13 ∈ Kn1×n3 ,M23 ∈ Kn2×n3 ,M33 = M∗
33 ∈ Kn3×n3 , and M34 ∈ Kn3×m. In

fact, we could determine the missing matrices, but they are irrelevant in the follow-
ing.

To complete Step 2.1 we use (3.17), (3.18), (3.19) and (2.23), united to ⋆
=. Since P

solves the KYP inequality (3.2), calculating in an analogue manner as in Step 3 in
the proof of (a) we arrive at

0 ≤
(
x
u

)∗ [
A∗PE + E∗PA+Q E∗PB + S

B∗PE + S∗ R

](
x
u

)

⋆
=


x1

−B2u
0n3×1

u


∗ 

A∗
11P11 + P11A11 +Q11 P12 +Q12 M13 P11B1 + P12B2 + S1

P ∗
12 +Q∗

12 Q22 M23 S2

M∗
13 M∗

23 M33 M34

B∗
1P11 +B∗

2P
∗
12 + S∗

1 S∗
2 M∗

34 R




x1

−B2u
0n3×1

u


=

 x1

−B2u
u

∗ A∗
11P11 + P11A11 +Q11 P12 +Q12 P11B1 + P12B2 + S1

P ∗
12 +Q∗

12 Q22 S2

B∗
1P11 +B∗

2P
∗
12 + S∗

1 S∗
2 R

 x1

−B2u
u


=

(
x1

u

)∗ [
A∗

11P11 + P11A11 +Q11 P11B1 + S1 −Q12B2

B∗
1P11 + S∗

1 −B∗
2Q12 B∗

2Q22B2 −B∗
2S2 − S∗

2B2 +R

](
x1

u

)
and thus P11 fulfils (3.12).

Step 2.2: Suppose P11 ∈ Kn1×n1 solves (3.12) and let P12, P13, P22 = P ∗
22, P23, and

P33 = P ∗
33 have appropriate dimensions. Applying (2.23) to (x⊤, u⊤)⊤ ∈ Vsys,F we

find some x1 ∈ Kn1 such that (x⊤
1 ,−u⊤B⊤

2 , 0, u
⊤)⊤ ∈ Vsys,F. Analogously to Step 2.1

it can be easily verified that P fulfils the KYP inequality (3.2).

3.4 Proof of KYP lemma and KYP alternative
In this section we prove the main results of this chapter mentioned in Section 3.2.

Proof of Theorem 3.2:
(a) At first, let P ∈ Kn×n be a solution of the KYP inequality (3.2). Using a simple
matrix subtraction the inequality is equivalent to[

Q S
S∗ R

]
≥Vsys −

[
A∗PE + E∗PA E∗PB

B∗PE 0

]
.

Further, assume that[
(−s̄E − A)−1B

Im

]∗ [
A∗PE + E∗PA E∗PB

B∗PE 0

] [
(sE − A)−1B

Im

]
= 0. (3.20)

With (2.25) and (3.20), for all ω ∈ R with det(iωE − A) ̸= 0 we can infer that

Φ(iω) =

[
(iωE − A)−1B

Im

]∗ [
Q S
S∗ R

] [
(iωE − A)−1B

Im

]
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≥ −
[
(iωE − A)−1B

Im

]∗ [
A∗PE + E∗PA E∗PB

B∗PE 0

] [
(iωE − A)−1B

Im

]
= 0,

which is (3.3).

We still need to show that (3.20) holds true. For the left side of the equation it holds[
(−s̄E − A)−1B

Im

]∗ [
A∗PE + E∗PA E∗PB

B∗PE 0

] [
(sE − A)−1B

Im

]
=

[
(−s̄E − A)−1B

Im

]∗([
A∗

B∗

] [
PE 0

]
+

[
E∗P
0

] [
A B

]) [(sE − A)−1B
Im

]
=

[
(−s̄E − A)−1B

Im

]∗ [
A∗

B∗

] [
PE 0

] [(sE − A)−1B
Im

]
+

[
(−s̄E − A)−1B

Im

]∗ [
E∗P
0

] [
A B

] [(sE − A)−1B
Im

]
.

Applying A(sE − A)−1B = (sE − (sE − A))(sE − A)−1B = sE(sE − A)−1B − B

at ⋆
= yields

H(s) :=

[
(−s̄E − A)−1B

Im

]∗ [
E∗P
0

] [
A B

] [(sE − A)−1B
Im

]
⋆
= s

[
(−s̄E − A)−1B

Im

]∗ [
E∗P
0

] [
E 0

] [(sE − A)−1B
Im

]
= s

[
B∗(−s̄E − A)−∗ Im

] [E∗PE(sE − A)−1B
0

]
= sB∗(−s̄E − A)−∗E∗PE(sE − A)−1B.

So we have an alternative representation of the second summand. Note that the first
summand from above equals to H∗(−s). Since P ∈ Kn×n fulfils the KYP inequality
(3.2) and thus in particular is Hermitian, we have

H∗(−s) =
(
−s̄
(
B∗(sE − A)−∗E∗PE(−s̄E − A)−1B

))∗
= −sB∗(−s̄E − A)−∗E∗PE(sE − A)−1B.

Altogether we obtain H∗(−s) + H(s) = 0 and therefore (3.20) holds true, which
completes the proof of (a).

(b) Let (3.3) and at least one of the properties (b1) and (b2) be fulfilled. Accord-
ing to Proposition 2.34 there exist transformation matrices W,T and F such that
FEF (2.12) holds. Let ω ∈ R with det(iωE−A) ̸= 0. Then (3.3) together with (3.9)
yields (b) Let (3.3) and at least one of the properties (b1) and (b2) be fulfilled.
According to Proposition 2.34 there exist transformation matrices W,T and F such
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that FEF (2.12) holds. Let ω ∈ R with det(iωE − A) ̸= 0. Then (3.3) together
with (3.9) yields

0 ≤ Φ(iω)

⇔ 0 ≤ η∗Φ(iω)η∗ ∀ η ∈ Km

(3.9)⇔ 0 ≤ (ΘF(iω)ξ)
∗Φ(iω)ΘF(iω)ξ ∀ ξ ∈ Km

⇔ 0 ≤ ξ∗
(
ΘF(−iω)

)∗
Φ(iω)ΘF(iω)ξ ∀ ξ ∈ Km

(3.9)⇔ 0 ≤ ξ∗ΦF(iω)ξ ∀ ξ ∈ Km

⇔ 0 ≤ ΦF(iω).

Regarding the representation of ΦF as in (3.10) we get 0 ≤ ΦF(iω) for all ω ∈ R with
iω /∈ σ(A11), i.e. (i) in Theorem 3.10 and in Theorem 3.11 holds.
For the rest of the proof we differ whether (b1) or (b2) holds.

Case 1: Assume that (b1) is true. The idea is to apply Theorem 3.10 to the ODE
system [In1 , A11, B1] and the corresponding Popov function ΦF as in (3.10).
As (b1) holds, the system [E,A,B] is behaviourally sign-controllable and Φ is non-
singular. Using Remark 2.37 we see that the ODE system [In1 , A11, B1] is also
behaviourally sign-controllable. To make use of Theorem 3.10 we have to show that
even ΦF is nonsingular.

By using (3.9) and since rkK(s)(Φ(s)) = m, it suffices to verify that ΘF(s) has full
rank. Due to the equivalence

sEF − AF is regular ⇔ sWET −W (A+BF )T is regular,

which holds by definition of [EF, AF, BF], the matrix (sEF−AF)+BFFT is invertible
in Gln(K(s)). Thus, we can compute the inverse of ΘF(s) according to Lemma 3.6
as follows:

ΘF(s)
−1 = Im − FT ((sEF − AF) +BFFT )−1BF,

whereby rkK(s) ΘF(s) = m obviously holds true. Hence, ΦF is nonsingular.

It remains to show that the corresponding matrices B∗
2Q22B2−B∗

2S2−S∗
2B2+R and

Q11 of (3.7) are Hermitian. Therefore, note that Q and R are Hermitian already.
Due to its construction as in (3.8), QF and thereby Q11 and Q22 are Hermitian as
well. This implies

(B∗
2Q22B2 −B∗

2S2 − S∗
2B2 +R)∗ = B∗

2Q22B2 − S∗
2B2 −B∗

2S2 +R.

Thus, Theorem 3.10 can be applied to the ODE system [In1 , A11, B1] and the corre-
sponding Popov function ΦF as in (3.10). Then (3.7) leads to[

A∗
11P11 + P11A11 +Q11 P11B1 + S1 −Q12B2

S∗
1 −B∗

2Q
∗
12 +B∗

1P11 B∗
2Q22B2 −B∗

2S2 − S∗
2B2 +R

]
≥ 0
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for some P11 = P ∗
11. According to Lemma 3.12 (b) we see that

P = W ∗

P11 0 0
0 0 0
0 0 0

W

solves the KYP inequality (3.2) and this proof is complete.

Case 2: If (b2) holds, then [In1 , A11, B1] is behaviourally controllable and we can
apply Theorem 3.11. The remaining part works analogously to the last paragraph
in Case 1 and therefore it is omitted.

The other important result in this chapter is the existence of an alternative version
of the KYP inequality in Proposition 3.4, which is proved next.

Proof of Proposition 3.4: At first, note that the second statement is evident. To
prove the first implication the proof is divided into three steps. Those three steps are
preparations to apply Lemma 3.12 (b). In Step 1 we define a matrix YF, show that
E∗

FYF is Hermitian and arrive at a KYP inequality like in (3.12). The second step
provides an auxiliary result that we need for Step 3. In this last step a matrix P is
defined with help of YF matrices of Step 2 such that E∗PE = E∗Y . The implication
in Proposition 3.4 follows then with Lemma 3.12 (b).

Step 1:
Let Y ∈ Kn×n fulfil (3.4). By Proposition 2.34 there exist some transformation
matrices W,T and F such that (2.12) holds. We define

YF := W−∗Y T =

Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

 ∈ Kn×n.

Since E∗Y = Y ∗E holds, we obtain

E∗
FYF = (WET )∗(W−∗Y T ) = T ∗E∗Y T = T ∗Y ∗ET = (T ∗Y ∗W−1)(WET ) = Y ∗

FEF,
(3.21)

which is equivalent to

 Y11 Y12 Y13
0 0 0

E∗
23Y21 + E∗

33Y31 E∗
23Y22 + E∗

33Y32 E∗
23Y23 + E∗

33Y33

 =

Y ∗
11 0 Y ∗

21E23 + Y ∗
31E33

Y ∗
12 0 Y ∗

22E23 + Y ∗
32E33

Y ∗
13 0 Y ∗

23E23 + Y ∗
33E33

 .

Since (3.21) the matrix E∗
FYF is Hermitian, we conclude
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(i) Y11 = Y ∗
11,

(ii) 0 = Y12 = Y ∗
12,

(iii) Y13 = Y ∗
21E23 + Y ∗

31E33,

(iv) 0 = Y ∗
22E23 + Y ∗

32E33 and

(v) E∗
23Y23 + E∗

33Y33 is Hermitian.

With an argumentation analogous to the proof of Lemma 3.12 (b) we arrive at[
A∗

11Y11 + Y11A11 +Q11 Y11B1 + S1 −Q12B2

B∗
1Y11 + S∗

1 −B∗
2Q

∗
12 B∗

2Q22B2 −B∗
2S2 − S∗

2B2 +R

]
≥ 0, Y11 = Y ∗

11. (3.22)

Step 2: Note that
[
E∗

23 E∗
33

]
∈ Kn3×(n2+n3) and

[
Y23

Y33

]
∈ K(n2+n3)×n3 holds and the

product of these matrices is Hermitian. Thus, Proposition 3.8 yields

E∗
23Y23 + E∗

33Y33 =
[
E∗

23 E∗
33

] [Y23

Y33

]
=
[
E∗

23 E∗
33

] [P22 P23

P ∗
23 P33

] [
E23

E33

]
(3.23)

for some P22 = P ∗
22 ∈ Kn2×n2 , P23 ∈ Kn2×n3 , P33 = P ∗

33 ∈ Kn3×n3 .

Step 3: Now we are able to define a solution matrix for the KYP inequality. Let
P ∈ Kn×n be defined as

P = W ∗PFW = W ∗

Y11 Y ∗
21 Y ∗

31

Y21 P22 P23

Y31 P ∗
23 P33

W.

To prove the statement of the proposition, we still need to show that the constructed
matrix P fulfils E∗PE = E∗Y or alternatively E∗

FPFEF = E∗
FYF, which is equivalent:

E∗PE = E∗Y ⇔ E∗W ∗PFWE = (W−1EFT
−1)∗

(
W ∗YFT

−1
)

⇔ T−∗E∗
FPFEFT

−1 = T−∗E∗
FYFT

−1

⇔ E∗
FPFEF = E∗

FYF.

Calculating straight forward and using (3.23) we get

E∗
FPFEF =

 Y11 Y ∗
21 Y ∗

31

0 0 0
E∗

23Y21 + E∗
33Y31 E∗

23P22 + E∗
33P

∗
23 E∗

23P23 + E∗
33P33

EF

=

 Y11 0 Y ∗
21E23 + Y ∗

31E33

0 0 0
E∗

23Y21 + E∗
33Y31 0 E∗

23P22E23 + E∗
33P

∗
23E23 + E∗

23P23E33 + E∗
33P33E33


(3.23)
=

&(iii)

 Y11 0 Y13
0 0 0

E∗
23Y21 + E∗

33Y31 0 E∗
23Y23 + E∗

33Y33

 = E∗
FYF.

Thus, we have E∗
FPFEF = E∗

FYF or equally E∗PE = E∗Y .

The desired result then follows from applying Lemma 3.12 (b) to (3.22).
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4 Lur’e equations
In this chapter we study particular solutions of the KYP inequality (3.2). They solve
the so-called Lur’e equation, where equality to a Hermitian matrix on the right hand
side of (3.2) is claimed.

To perform the studies on Lur’e equations and their solutions, this chapter is struc-
tured as follows. At first, we introduce the Lur’e equation (4.1). In Section 4.2 we
present the main result - Theorem 4.4, which states a relationship between the solv-
ability of the Lur’e equation and the positive semi-definiteness of the Popov function
on the imaginary axis and deflating subspaces for an associated even matrix pencil.
The proof of the main result is extensive and requires some results on Lur’e equa-
tions. For this reason, in Section 4.3 we collect some findings on Lur’e equations
associated with ODEs and in Section 4.4 for the differential-algebraic case. Section
4.5 is dedicated to the proof of Theorem 4.4. In Section 4.6 we finally show how to
construct a Lur’e solution using deflating subspaces.

4.1 Introduction to Lur’e equations
Consider a system [E,A,B] ∈ Σn,m(K) with system space Vsys ⊆ Kn+m, weighting
matrices Q = Q∗ ∈ Kn×n, S ∈ Kn×m, and R = R∗ ∈ Km×m. The equation[

A∗XE + E∗XA+Q E∗XB + S
B∗XE + S∗ R

]
=Vsys

[
K∗

L∗

] [
K L

]
, X = X∗. (4.1a)

is the associated Lur’e equation.

A triple (X,K,L) ∈ Kn×n ×Kq×n ×Kq×m is called solution of the Lur’e equation if
it satisfies (4.1a) and

rkK(s)

[
−sE + A B

K L

]
= n+ q. (4.1b)

Note that q ∈ N0 is part of the solution and specified in Proposition 4.5.

The concept of Lur’e equations can be applied on ODEs as well. This is the content
of the following remark. We also show that with additional assumptions on the
weighting matrix R the algebraic Riccati equation can be derived from the Lur’e
equation.

Remark 4.1. In the ODE case, i.e. E = In, and thus Vsys = Kn+m, equation (4.1a)
simplifies to [

A∗X +XA+Q XB + S
B∗X + S∗ R

]
=

[
K∗

L∗

] [
K L

]
, X = X∗, (4.2)
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which is equivalent to

A∗X +XA+Q = K∗K, XB + S = K∗L, R = L∗L, X = X∗. (4.3)

If in addition R is invertible, then the equations in (4.3) simplify even more.
In Proposition 4.5 we will see that q = rkK(s) Φ(s) ≤ m holds true. Thus, R = L∗L
implies that L is invertible and K∗K = K∗LL−1L−∗L∗K = K∗LR−1L∗K holds.
Hence, we obtain the algebraic Riccati equation

A∗X +XA− (XB + S)R−1(XB + S)∗ +Q = 0.

Note that for E ̸= In the assumption Vsys = Kn+m does not necessarily hold. There-
fore, these transformations can not be applied on a DAE Lur’e equation in general.

♢
To study Lur’e equations, the weighting matrix R does not necessarily need to be
invertible. In contrast to the algebraic Riccati equation we can study Lur’e equa-
tions for a singular weighting matrix R = R∗ as well.

So we know that the concept of Lur’e equations is a generalization of algebraic
Riccati equations. Now we can put our focus on the connection between solutions
of Lur’e equation and solutions of the KYP inequality.

Remark 4.2. If (X,K,L) solves the Lur’e equation (4.1), then X is a solution of
the KYP inequality (3.2), i.e.[

A∗XE + E∗XA+Q E∗XB + S
B∗XE + S∗ R

]
≥Vsys 0.

♢

4.2 Solutions of Lur’e equations via deflating
subspaces

To formulate the main result of the chapter we first need to introduce deflating
subspaces, neutrality of a subspace with respect to a matrix and even matrix pencils.

Definition 4.3.

(a) A matrix Y ∈ Kn×k is called basis matrix for a subspace Y ⊆ Kn of dimension
k if rkY = k and imY = Y .

(b) Let Y ⊆ Kn be a subspace with basis matrix Y ∈ Kn×k. We call Y a (right)
deflating subspace for the pencil sE − A ∈ K[s]ℓ×n if there exists some j ∈ N,
a matrix Z ∈ Kℓ×j and a pencil sẼ − Ã ∈ K[s]j×k with rkK(s)

(
sẼ − Ã

)
= j

such that
(sE − A)Y = Z(sẼ − Ã).
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(c) Let H ∈ Kn×n be given. A subspace Y ⊆ Kn is called H-neutral if

y∗1Hy2 = 0 ∀ y1, y2 ∈ Y .

(d) A pencil sE − A ∈ K[s]n×n is called even if

sE − A = −sE∗ − A∗.

♢

Theorem 4.4 further requires a special even matrix pencil. Associated to a system
[E,A,B] ∈ Σn,m(K) and weighting matrices Q = Q∗ ∈ Kn×n, R = R∗ ∈ Km×m, and
S ∈ Kn×m it is denoted by

sE − A :=

 0 −sΠE + A B
sE∗Π∗ + A∗ Q S

B∗ S∗ R

 ∈ K[s](2n+m)×(2n+m). (4.4)

The projector Π is defined as

Π := W−1

In1 0 0
0 0 0
0 0 0

W ∈ Kn×n (4.5)

with matrices W , T ∈ Gln(K) and F ∈ Km×n such that (2.12) holds.

Now we are able to state the main result of this chapter. It describes a relationship
between the existence of a Lur’e solution and deflating subspaces. In Section 4.6 we
show how a Lur’e solution can be reconstructed based on this theorem.

Theorem 4.4. Let [E,A,B] ∈ Σn,m(K) with system space Vsys and weighting ma-
trices Q = Q∗ ∈ Kn×n, S ∈ Kn×m and R = R∗ ∈ Km×m be given. Let W,T ∈ Gln(K)
and F ∈ Km×n be given such that (2.12) holds. Further, let the projector Π be defined
as in (4.5), and sE − A as in (4.4). Then the following statements are equivalent:

(a) The Lur’e equation (4.1) has a solution (X,K,L) ∈ Kn×n ×Kq×n ×Kq×m.

(b) The Popov function Φ fulfils Φ(iω) ≥ 0 for all ω ∈ R with det(iωE − A) ̸=
0 and there exist some matrices Yµ, Yx ∈ Kn×(n+m), Yu ∈ Km×(n+m), and
Zµ, Zx ∈ Kn×(n+q), Zu ∈ Km×(n+q) such that

Y =

Yµ

Yx

Yu

 ∈ K(2n+m)×(n+m), Z =

Zµ

Zx

Zu

 ∈ K(2n+m)×(n+q) (4.6)

satisfy the following:
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(b1) the space imY is (n+m)-dimensional and E-neutral;

(b2) Vsys ⊆ im

[
Yx

Yu

]
;

(b3) rkΠEYx = n1;
(b4) there exist Ẽ, Ã ∈ K(n+q)×(n+m) with rkK(s)(sẼ − Ã) = n+ q such that

(sE − A)Y = Z(sẼ − Ã).

We now specify the number q ∈ N0 of rows of the matrices K and L belonging to a
Lur’e solution (X,K,L) as in (4.1).

Proposition 4.5. Let [E,A,B] ∈ Σn,m(K) with system space Vsys ⊆ Kn+m and
weighting matrices Q = Q∗ ∈ Kn×n, S ∈ Kn×m, R = R∗ ∈ Km×m be given and
let the Popov function Φ(s) ∈ K(s)m×m be defined as in (3.1). Furthermore, let
(X,K,L) ∈ Kn×n ×Kq×n ×Kq×m be a solution of the Lur’e equation (4.1). Then it
holds

q = rkK(s) Φ(s).

To prove this proposition we split a matrix into a product of some other matrix and
its conjugate transpose. For this reason we need the following lemma on diagonal-
ization.

Lemma 4.6. Let M = M∗ ∈ Kℓ×ℓ be given.

(a) There exists some orthogonal (K = R) / unitary (K = C) matrix Λ̃ ∈ Kℓ×ℓ

such that
Λ̃∗M Λ̃ = diag(λ1, . . . , λℓ),

where λ1, . . . , λℓ ∈ R denote the eigenvalues of M .

(b) If in addition M is positive semi-definite, i.e. λi ≥ 0 for all i, then M = ΛΛ∗

for some Λ ∈ Kℓ×ℓ.

Proof: For the proof of (a) see [Fis10, Corollary in 5.6.2]. Then (b) follows from
(a) as

M = Λ̃ diag(λ1, . . . , λℓ) Λ̃
∗ = Λ̃ diag(

√
λ1, . . . ,

√
λℓ) diag(

√
λ1, . . . ,

√
λℓ)

∗Λ̃∗ = ΛΛ∗,

for Λ = Λ̃ diag(
√
λ1, . . . ,

√
λℓ).

In the same step of the proof of Proposition 4.5 we need to show a rank inequality
and apply Sylvester’s rank inequality there.

Lemma 4.7 (Sylvester’s rank inequality). For G ∈ Kj×k and H ∈ Kk×ℓ it holds
that

rkG+ rkH − k ≤ rk(GH) ≤ min { rkG, rkH } . (4.7)
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Proof: See [Fis10, Chap. 2.5].

Proof of Proposition 4.5: To show that q = rkK(s) Φ(s), the proof is divided into
three steps. In Step 1 it is shown that for a KYP solution P the left hand side of
(3.2) can be decomposed such that P fulfils the Lur’e equation (4.1a). This result
is applied in Step 2 to show an upper boundary for the rank of Φ(s). Step 3 then
finally shows the statement through a decomposition of Φ(s) using Lur’e solutions.

Step 1: Let P ∈ Kn×n fulfil the KYP inequality (3.2). We show that there exist
some matrices M ∈ Kℓ×n and N ∈ Kℓ×m such that[

A∗PE + E∗PA+Q E∗PB + S
B∗PE + S∗ R

]
=Vsys

[
M∗

N∗

] [
M N

]
(4.8)

holds.
At first, note that Proposition 2.41 along with (2.23) yields

Γ∗
[
A∗PE + E∗PA+Q E∗PB + S

B∗PE + S∗ R

]
Γ ≥ 0,

where the projector Γ : Kn+m → Vsys ⊆ Kn+m is defined by

Γ :=

[
T 0
FT Im

]
In1 0 0 0
0 0 0 −B2

0 0 0 0
0 0 0 Im

 .

Thus, Lemma 4.6 provides the existence of some Λ ∈ Kn+m such that

Γ∗
[
A∗PE + E∗PA+Q E∗PB + S

B∗PE + S∗ R

]
Γ = ΛΛ∗.

Since Γ fulfils the projector condition Γ2 = Γ, this again yields

Γ∗
[
A∗PE + E∗PA+Q E∗PB + S

B∗PE + S∗ R

]
Γ = Γ∗ΛΛ∗Γ,

which implies [
A∗PE + E∗PA+Q E∗PB + S

B∗PE + S∗ R

]
=Vsys ΛΛ

∗.

Decomposing Λ into Λ =

[
M∗

N∗

]
provides (4.8), which was to show.

Step 2: Let λ ∈ C with det(λE − A) ̸= 0. Then

Φ(λ)
(3.1)
=

[
(λE − A)−1B

Im

]∗ [
Q S
S∗ R

] [
(λE − A)−1B

Im

]
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(4.8)
=

(2.25)

[
(λE − A)−1B

Im

]∗ [
M∗

N∗

] [
M N

] [(λE − A)−1B
Im

]
−
[
(λE − A)−1B

Im

]∗ [
A∗PE + E∗PA E∗PB

B∗PE 0

] [
(λE − A)−1B

Im

]
(3.20)
=

([
M N

] [(λE − A)−1B
Im

])∗([
M N

] [(λE − A)−1B
Im

])
= Z∗(λ)Z(λ),

where

Z(λ) := N +M(λE − A)−1B ∈ Kℓ×m for all λ ∈ C with det(λE − A) ̸= 0.

Further, it holds that

rkK(s) Φ(s)
(4.7)
≤ rkK(s) Z(s) ≤ min{ℓ,m} ≤ ℓ.

Step 3: Let (X,K,L) be a solution of the Lur’e equation (4.1). An argumentation
analogous to that in Step 2 shows

Φ(λ) = W ∗(λ)W (λ), (4.9)

where

W (λ) := L+K(λE − A)−1B ∈ Kq×m for all λ ∈ C with det(λE − A) ̸= 0.

Since (X,K,L) solves the Lur’e equation (4.1) it holds

n+ q
(4.1b)
= rkK(s)

[
−sE + A B

K L

]
= rkK(s)

[
−sE + A B

K L

] [
(−sE + A)−1 (−sE + A)−1B

0 Im

]
= rkK(s)

[
In 0

K(−sE + A)−1 −W (s)

]
and thus rkK(s) W (s) = q.
Applying Sylvester’s rank inequality as in Lemma 4.7

q = rkK(s) W
∗(s) + rkK(s)W (s)− q

(4.7)
≤ rkK(s) (W

∗(s)W (s))

(4.9)
= rkK(s) Φ(s) ≤ rkK(s) W (s) = q

we can infer
q = rkK(s)W (s) = rkK(s) Φ(s) ≤ ℓ.
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Remark 4.8. The proof of Proposition 4.5 provides some notes on Lur’e solutions.

(i) The triple (P,M,N) as in (4.8) is not supposed to fulfil (4.1b). Therefore, in
general (P,M,N) is not a solution of the Lur’e equation (4.1).

(ii) Solutions of the Lur’e equation (4.1) are rank-minimizing in the sense that the
rank of the matrix on the right hand side of (4.8) is minimized. ♢

4.3 The ODE case
In this section we present some findings from [Rei11] for Lur’e equations in the
ODE case. Theorem 4.9 considers the existence of Lur’e solutions in the ODE case.
It is applied to prove Theorem 4.4 in Section 4.5. Lemma 4.11 and Lemma 4.12 con-
sider the ODE case as well. Together with Theorem 4.9 they are used in Section 4.4
to prove the existence of Lur’e solutions and that Lur’e solutions are extremal solu-
tions of the KYP inequality.

In the ODE case [I, A,B] ∈ Σn,m(K), the even matrix pencil (4.4) reads

(sE − A)ODE =

 0 −sIn + A B
sIn + A∗ Q S

B∗ S∗ R

 . (4.10)

Below we state [Rei11, Theorem 11], which is an ODE version of Theorem 4.4.

Theorem 4.9. Let the pencil (sE −A)ODE be defined as in (4.10) and let the Popov
function as in (3.1) satisfy Φ(iω) ≥ 0 for all ω ∈ R with iω /∈ σ(A). Moreover, let
q = normalrankΦ(s). Then the following two statements are equivalent:

(i) For any Hermitian X ∈ Kn×n there exist K ∈ Kq×n, L ∈ Kq×m such that
(X,K,L) is a solution of Lur’e equation (4.2).

(ii) There exist Vµ, Vx ∈ Kn×(n+m), Vu ∈ Km×(n+m), and Wµ, Wx ∈ Kn×(n+q),
Wu ∈ Km×(n+q) and Ẽ, Ã ∈ K(n+q)×(n+m) such that

V =

Vµ

Vx

Vu

 ∈ K(2n+m)×(n+m), W =

Wµ

Wx

Wu

 ∈ K(2n+m)×(n+q) (4.11)

satisfy
• the space V = imV is maximally E-neutral with rkVx = n;
• X = VµV

+
x for some arbitrary right inverse V +

x of Vx;
• (sE − A)V = W (sẼ − Ã).
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Remark 4.10. Let E ∈ K(2n+m)×(2n+m) as in (4.10) be given. According to [Rei11]
a subspace V ⊆ K2n+m is maximally E-neutral if it is E-neutral and dimV = n+m
holds. ♢

To prove Theorem 4.4 we need Theorem 4.9 and the following auxiliary results that
can be found in [Rei11, Theorem 14/15/16].

Lemma 4.11. Let the Lur’e equation (4.2) be given with the associated even matrix
pencil (sE − A)ODE as in (4.10). Assume that the KYP inequality (3.7) is feasible.
Moreover, let a maximally E-neutral space imV with V as in (4.11) be given such
that (s E − A)V = W (s Ẽ − Ã) holds true for some W ∈ K(2n+m)×(n+p), and
Ẽ , Ã ∈ K(n+p)×(n+m). Furthermore, assume that for all generalized eigenvalues λ of
the pencil sẼ − Ã the number −λ̄ is not an uncontrollable mode of [I, A,B]. Then
rkVx = n.

Lemma 4.12. Let the Lur’e equation (4.2) be given with the associated even matrix
pencil (sE − A)ODE as in (4.10). Assume that the KYP inequality (3.7) is feasible
and [I, A,B] is behaviourally stabilizable (anti-stabilizable). Moreover, let V,W be
given as in (4.11) such that imV is maximally E-neutral and rkVx = n and it holds
(sE − A)V = W (sẼ − Ã) for some Ẽ, Ã ∈ K(n+p)×(n+m) with the property that all
generalized eigenvalues of sẼ − Ã have non-positive (non-negative) real part. Let
X+ = VµV

+
x for some right inverse V +

x of Vx. Then for all Hermitian Y ∈ K+

solving the KYP inequality (3.7) it holds:

Y ≤ X+ (Y ≥ X+).

4.4 Results for DAE Lur’e equations
This section collects results for DAE Lur’e equations. We specify the existence of
Lur’e solutions in Theorem 4.14 and prove it with several auxiliary results. Within
Theorem 4.18 we show that in terms of definiteness Lur’e solutions are extremal
solutions of the KYP inequality. The last result of this section presents a method to
remodel a given system into an impulse controllable one with equal behaviours.

In the preliminaries we introduced different concepts of stabilizability. To state a
relationship between stabilizability of a DAE system and properties of solutions of
the associated Lur’e equation we need the following notions.

Definition 4.13. Let [E,A,B] ∈ Σn,m(K) with system space Vsys ⊆ Kn+m and
matrices Q = Q∗ ∈ Kn×n, S ∈ Kn×m, and R = R∗ ∈ Km×m be given. A solution
(X,K,L) ∈ Kn×n ×Kq×n ×Kq×m of the Lur’e equation (4.1) is called

(i) stabilizing if rk

[
−λE + A B

K L

]
= n+ q ∀λ ∈ C+;
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(ii) anti-stabilizing if rk

[
−λE + A B

K L

]
= n+ q ∀λ ∈ C−. ♢

Solvability of Lur’e equations requires conditions to be fulfilled. In the following we
provide some sufficient conditions for the existence of (stabilizing/anti-stabilizing)
solutions of the Lur’e equation (4.1).

Theorem 4.14 (Existence of solutions of Lur’e equations). Let [E,A,B] ∈ Σn,m(K)
with system space Vsys ⊆ Kn+m and matrices Q = Q∗ ∈ Kn×n, S ∈ Kn×m, and
R = R∗ ∈ Km×m be given. Further, let P ∈ Kn×n be a solution of the KYP inequal-
ity (3.2).

(a) If [E,A,B] has no uncontrollable modes on the imaginary axis, then the Lur’e
equation (4.1) has a solution.

(b) If [E,A,B] is behaviourally stabilizable, then the Lur’e equation (4.1) has a
stabilizing solution.

(c) If [E,A,B] is behaviourally anti-stabilizable, then the Lur’e equation (4.1) has
an anti-stabilizing solution.

To prove this theorem we need some auxiliary results. The first one can be seen as
a version of Lemma 3.12 (b) for Lur’e equations.

Lemma 4.15. Let [E,A,B] ∈ Σn,m(K) with system space Vsys ⊆ Kn+m, weighting
matrices Q = Q∗ ∈ Kn×n, S ∈ Kn×m, R = R∗ ∈ Km×m and matrices W , T ∈ Gln(K)
and F ∈ Km×n be given such that (2.12) holds. Define the matrices EF, AF, BF,
QF, SF, and RF as in (3.8). Then for (X,K,L) ∈ Kn×n ×Kq×n ×Kq×m and

XF = W−∗XW−1 =

X11 X12 X13

X∗
12 X22 X23

X∗
13 X∗

23 X33

 ∈ Kn×n,

KF = (K + LF )T =
[
K1 K2 K3

]
∈ Kq×n

partitioned according to the block structure of FEF (2.7) it holds:
(X,K,L) is

(a) a solution,
(b) a stabilizing solution,
(c) an anti-stabilizing solution

of the Lur’e equation (4.1) if, and only if, X11 is Hermitian with[
A∗

11X11 +X11A11 +Q11 X11B1 + S1 −Q12B2

B∗
1X11 + S∗

1 −B∗
2Q

∗
12 B∗

2Q22B2 −B∗
2S2 − S∗

2B2 +R

]
=

[
K∗

1

(L−K2B2)
∗

] [
K1 L−K2B2

]
(4.12a)
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and

(a) rkK(s)

[
−sIn1 + A11 B1

K1 L−K2B2

]
= n1 + q, (4.12b)

(b) rk

[
−λIn1 + A11 B1

K1 L−K2B2

]
= n1 + q ∀λ ∈ C+,

(c) rk

[
−λIn1 + A11 B1

K1 L−K2B2

]
= n1 + q ∀λ ∈ C−.

Proof: To prove the statement we follow an argumentation which is analogous to
that in Lemma 3.12 (b). At first, we show that the Lure’e equation (4.1a) holds for
a system if, and only if, it holds for an equivalent system in FEF (2.7). In Step 2
the equivalence of the Lur’e equation (4.1a) and (4.12a) is proved. With Step 3 we
finish the proof by showing that the rank condition (4.1b) holds true if, and only if,
(4.12b) holds true.

Step 1: Calculations as in (3.16) yield[
T ∗ T ∗F ∗

0 Im

] [
A∗XE + E∗XA+Q E∗XB + S

B∗XE + S∗ R

] [
T 0
FT Im

]
(3.16)
=

[
A∗

FXFEF + E∗
FXFAF +QF E∗

FXFBF + SF

B∗
FXFEF + S∗

F RF

]
. (4.13)

Since K∗
F = T ∗(K∗ + F ∗L∗), we have[

T ∗ T ∗F ∗

0 Im

] [
K∗

L∗

] [
K L

] [ T 0
FT Im

]
=

[
K∗

F

L∗

] [
KF L

]
(4.14)

for the right hand side of the Lur’e equation (4.1). Analogous to the calculations
leading from (3.17) to (3.18) we obtain[

A∗XE + E∗XA+Q E∗XB + S
B∗XE + S∗ R

]
=Vsys

[
K∗

L∗

] [
K L

]
(4.13)⇔
(4.14)

[
A∗

FXFEF + E∗
FXFAF +QF E∗

FXFBF + SF

B∗
FXFEF + S∗

F RF

]
=Vsys,F

[
K∗

F

L∗

] [
KF L

]
for all Hermitian X ∈ Kn×n. Therefore, the Lur’e equation (4.1a) holds for the
system [E,A,B] if, and only if, it holds for [EF, AF, BF] in FEF (2.7).

Step 2: The proof of the equivalence of (4.1a) and (4.12a) is split into two parts.
Step 2.1: Let X ∈ Kn×n fulfil the Lur’e equation (4.1). In particular, X is Hermitian.
Thus,

X∗
F =

(
W−∗XW−1

)∗
= W−∗XW−1 = XF

and thereby X11 are Hermitian.



4.4 Results for DAE Lur’e equations 57

Analogous to the calculations in Step 2.1 in the proof of Lemma 3.12 (b) with(
x
u

)∗ [
A∗XE + E∗XA+Q E∗XB + S

B∗XE + S∗ R

](
x
u

)
(3.19)
=

(
x1

u

)∗ [
A∗

11X11 +X11A11 +Q11 X11B1 + S1 −Q12B2

B∗
1X11 + S∗

1 −B∗
2Q12 B∗

2Q22B2 −B∗
2S2 − S∗

2B2 +R

](
x1

u

)
and (

x
u

)∗ [
K∗

L∗

] [
K L

](x
u

)

(3.19)
=


x1

−B2u
0n3×1

u


∗ 

K∗
1

K∗
2

K∗
3

L∗

 [K1 K2 K3 L
]

x1

−B2u
0n3×1

u


=

 x1

−B2u
u

∗ K∗
1

K∗
2

L∗

 [K1 K2 L
] x1

−B2u
u


=

(
x1

u

)∗ [
K∗

1K1 K∗
1 (L−K2B2)

(L∗ −B∗
2K

∗
2)K1 (L∗ −B∗

2K
∗
2) (L−K2B2)

](
x1

u

)
=

(
x1

u

)∗ [
K∗

1

(L−K2B2)
∗

] [
K1 L−K2B2

](x1

u

)
we arrive at [

A∗
11X11 +X11A11 +Q11 X11B1 + S1 −Q12B2

B∗
1X11 + S∗

1 −B∗
2Q12 B∗

2Q22B2 −B∗
2S2 − S∗

2B2 +R

]
=

[
K∗

1

(L−K2B2)
∗

] [
K1 L−K2B2

]
and thus X11 fulfils (4.12a).

Step 2.2: Suppose X11 ∈ Kn1×n1 fulfils (4.12a). With exactly the same argumen-
tation as in Step 2.2 in the proof of Lemma 3.12 (b) we obtain that X fulfils the
Lur’e equation (4.1).

Step 3: We still need to show

(4.1b) holds ⇔ rkK(s)

[
−sIn1 + A11 B1

K1 L−K2B2

]
= n1 + q.

Let arbitrary λ ∈ C be given. Calculating straight forward yields

n+ q
(4.1b)
= rk

[
−λE + A B

K L

]
= rk

[
W 0
0 Iq

] [
−λE + A B

K L

] [
T 0
FT Im

]
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= rk

[
W 0
0 Iq

] [
(−λE + (A+BF ))T B

(K + LF )T L

]
= rk

[
−λWET +W (A+BF )T WB

(K + LF )T L

]

(3.8)
= rk

[
−λEF + AF BF

KF L

]
(2.16)
= rk


−λIn1 + A11 0 0 B1

0 In2 −λE23 B2

0 0 −λE33 + In3 0
K1 K2 K3 L


which equals

n+ q = rk



−λIn1 + A11 0 0 B1

0 In2 −λE23 B2

0 0 −λE33 + In3 0
K1 K2 K3 L



In1 0 0 0
0 −B2 In2 0
0 0 0 In3

0 Im 0 0




= rk


−λIn1 + A11 B1 0 0

0 0 In2 −λE23

0 0 0 −λE33 + In3

K1 L−K2B2 K2 K3


(⋆)
= rk

[
−λIn1 + A11 B1

K1 L−K2B2

]
+ n2 + n3,

where we have used
rk
(
λE33 − In3

)
= n3 for all λ ∈ C. (⋆)

Due to n = n1 + n2 + n3 it follows

n1 + q = rk

[
−λIn1 + A11 B1

K1 L−K2B2

]
.

Further, we use [Voi15, Theorem 3.5.3] which is stated below.

Theorem 4.16. Let the system [E,A,B] ∈ Σn,m with the system space Vsys and
weighting matrices Q = Q∗ ∈ Kn×n, S ∈ Kn×m, and R = R∗ ∈ Km×m be given.
Assume that the KYP inequality (3.2) is solvable.

(a) If [E,A,B] is strongly stabilizable, then the Lur’e equation (4.1) has a stabi-
lizing solution.

(b) If [E,A,B] is strongly anti-stabilizable, then the Lur’e equation (4.1) has an
anti-stabilizing solution.

Remark 4.17. Note that by [Voi15, Proposition 2.2.6] a system [E,A,B] ∈ Σn,m is
strongly (anti-)stabilizable if, and only if, it is behaviourally (anti-)stabilizable and
impulse controllable. ♢

Based on these results we now prove Theorem 4.14.
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Proof of Theorem 4.14: For [E,A,B] ∈ Σn,m(K) assume that W,T ∈ Gln(K)
and F ∈ Km×n fulfil (2.12). Define QF, SF and RF as in (3.8) and suppose that P
fulfils the KYP inequality (3.2). Consider PF = W−∗PW−1 partitioned according
to block structure of FEF (2.7). By Lemma 3.12 we know that P11 ∈ Kn1×n1 fulfils
the standard KYP inequality (3.12).

(a) If [E,A,B] has no uncontrollable modes on the imaginary axis, it follows from
Proposition 2.34 (c) that the system [In1 , A11, B1] has no uncontrollable modes
on the imaginary axis. Lemma 4.11 and Theorem 4.9 imply the existence of
an Hermitian X11 ∈ Kn1×n1 and matrices K1 ∈ Kq×n1 , L1 ∈ Kq×m such that
the triple (X11, K1, L1) is a solution of[
A∗

11X11 +X11A11 +Q11 X11B1 + S1 −Q12B2

B∗
1X11 + S∗

1 −B∗
2Q

∗
12 B∗

2Q22B2 −B∗
2S2 − S∗

2B2 +R

]
=

[
K∗

1

L∗
1

] [
K1 L1

]
.

(4.15)
Define matrices

X = W ∗

X11 0 0
0 0 0
0 0 0

W, K =
[
K1 0 0

]
T−1 − LF, L = L1. (4.16)

Lemma 4.15 with K2 = 0 yields that (X,K,L) solves the Lur’e equation (4.1).

(b) Let [E,A,B] behaviourally stabilizable be given in FEF (2.7). Applying Re-
mark 2.37 the ODE system [In1 , A11, B1] is (behaviourally) stabilizable. Fur-
ther, the ODE system is impulse controllable by Remark 2.4 and therefore, ac-
cording to Remark 4.17, it is strongly stabilizable. Theorem 4.16 (a) then yields
the existence of a stabilizing solution (X11, K1, L1) ∈ Kn1×n1 ×Kq×n1 ×Kq×m

for the ODE Lur’e equation (4.2). Define the triple (X,K,L) as in (4.16) and
let λ ∈ C+. Then, Lemma 4.15 implies that (X,K,L) is a stabilizing solution
of the Lur’e equation (4.1).

(c) Statement (c) is proved analogously to (b) by using Theorem 4.16 (b) instead
of (a), where strongly anti-stabilizable systems are considered.

The following theorem in combination with Remark 4.2 (b) states that (anti-)sta-
bilizing solutions (X,K,L) of Lur’e equations are extremal solutions of the KYP
inequality (3.2) in terms of definiteness.

Theorem 4.18. Let [E,A,B] ∈ Σn,m(K) with system space Vsys ⊆ Kn+m, space of
consistent differential variables Vdiff ⊆ Kn, and matrices Q = Q∗ ∈ Kn×n, S ∈ Kn×m,
R = R∗ ∈ Km×m be given. Then any solution P ∈ Kn×n of the KYP inequality (3.2)
satisfies the following implications.
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(a) If (X,K,L) is a stabilizing solution of the Lur’e equation (4.1), then

E∗XE ≥Vdiff
E∗PE.

(b) If (X,K,L) is an anti-stabilizing solution of the Lur’e equation (4.1), then

E∗PE ≥Vdiff
E∗XE.

Proof: Let P solve the KYP inequality. Choose matrices W , T ∈ Gln(K) and
F ∈ Km×n such that (2.12) holds and define PF := W−∗PW−1 according to the
block structure of (3.11). By Lemma 3.12 (b) the matrix P11 fulfils the KYP in-
equality (3.12).

At first, we show that (a) holds. Let (X,K,L) be a stabilizing solution of the Lur’e
equation (4.1). Define

(XF, KF, LF) := (W−∗XW−1, KT + LFT, L)

partitioned as in Lemma 4.15. Then Lemma 4.15 yields that (X11, K1, L−K2B2) is
a stabilizing solution of (4.12).
Since (X11, K1, L−K2B2) is a solution of the Lur’e equation (4.12), the matrix X11

solves the ODE KYP inequality (3.7) and hence by Theorem 3.2 the Popov func-
tion ΦF is positive semi-definite on the imaginary axis. Thus, Theorem 4.9 provides
the remaining presuppositions of Lemma 4.12 for the ODE system [In1 , A11, B1] with
X+ = X11. Applying Lemma 4.12 we get X11 ≥ P11.
Now let x ∈ Vdiff be arbitrary. Due to Proposition 2.34 (b) this is equivalent to

x ∈ T

(
Kn1+n2 × ker

[
E23

E33

])

which again implies that there exist some y1 ∈ Kn1 , y2 ∈ Kn2 and y3 ∈ ker

[
E23

E33

]
such that T−1x = (y1, y2, y3)

⊤. Further, it holds that

x∗E∗XEx = x∗T−∗T ∗E∗W ∗W−∗XW−1WETT−1x = (T−1x)∗E∗
FXFEF(T

−1x).

Since y3 ∈ ker

[
E23

E33

]
, we get

(T−1x)∗E∗
FXFEF(T

−1x)

=

y1
y2
y3

∗ In1 0 0
0 0 0
0 E∗

23 E∗
33

X11 X12 X13

X∗
12 X22 X23

X∗
13 X∗

23 X33

In1 0 0
0 0 E23

0 0 E33

y1
y2
y3


= y∗1X11y1.
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By an analogous argumentation we arrive at x∗E∗PEx = y∗1P11y1. Hence, the choice
of x and the inequality X11 ≥ P11 imply

x∗E∗XEx ≥ x∗E∗PEx ∀x ∈ Vdiff

and the proof of (a) is completed.

The proof of (b) works analogously (by using the part of Lemma 4.12 in brackets).

Theorem 4.18 provides the following conclusion on two solutions of the Lur’e equa-
tion.

Corollary 4.19. If (X1, K1, L1) and (X2, K2, L2) are stabilizing (anti-stabilizing)
solutions of the Lur’e equation (4.1), then

E∗X1E =Vdiff
E∗X2E.

Proof: Let (X1, K1, L1) and (X2, K2, L2) be stabilizing solutions of (4.1). Due to
Remark 4.2 (b) both X1 and X2 solve the KYP inequality (3.2). Thus, Theorem
4.18 yields

E∗X1E ≥Vdiff
E∗X2E ≥Vdiff

E∗X1E.

The proof for the anti-stabilizing case works analogously.

In the last theorem of this section we deduce a method to remodel the given system
into an impulse controllable one such that the behaviour and even the sets of solutions
for the corresponding KYP inequality and Lur’e equation stay the same.

Theorem 4.20. Let [E,A,B] ∈ Σn,m(K) with system space Vsys ⊆ Kn+m, space of
consistent differential variables Vdiff ⊆ Kn, and weighting matrices Q = Q∗ ∈ Kn×n,
S ∈ Kn×m, R = R∗ ∈ Km×m be given. Further, let W , T ∈ Gln(K) and F ∈ Km×n be
transformation matrices such that (2.12) holds. Define the projector Π as in (4.5).
Then we have

imΠ = EVdiff (4.17)

and the following statements hold true:

(a) [ΠE,A,B] ∈ Σn,m(K) is impulse controllable and

B[E,A,B] = B[ΠE,A,B].

In particular, the system space of [ΠE,A,B] is Vsys.

(b) P ∈ Kn×n fulfils the KYP inequality (3.2) if, and only if,[
A∗PΠE + E∗Π∗PA+Q E∗Π∗PB + S

B∗PΠE + S∗ R

]
≥Vsys 0, P = P ∗. (4.18)
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(c) (X,K,L) ∈ Kn×n ×Kq×n ×Kq×m fulfils the Lur’e equation (4.1a) if, and only
if,[

A∗XΠE + E∗Π∗XA+Q E∗Π∗XB + S
B∗XΠE + S∗ R

]
=Vsys

[
K∗

L∗

] [
K L

]
, X = X∗.

(4.19)
Furthermore, it holds that

rk

[
−λE + A B

K L

]
= rk

[
−λΠE + A B

K L

]
∀λ ∈ C.

Proof: Let EF, AF, BF, QF, SF and RF as in (3.8).

At first, we show that (4.17) holds. Therefore, note that Proposition 2.34 (b) yields

EVdiff = ET

(
Kn1+n2 × ker

[
E23

E33

])
= W−1EF

(
Kn1+n2 × ker

[
E23

E33

])

= W−1

In1 0 0
0 0 E23

0 0 E33

(Kn1+n2 × ker

[
E23

E33

])
= W−1

(
Kn1 × {0(n2+n3)×1}

)
.

Together with

imΠ = W−1

In1 0 0
0 0 0
0 0 0

W Kn = W−1
(
Kn1 × {0(n2+n3)×1}

)
this completes the proof of (4.17).

Now we verify the statements (a), (b) and (c) step by step.

(a) Since

[ΠFEF, AF, BF] =

In1 0 0
0 0 0
0 0 0

 ,

A11 0 0
0 In2 0
0 0 In3

 ,

B1

B2

0


and

kerΠFEF = {0n1} ×Kn2+n3

holds, Proposition 2.27 and Remark 2.33 yield that [ΠE,A,B] is impulse con-
trollable. Further, we havex1

x2

x3

 , u

 ∈ B[ΠFEF,AF,BF] ⇔


ẋ1 = A11x1 +B1u

0 = x2 +B2u

0 = x3
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⇔ x2 = −B2u, x3 = 0 and (x1, u) ∈ B[In1 ,A11,B1]

Prop.⇔
2.34 (a)

x1

x2

x3

 , u

 ∈ B[EF,AF,BF].

This equivalence together with Remark 2.20 gives

(x, u) ∈ B[E,A,B]
Rem.2.20⇔

(
T−1x, u− Fx

)
∈ B[EF,AF,BF]

⇔
(
T−1x, u− Fx

)
∈ B[ΠFEF,AF,BF]

Rem.2.20⇔ (x, u) ∈ B[ΠE,A,B],

which completes the proof of (a).

(b) Let P ∈ Kn×n, its transformation into PF = W−∗PW−1 with block structure
as in (3.11), and matrices QF and SF as in (3.8) be given. The idea of the
proof is to show that P fulfils the KYP inequality (4.18) if, and only if, P11

fulfils the ODE KYP inequality (3.12). Then we can apply Lemma 3.12 (b)
and hence we know that P fulfils the original KYP inequality (3.2).
The proof of the first equivalence mentioned above runs completely analogously
to the Proof of Lemma 3.12 (b). One should keep in mind that we use ΠE
instead of E and therefore calculate with

EΠ,F =

In1 0 0
0 0 0
0 0 0

 instead of EF =

In1 0 0
0 0 E23

0 0 E33

 .

However, that only changes the unspecified matrices in equation (3.19) and
has no impact on the proof itself.

(c) The equivalence between the Lur’e equation (4.1a) for [E,A,B] and (4.19)
for [ΠE,A,B] can be verified analogously to (b). Note that we could also
refer to the proof of Lemma 4.15 as it is an adopted version of the proof of
Lemma 3.12 (b) for Lur’e equations.
Further, we show that the rank condition holds. Therefore, let λ ∈ C. Then,
analogous to the rank calculations in the proof of Lemma 4.15 and using the
structure of EΠ,F , it holds

rk

[
−λE + A B

K L

]
= rk

[
−λEF + AF BF

KF L

]

=rk


−λIn1 + A11 0 0 B1

0 In2 −λE23 B2

0 0 −λE33 + In3 0
K1 K2 K3 L


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=rk


−λIn1 + A11 0 0 B1

0 In2 0 B2

0 0 In3 0
K1 K2 K3 L


=rk

[
−λEΠ,F + AF BF

KF L

]
= rk

[
−λΠE + A B

K L

]
,

which finishes the proof.

4.5 Proof of Theorem 4.4
In this section we apply the findings of the previous ones to prove Theorem 4.4.

Proof of Theorem 4.4: Note that by Theorem 4.20 (a) the system [ΠE,A,B] is
impulse controllable. By Proposition 2.34 (d) we can choose W , T ∈ Gln (K) and
F ∈ Km×n such that n3 = 0. Thereby, the block structure of the matrices simplifies
as follows

EF = WΠET =

[
In1 0
0 0

]
,

AF = W (A+BF )T =

[
A11 0
0 In2

]
, BF = WB =

[
B1

B2

]
,

QF = T ∗(Q+ SF + F ∗S∗ + F ∗RF )T =

[
Q11 Q12

Q∗
12 Q22

]
,

SF = T ∗(S + F ∗R) =

[
S1

S2

]
, RF = R,

XF = W−∗XW−1 =

[
X11 X12

X∗
12 X22

]
and KF = (K + LF )T =

[
K1 K2

]
.



(4.20)

The proof is split into two parts. At first, the implication (a) follows (b) is shown.
Afterwards, we prove (b) follows (a).

(a) ⇒ (b):
The idea to prove (b) is to construct matrices Y and Z as in (4.6). Therefore, we
will first determine some matrices YF and ZF fulfilling the properties in (b1) to (b4)
for an associated system and then by a transformation we will receive (b). For a
better understanding the structure of the proof is given in Figure 4.1.

Let statement (a) hold true, i.e. (X,K,L) ∈ Kn×n × Kq×n × Kq×m is a solu-
tion of the Lur’e equation (4.1). Since X solves the KYP inequality (3.2), The-
orem 3.2 (a) provides that Φ is positive semi-definite on the imaginary axis. Fur-
ther, Theorem 4.20 (c) implies that (X,K,L) even solves the Lur’e equation (4.19)
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(a): (X,K,L) solves Lur’e
equation for [E,A,B]

(X,K,L) solves Lur’e equation
for [ΠE,A,B]

(X11, K1, L−K2B2) solves Lur’e
equation for [In1 , A11, B1]

auxiliary result: im ŶF is a
(n+m)-dimensional ÊF-neutral
deflating subspace of sÊF − ÂF

(b’) holds for [EF, AF, BF](b) holds for [E,A,B]

Thm. 4.20(c)

Lemma 3.12

matrix definitions
& calculations

definition of matri-
ces of YF, ZF

transformation

Figure 4.1: Structure of proof of "(a) ⇒ (b)" in Theorem 4.4

for the impulse controllable system [ΠE,A,B]. Thus, Lemma 4.15 again provides
that (X11, K1, L − K2B2) fulfils the ODE Lur’e equation (4.12) for the subsystem
[In1 , A11, B1] of [ΠE,A,B].

To obtain some auxiliary results define

sÊF − ÂF :=


0 −sIn1 +A11 B1 0 0

sIn1 +A∗
11 Q11 −Q12B2 + S1 0 0

B∗
1 −B∗

2Q
∗
12 + S∗

1 B∗
2Q22B2 −B∗

2S2 − S∗
2B2 +R 0 0

0 0 0 0 In2

0 0 0 In2 0

 ,

(4.21)

sẼF − ÃF :=

−sIn1 +A11 B1 0
K1 L−K2B2 0
0 0 In2

 , (4.22)

ŶF :=


X11 0 0
In1 0 0
0 Im 0
0 0 In2

0 0 0

 and ẐF :=


In1 0 0

−X11 K∗
1 0

0 (L−K2B2)
∗ 0

0 0 0
0 0 In2

 , (4.23)

where the number of rows in the zero blocks of ŶF and ẐF equals n2. Note that by
(4.12b) we have

rkK(s)

(
sẼF − ÃF

)
= n+ q. (4.24)
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Calculating straight forward we get(
sÊF − ÂF

)
ŶF

=


−sIn1 + A11 B1 0

(sIn1 + A∗
11)X11 +Q11 −Q12B2 + S1 0

B1X11 −B∗
2Q

∗
12 + S∗

1 B∗
2Q22B2 −B∗

2S2 − S∗
2B2 +R 0

0 0 0
0 0 In2



(4.12a)
=


−sIn1 + A11 B1 0

−X11(−sIn1 + A11) +K∗
1K1 −X11B1 +K∗

1(L−K2B2) 0
(L−K2B2)

∗K1 (L−K2B2)
∗(L−K2B2) 0

0 0 0
0 0 In2


= ẐF

(
sẼF − ÃF

)
. (4.25)

Hence, im ŶF is a deflating subspace for sÊF − ÂF. Further, let z1, z2 ∈ im ŶF be
arbitrary, i.e. there exist some x = (x⊤

1 , x
⊤
2 , x

⊤
3 )

⊤, y = (y⊤1 , y
⊤
2 , y

⊤
3 )

⊤ ∈ Kn1+m+n2

such that

z1 =
(
(X11x1)

⊤ x⊤
1 x⊤

2 x⊤
3 0⊤

)⊤ and z2 =
(
(X11y1)

⊤ y⊤1 y⊤2 y⊤3 0⊤
)⊤

.

Since X11 is Hermitian, it holds that

z∗1 ÊFz2 =
(
x∗
1 −x∗

1X
∗
11 0 0 0

)

X11y1
y1
y2
y3
0

 = 0.

Thus, im ŶF is an (n+m)-dimensional ÊF-neutral deflating subspace for sÊF − ÂF.

Following on this auxiliary result, we define transformation matrices

Û :=


In1 0 0 0 0
0 −Q∗

12 Q22B2 − S2 −1
2
Q22 In2

0 In1 0 0 0
0 0 −B2 In2 0
0 0 Im 0 0

 , (4.26)

V̂ :=

In1 0 0
0 0 Im
0 In2 B2

 and Ŵ :=

In1 0 0
0 0 Iq
0 In2 K2

 .
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Then

Û−1 =


In1 0 0 0 0
0 0 In1 0 0
0 0 0 0 Im
0 0 0 In2 B2

0 In2 Q∗
12

1
2
Q22 S2 − 1

2
Q22B2

 and Ŵ−1 =

In1 0 0
0 −K2 In2

0 Iq 0


and thus

Û−∗ =


In1 0 0 0 0
0 0 0 0 In2

0 In1 0 0 Q12

0 0 0 In2

1
2
Q22

0 0 Im B∗
2 S∗

2 − 1
2
B∗

2Q22

 .

Based on these transformation matrices we are able to define pencils and matrices
which belong to a corresponding system in FEF (2.7):

sEF −AF := Û−∗
(
sÊF − ÂF

)
Û−1, sẼ − Ã := Ŵ

(
sẼF − ÃF

)
V̂ ,

YF := Û ŶFV̂ and ZF := Û−∗ẐFŴ
−1.

}
(4.27)

For those pencils and matrices we can show that the following properties (b1’) to
(b4’) hold true. Note that they are an adopted version of the properties in (b) for a
feedback equivalent system:

(b1’) imYF is (n+m)-dimensional and EF -neutral;

(b2’) Vsys,F ⊆ im

[
Yx,F

Yu,F

]
;

(b3’) rkEFYx,F = n1;

(b4’) (sEF −AF)YF = ZF(sẼ − Ã) with rkK(s)(sẼ − Ã) = n+ q.

At first, we study the structure of the matrices in (4.27), i.e.

sEF −AF

=


0 −sIn1 +A11 B1 0 0
0 0 0 In2 0

sIn1 +A∗
11 Q11 −Q12B2 + S1 Q12 0

0 0 0 1
2Q22 In2

B∗
1 −B∗

2Q
∗
12 + S∗

1 B∗
2Q22B2 −B∗

2S2 − S∗
2B2 +R S∗

2 − 1
2B

∗
2Q22 B∗

2

 Û−1

=


0 0 −sIn1 +A11 0 B1

0 0 0 In2 B2

sIn1 +A∗
11 0 Q11 Q12 S1

0 In2 Q∗
12 Q22 S2

B∗
1 B∗

2 S∗
1 S∗

2 R


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and

YF =


X11 0 0
−Q∗

12 Q22B2 − S2 −1
2Q22

In1 0 0
0 −B2 In2

0 Im 0

 V̂ =


X11 0 0
−Q∗

12 −1
2Q22

1
2Q22B2 − S2

In1 0 0
0 In2 0
0 0 Im

 =:


Yµ,1
Yµ,2
Yx,1
Yx,2
Yu,F

 .

Note that dim(imYF) = n + m. To show the EF-neutrality let z̃1, z̃2 ∈ imYF, i.e.
there exist some x̃ = (x̃⊤

1 , x̃
⊤
2 , x̃

⊤
3 )

⊤, ỹ = (ỹ⊤1 , ỹ
⊤
2 , ỹ

⊤
3 )

⊤ ∈ Kn+m such that

z̃1 = YFx̃ = Û ŶFV̂ x̃ = Û ŶFx and z̃2 = YFỹ = Û ŶFy,

where x = V̂ x̃ ∈ Kn+m and y = V̂ ỹ ∈ Kn+m. Since im ŶF is ÊF-neutral, we have

z̃∗1EFz̃2 =
(
Û ŶFx

)∗
Û−∗ÊFÛ−1

(
Û ŶFy

)
=
(
ŶFx

)∗
ÊF
(
ŶFy

)
= 0,

which completes the proof of (b1’). Denoting Yx,F :=

[
Yx,1

Yx,2

]
we find

Vsys,F ⊆ Kn+m = im

[
Yx,F

Yu,F

]
,

i.e. (b2’) holds.
By (4.20) it is rkEFYx,F = rkYx,1 = n1 and hence (b3’) holds. Using (4.27) we
obtain ẐF = Û∗ZFŴ . Furthermore, we achieve

(sEF −AF)YF = Û−∗
(
sÊF − ÂF

)
ŶFV̂

(4.25)
= U−∗ẐF

(
sẼF − ÃF

)
V̂

= ZFŴ
(
sẼF − ÃF

)
V̂

(4.27)
= ZF(sẼ − Ã).

Since we have rkK(s)(sẼF − ÃF) = n + q by (4.24), the second equation in (4.27)
provides that rkK(s)(sẼ − Ã) = n+ q. Altogether, we have shown that (b1’) to (b4’)
hold for the Lur’e equation associated with the system in FEF (2.7).

In the end, we are going to transform the system from FEF (2.7) to its initial form
to receive (b). Define matrices

U :=

W ∗ 0 0
0 T 0
0 FT Im

 , Y = UYF, and Z = U−∗ZF. (4.28)
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It can be verified that
sE − A = U−∗(sEF −AF)U

−1 (4.29)

holds. This follows from extensive calculations using simple matrix multiplications.
Thus, we have

(sE − A)Y = U−∗(sEF −AF)YF = U−∗ZF(sẼ − Ã) = Z(sẼ − Ã),

which is (b4). Since dim(imY ) = rkY = rkUYF = rkYF = n+m and Y is E-neutral
by an argumentation analogous to above, property (b1) holds as well. Further, due

to (4.28) we have
[
T 0
FT Im

] [
Yx,F

Yu,F

]
=

[
Yx

Yu

]
and hence, the subset relation

Vsys
(2.19)
=

[
T 0
FT Im

]
Vsys,F

(b2′)

⊆ im

[
T 0
FT Im

] [
Yx,F

Yu,F

]
= im

[
Yx

Yu

]
implies (b2). Finally,

rk(ΠEYx) = rk
(
(W−1EFT

−1)TYx,F

)
= rk (EFYx,F)

(b3′)
= n1

provides (b3) and the first part of the proof is finished.

(b) ⇒ (a):
The idea to show (a) is to apply the ODE case Theorem 4.9. Therefore, we need to
transfer the given system into a suitable ODE system. To make clear, how the ODE
case Theorem and our findings fit together, Figure 4.2 is given. Using the ODE case
Theorem and some previous findings the statement follows easily.

Let (b) hold true. Consider the matrices EF, AF, BF and QF, SF, and RF as in (4.20)
and Û and U as in (4.26) and (4.28), resp.. Furthermore, define

ŶF := Û−1U−1

Yµ

Yx

Yu

 = Û−1


Yµ,1

Yµ,2

Yx,1

Yx,2

Yu,F

 =:


Yµ,1

Yx,1

Yu,F

Ŷx,2

Ŷµ,2

 and ẐF := Û∗U∗Z. (4.30)

Thus, for sÊF − ÂF as in (4.21) we can show that im ŶF is a deflating subspace:

ẐF(sẼ − Ã) = Û∗U∗(sE − A)Y

(4.29)
=

(4.27)
Û∗U∗

(
U−∗Û−∗(sÊF − ÂF)Û

−1U−1
)
Y

= (sÊF − ÂF)ŶF.
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Next we prove that im ŶF is ÊF-neutral. Therefore, consider z1, z2 ∈ im ŶF, i.e. there
exist some x = (x1, . . . , x5)

⊤, y = (y1, . . . , y5)
⊤ such that

z∗1 ÊFz2 =
(
ŶFx

)∗
ÊF
(
ŶFy

)
=
(
Û−1U−1Y x

)∗ (
Û∗UEUÛ

)(
Û−1U−1Y y

)
= (Y x)∗ E (Y y) = 0

since imY is E-neutral by (b1).

Besides ÊF-neutrality of im ŶF we are able to show that for the rank of the two blocks[
Yµ,1

Yx,1

]
of ŶF is bounded above, more precisely,

dim

(
im

[
Yµ,1

Yx,1

])
≤ n1 (4.31)

holds true. Due to the block structure of ÊF, the ÊF-neutrality of im ŶF implies that

im

[
Yµ,1

Yx,1

]
is
[
0 −In1

In1 0

]
-neutral. Thus, we have 0 = v∗

[
Yµ,1

Yx,1

]∗ [
0 −In1

In1 0

] [
Yµ,1

Yx,1

]
w

for all v, w ∈ Kn+m and therefore

0 =

[
Yµ,1

Yx,1

]∗ [
0 −In1

In1 0

] [
Yµ,1

Yx,1

]
=

[
Yµ,1

Yx,1

]∗
Ỹ ,

where

Ỹ =



−yn1+1
...

−y2n1

y1
...

yn1


for

[
Yµ,1

Yx,1

]
=

 y1
...

y2n1

 .

Assume dim

(
im

[
Yµ,1

Yx,1

])
> n1, i.e. rk

[
Yµ,1

Yx,1

]∗
= rk Ỹ = rk

[
Yµ,1

Yx,1

]
> n1. Hence,

Lemma 4.7 provides the contradiction

0 < rk

[
Yµ,1

Yx,1

]∗
+ rk Ỹ − 2n1 ≤ rk

([
Yµ,1

Yx,1

]∗
Ỹ

)
= 0,

which completes the proof of (4.31).

Additionally to the rank condition in (4.31) we can calculate the rank of the matrix[
Y ⊤
x,1 Y ⊤

u,F

]⊤. Since (b2) holds, Corollary 2.41 yields

Vsys,F ⊆ im

[
Yx,F

Yu,F

]
= im

Yx,1

Yx,2

Yu,F

 .
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By Corollary 2.44 (b) we have dimVsys,F = n1+m. According to the characterization
in (2.23) it is

Vsys,F =


 x1

−B2u
u

 ∣∣∣∣∣∣ x1 ∈ Kn1 , u ∈ Km


which implies that the x2-components of Vsys,F linearly depend on the u-components.

We get rk

[
Yx,1

Yu,F

]
= dim

(
im

[
Yx,1

Yu,F

])
≥ dimVsys,F = n1 +m and thus

rk

[
Yx,1

Yu,F

]
= n1 +m. (4.32)

Furthermore, due to (4.20) we find that ΠE =

[
M 0
0 0

]
, where M ∈ Gln1(K). Thus,

by (b3) we can infer n1 = rkΠEYx = rk

[
MYx,1

0

]
= rkYx,1 and hence, by (4.31) and

(4.32) we conclude

rk

Yµ,1

Yx,1

Yu,F

 = n1 +m. (4.33)

Due to (b1) and (4.30) we have n + m = rkY = rk ŶF. Together with (4.33) we
obtain the only missing rank condition

rk

[
Ŷx,2

Ŷµ,2

]
= n2.

Combining all facts that we have obtained on the rank conditions earlier we can find
some matrix V ∈ Gln+m(K) such that

Yµ,1

Yx,1

Yu,F

Ŷx,2

Ŷµ,2

V =


X11 0 0
In1 0 0
0 Im 0

0 0 Ỹx,2

0 0 Ỹµ,2

 , where rk

[
Ỹx,2

Ỹµ,2

]
= n2. (4.34)

For the following application of the ODE case Theorem 4.9, define sE ′ − A′ as the
upper left part of sÊF − ÂF, i.e.

sE ′ −A′ =

In1 0 0 0 0
0 In1 0 0 0
0 0 Im 0 0

 (sÊF − ÂF)

In1 0 0 0 0
0 In1 0 0 0
0 0 Im 0 0

⊤

=

 0 −sIn1 + A11 B1

sIn1 + A∗
11 Q11 −Q12B2 + S1

B∗
1 −B∗

2Q
∗
12 + S∗

1 B∗
2Q22B2 −B∗

2S2 − S∗
2B2 +R

 (4.35)
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and sẼ ′ − Ã′ analogously.

Now we want to apply Theorem 4.9. To see how the theorem can be applied, we
collect the required presuppositions and our results in Figure 4.2, following on the
next page, and show how they fit together.

Then, along with the given presuppositions, Theorem 4.9 provides the existence
of some K1 ∈ Kq×n1 and L1 ∈ Kq×m such that (4.15) holds. Denoting (X,K,L) as
in (4.16) we receive a solution of the Lur’e equation (4.19) for the impulse controllable
system [ΠE,A,B]. Hence, Theorem 4.20 (c) completes the proof.
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sÊ

F
−
Â
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Ê F

-n
eu

tr
al

,
rk

Ŷ
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4.6 Importance of Theorem 4.4
This section explains, why Theorem 4.4 is the chapters main result. It can be used
to allocate a plan to construct a solution of the Lur’e equation (4.1). A guideline
on how to calculate a Lur’e solution is given and verified at first. Then, an example
follows.

4.6.1 Guideline to construct a Lur’e solution
Let a system [E,A,B] ∈ Σn,m(K) and some weighting matrices Q = Q∗ ∈ Kn×n,
S ∈ Kn×m, and R = R∗ ∈ Km×m be given such that the Popov function fulfils
Φ(iω) ≥ 0 for all ω ∈ R with det(iωE −A) ̸= 0. Let W , T ∈ Gln(K) and F ∈ Km×n

be matrices such that (2.12) holds. Furthermore, let the projector Π ∈ Kn×n be
defined as in (4.5) and the even matrix pencil sE − A as in (4.4).

Conclusion 4.21. Let matrices Y ∈ K(2n+m)×(n+m), Z ∈ K(2n+m)×(n+q), and a pencil
sẼ − Ã ∈ K[s](n+q)×(n+m) be given such that Theorem 4.4 (b) holds true. Then a
solution (X,K,L) of the Lur’e equation (4.1) can be calculated as follows:

X = W ∗
[
In1 0
0 0

]
W−∗Yµ

[
In

−FT

]
W, (4.36a)

and
K =

[
K1 0

]
T−1 − LF and L = L̃−K2B2, (4.36b)

where
[
K1 K2 L̃

]
=
[
0 0 Iq

] (
sẼ − Ã

)
.

Proof: We divide the proof into four steps. At first, we deduce a transformation
of Y , from which a solution matrix X11 for the ODE Lur’e equation (4.12) is recon-
structed in a second step. Then we derive the formula for K1, K2 and L̃. Finally, we
combine our findings to receive (4.36).

Step 1: We show Yµ

Yx

Yu

[T−1 0
−F Im

]
=

XΠE +G1 G2

In 0
0 Im

 , (4.37)

where imG1 ⊆ kerE∗Π∗ and imG2 ⊆ kerE∗Π∗.

According to the proof of "(a)⇒(b)" in Theorem 4.4 the definitions of ŶF , YF and Y
(see (4.23), (4.27), and (4.28)) yield

Yµ

Yx

Yu

 = Y = UYF =

W ∗ 0 0
0 T 0
0 FT Im




X11 0 0
−Q∗

12 −1
2
Q22

1
2
Q22B2 − S2

In1 0 0
0 In2 0
0 0 Im

 .
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Thus, we get
[
Yx

Yu

]
=

[
T 0
FT Im

]
∈ Gln+m(K) and hence

[
Yx

Yu

]−1

=

[
T−1 0
−F Im

]
. We

further conclude Yµ

Yx

Yu

[T−1 0
−F Im

]
=

Y1T
−1 − Y2F Y2

In 0
0 Im

 ,

where [
Y1 Y2

]
:= Yµ = W ∗

[
X11 0 0
−Q∗

12 −1
2
Q22

1
2
Q22B2 − S2

]
. (4.38)

Due to the definition of EF in (4.20) it is

E∗Π∗ = T−∗
[
In1 0
0 0

]
W−∗, (4.39)

and hence
E∗Π∗Y2 = T−∗

[
In1 0
0 0

] [
0

1
2
Q22B2 − S2

]
= 0, (4.40)

i.e. imY2 ⊆ ker(E∗Π∗) and obviously im(Y2F ) ⊆ ker(E∗Π∗). This, together
with (4.38), (4.39), and X as in (4.20), yields

E∗Π∗(Y1T
−1 − Y2F −XΠE)

(4.40)
= E∗Π∗(Y1T

−1 −XΠE)

= T−∗
[
In1 0
0 0

]
W−∗

(
W ∗

[
X11 0
−Q∗

12 −1
2
Q22

]
T−1 −W ∗

[
X11 X12

X∗
12 X22

] [
In1 0
0 0

]
T−1

)
= T−∗

[
In1 0
0 0

] [
X11 0
−Q∗

12 −1
2
Q22

]
T−1 − T−∗

[
In1 0
0 0

] [
X11 X12

X∗
12 X22

] [
In1 0
0 0

]
T−1

= 0,

i.e. im(Yµ,1T
−1 − Yµ,2F −XΠE) ⊆ ker(E∗Π∗).

Thus, we achieve (4.37) for G1 = Y1T
−1 − Y2F −XΠE and G2 = Y2.

Step 2: We calculate X11. Denoting Y +
x :=

[
T−1

−F

]
equation (4.37) yields

E∗Π∗XΠE = E∗Π∗YµY
+
x ,

from which a solution matrix X11 of the Lur’e equation (4.12) can be reconstructed:

E∗Π∗XΠE = E∗Π∗YµY
+
x

(4.20)⇔
(4.39)

T−∗
[
X11 0
0 0

]
T−1 = T−∗

[
In1 0
0 0

]
W−∗Yµ

[
T−1

−F

]
⇔

[
X11 0
0 0

]
=

[
In1 0
0 0

]
W−∗Yµ

[
In

−FT

]
.
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Step 3: We determine K1, K2 and L̃.
Regarding the equations (4.22) and (4.27) we obtain

sẼ − Ã = Ŵ (sẼF − ÃF )V̂ =

−sIn1 + A11 0 B1

0 In2 B2

K1 K2 L

 ,

from where K1, K2 and L̃ = L can be read out.

Step 4: According to the proof of Theorem 4.4 the triple (X11, K1, L̃) fulfils the
ODE Lur’e equation (4.15). This equals that (X11, K1, L̃ −K2B2) solves the Lur’e
equation (4.15). Hence,

X = W ∗
[
X11 0
0 0

]
W,

[
K1 0

]
T−1 − LF, L = L̃−K2B2

together with Lemma 4.15 (a) yields the statement.

Note that the construction of a Lur’e solution is simple for given matrices Y , Z and
an existing even matrix pencil sẼ − Ã. In general they are not known, and therefore
it remains difficult to construct a solution of the Lur’e equation.

4.6.2 Example: Construction of a Lur’e solution
The following example shows how to deduce a solution for the Lur’e equation (4.1)
with help of Conclusion 4.21.

Consider the DAE system
d
d t

(Ex(t)) = Ax(t) +Bu(t)

where E =

[
0 1
0 0

]
, A =

[
1 0
0 1

]
, B =

[
0
1

]
, and n = 2, m = 1.

The associated pencil is given by[
sE − A B

]
=

[
−1 s 0
0 −1 1

]
.

Further, let Q =

[
2 1
1 1

]
, R = 0 and S = 02×1 be the weighting matrices. With

matrices
W =

[
1 −1
0 1

]
, T =

[
0 1
1 0

]
, F =

[
1 −1

]
the system can be transformed into FEF (2.7), i.e.

EF = WET =

[
1 0
0 0

]
, AF = W (A+BF )T =

[
0 0
0 1

]
, BF = WB =

[
−1
1

]
.
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Note that for the given system the following properties hold true:

(i) The pencil is regular as rkK(s)(sE − A) = 2 = n.

(ii) The system is impulse controllable as

rk
[
E AS∞ B

]
= rk

[
0 1 1 0
0 0 0 1

]
= 2, where S∞ =

[
1
0

]
.

(iii) By Corollary 2.44 (b) the system space is

Vsys =

[
1 0 0
0 1 1

]−1{(
y
0

) ∣∣∣∣ y ∈ R
}

=


 a

b
−b

 ∣∣∣∣∣∣ a, b ∈ R

 . (4.41)

We want to calculate a solution of the Lur’e equation (4.1). For that purpose we use
Conclusion 4.21. According to its definition in (4.5), we consider the projector

Π = W−1EW =

[
1 1
0 1

] [
0 1
0 0

] [
1 −1
0 1

]
=

[
1 −1
0 0

]
,

and the even matrix pencil sE − A as in (4.4):

sE − A =


0 0 1 −s 0
0 0 0 1 1
1 0 2 1 0
s 1 1 1 0
0 1 0 0 0

 where E =


0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 . (4.42)

Now let the matrices Y ∈ R5×3 and Z ∈ R5×3 be given as

Y =

Yµ

Yx

Yu

 =



√
2− 1 0 0

−
√
2 −1 1

−−− −− −−
0 1 0
1 0 0

−−− −− −−
−1 1 1


, Z =

Zµ

Zx

Zu

 =



1 1 0
0 1 0

−−− −−− −−−
0 0 −

√
2

1−
√
2 2−

√
2

√
2− 1

−−− −−− −−−
0 1

√
2


(4.43)

Verification of the properties in Theorem 4.4 (b):

To apply Conclusion 4.21, we need to verify the properties of Theorem 4.4 (b). At
first, we take a look at the Popov-function as in (3.1).

Φ(iω) =

(−1 −s̄
0 −1

)−1(
0
1

)
1

∗ 2 1 0
1 1 0
0 0 0

(−1 s
0 −1

)−1(
0
1

)
1


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=

(−1 s̄
0 −1

)(
0
1

)
1

∗ 2 1 0
1 1 0
0 0 0

(−1 −s
0 −1

)(
0
1

)
1


=

 s̄
−1
1

∗ 2 1 0
1 1 0
0 0 0

−s
−1
1

 = −2s2 + 1.

It holds rkK(s) Φ(s) = 1 and by Proposition 4.5 therefore it is q = 1. Evaluating the
Popov-function on the imaginary axis, i.e. s = iω with ω ∈ R, yields

Φ(iω) = −2i2ω2 + 1 = 2ω2 + 1 ≥ 0,

which is positive semi-definiteness of the Popov-function on the imaginary axis.

Further, it is necessary to show that the matrices Y and Z as in (4.43) fulfil the
properties (b1) to (b4):

(b1) The space imY is 3-dimensional and E-neutral:
Let y, ỹ ∈ imY , i.e.

y =


Y11x1 + Y12x2 + Y13x3

Y21x1 + Y22x2 + Y23x3

x2

x1

−x1 + x2 + x3

 and ỹ =


Y11x̃1 + Y12x̃2 + Y13x̃3

Y21x̃1 + Y22x̃2 + Y23x̃3

x̃2

x̃1

−x̃1 + x̃2 + x̃3

 .

for some x, x̃ ∈ K3. Then for E as in (4.42) we have

0 = y∗E ỹ
⇔ 0 = x1(Y11x̃1 + Y12x̃2 + Y13x̃3)− x̃1(Y11x1 + Y12x2 + Y13x3)

which holds true as Y12 = Y13 = 0.

(b2) With Vsys as in (4.41) it holds

Vsys ⊆ im

 0 1 0
1 0 0
−1 1 1

 .

(b3) With ΠE =

[
1 −1
0 0

] [
0 1
0 0

]
=

[
0 1
0 0

]
we obtain

rkΠEYx = rk

[
0 1
0 0

] [
0 1 0
1 0 0

]
= 1 = n1.
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(b4) For

sẼ − Ã =


−s 0 | −1
0 1 | 1

−− −− | −−
−1 −

√
2 | 0

 , where rkK(s)(sẼ − Ã) = 3 = n+ q, (4.44)

it holds

(sE − A)Y =


−s 1 0
0 1 1√
2 2 0

(
√
2− 1)s−

√
2 + 1 0 1

−
√
2 −1 1

 = Z (sẼ − Ã).

Thus, Theorem 4.4 yields that there exists a solution (X,K,L) ∈ K2×2 ×K1×2 ×K
for the Lur’e equation (4.1) and we can apply Conclusion 4.21.

Construction of a Lur’e solution:

By using (4.36a) we obtain X as follows:

X =

[
1 −1
0 1

]∗ [
In1 0
0 0

] [
1 −1
0 1

]−∗ [√
2− 1 0 0

−
√
2 −1 1

]1 0
0 1
1 −1

[1 −1
0 1

]

=

[
1 −1
0 1

]∗ [√
2− 1 0
0 0

] [
1 −1
0 1

]
=

[√
2− 1 1−

√
2

1−
√
2

√
2− 1

]
.

Applying (4.36b) on the pencil in (4.44) yields

[
K1 K2 L̃

]
=
[
0 0 1

] −s 0 −1
0 1 1

−1 −
√
2 0

 =
[
−1 −

√
2 0

]
and therefore

L = 0 +
√
2 =

√
2, and K =

[
−1 0

] [0 1
1 0

]−1

−
√
2
[
1 −1

]
=
[
−
√
2

√
2− 1

]
.

Summarized we have

(X,K,L) =

([√
2− 1 1−

√
2

1−
√
2

√
2− 1

]
,
[
−
√
2

√
2− 1

]
,
√
2

)
. (4.45)
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Proof that (X,K,L) is a Lur’e solution:

We show that (4.1a) and (4.1b) are fulfilled. Using (X,K,L) as in (4.45) we obtain

[
A∗XE + E∗XA+Q E∗XB + S

B∗XE + S∗ R

]
=

 2
√
2 0√

2 3− 2
√
2 1−

√
2

0 1−
√
2 0

 ,

and [
K∗

L∗

] [
K L

]
=

 2
√
2− 2 −2√

2− 2 3− 2
√
2 2−

√
2

−2 2−
√
2 2

 .

Evaluating the Lur’e equation on Vsys as in (4.41), for a, b ∈ R this is

[
a b −b

]  2
√
2 0√

2 3− 2
√
2 1−

√
2

0 1−
√
2 0

 a
b
−b


= 2a2 + 2

√
2ab+ b2

=
[
a b −b

]  2
√
2− 2 −2√

2− 2 3− 2
√
2 2−

√
2

−2 2−
√
2 2

 ,

 a
b
−b

 ,

i.e. (4.1a) is fulfilled. Moreover, it holds (4.1b):

rkK(s)

[
−sE + A B

K L

]
= rkK(s)

 1 −s 0
0 1 1

−
√
2

√
2− 1

√
2

 = 3 = n+ q.

Consequently, (X,K,L) as in (4.45) is a solution of the Lur’e equation (4.1).



81

5 The linear-quadratic optimal
control problem

In this chapter we merge the so far revised theory of [RRV15] to discuss the main
application, namely the linear-quadratic optimal control problem. With help of a
solution of the KYP inequality (3.2) we are able to introduce a lower bound for
the optimal value function in Section 5.1. If in addition the Lur’e equation (4.1) is
solvable, we can evaluate the cost functional for given solution trajectory and ini-
tial value. To characterize the existence and structure of solutions of the examined
optimal control problem we require a stabilizing solution of (4.1). Section 5.2 is
dedicated to illustrate the results by means of an example.

Throughout the whole chapter we consider the linear-quadratic optimal control prob-
lem (OCP)

min
(x,u)

J (x, u) =

∫ ∞

0

(
x(τ)
u(τ)

)∗ [
Q S
S∗ R

](
x(τ)
u(τ)

)
dτ

s.t. (x, u) ∈ B[E,A,B] with Ex(0) = Ex0 and lim
t→∞

Ex(t) = 0
(5.1)

for a system [E,A,B] ∈ Σn,m(K) and some weighting matrices Q = Q∗ ∈ Kn×n,
S ∈ Kn×m, R = R∗ ∈ Km×m.

To study (5.1), we consider the optimal value function V + : Vdiff → R ∪ {±∞}
defined as

V +(x0) := inf
{
J (x, u)

∣∣∣ (x, u) ∈ B[E,A,B], Ex(0) = Ex0 and lim
t→∞

Ex(t) = 0
}
.

(5.2)
Note that one could analogously consider a cost functional for the negative time axis
(cf. [Voi15, Sec. 3.8] ). We write V + to emphasize that only the values (x(t), u(t))
for t ≥ 0 influence the cost functional in (5.1).
To guarantee{

(x, u) ∈ B[E,A,B]

∣∣∣ Ex(0) = Ex0 and lim
t→∞

Ex(t) = 0
}
̸= ∅

for a given initial value x0 ∈ Kn, we assume the system [E,A,B] to be behaviourally
stabilizable. Thus, we ensure that we do not infimize on the empty set and hence
V +(x0) < ∞ holds for all x0 ∈ Vdiff . If in addition V +(x0) > −∞ holds for all
x0 ∈ Vdiff , we call the OCP (5.1) feasible for the system [E,A,B].
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5.1 Solution via Lur’e equations
To state a lower bound for the optimal value function V +, we use a solution of the
KYP inequality (3.2). The relationship between the solvability of the (3.2) and V +

is content of Proposition 5.2, which is proved with help of the following lemma.

Lemma 5.1. Consider [E,A,B] ∈ Σn,m(K) with Vdiff ⊆ Kn. Assume P ∈ Kn×n is
a solution of the KYP inequality (3.2). Then for all (x, u) ∈ B[E,A,B] and 0 ≤ t1 ≤ t2
it holds

x(t1)
∗E∗PEx(t1)− x(t2)

∗E∗PEx(t2) ≤
∫ t2

t1

(
x(τ)
u(τ)

)∗ [
Q S
S∗ R

](
x(τ)
u(τ)

)
dτ .

Proof: Let (x, u) ∈ B[E,A,B] and 0 ≤ t1 ≤ t2. Since by definition of Vsys it holds that(
x(t)
u(t)

)
∈ Vsys for almost all t ∈ R, we obtain

x(t2)
∗E∗PEx(t2)− x(t1)

∗E∗PEx(t1)

=

∫ t2

t1

d
d τ

x(τ)∗E∗PEx(τ) dτ

=

∫ t2

t1

x(τ)∗E∗P
(

d
d τ

Ex(τ)
)
(τ) +

(
d
d τ

Ex(τ)
)∗

PEx(τ) dτ

=

∫ t2

t1

x(τ)∗E∗P [Ax(τ) +Bu(τ)] + [Ax(τ) +Bu(τ)]∗PEx(τ) dτ

=

∫ t2

t1

(
x(τ)
u(τ)

)∗ [
A∗PE + E∗PA E∗PB

B∗PE 0

](
x(τ)
u(τ)

)
dτ

(3.2)
≥ −

∫ t2

t1

(
x(τ)
u(τ)

)∗ [
Q S
S∗ R

](
x(τ)
u(τ)

)
dτ .

Thus, we achieve infiniteness of the optimal value function.

Proposition 5.2. Consider [E,A,B] ∈ Σn,m(K). If P ∈ Kn×n is a solution of the
KYP inequality (3.2), then the functional V + as in (5.2) fulfils

x∗
0E

∗PEx0 ≤ V +(x0). (5.3)

Proof: Let P ∈ Kn×n be a solution of the KYP inequality (3.2) and x0 ∈ Vdiff

and (x, u) ∈ B[E,A,B] fulfil Ex(0) = Ex0 and limt→∞Ex(t) = 0. Thus, Lemma 5.1
provides

x∗
0E

∗PEx0 ≤
∫ ∞

0

(
x(τ)
u(τ)

)∗ [
Q S
S∗ R

](
x(τ)
u(τ)

)
dτ = J(x, u).

Due to the definition of V + we obtain (5.3).
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As solutions of the Lur’e equation (4.1) yield particular solutions of the KYP in-
equality (3.2), it seems obvious that they provide stronger properties in view of the
OCP (5.1). Theorem 5.3 confirms this hypothesis. While a solution of the KYP
inequality (3.2) only helps to estimate a lower bound for the optimal value function,
a Lur’e solution provides an explicit characterization.

Theorem 5.3. Consider [E,A,B] ∈ Σn,m(K). Assume (X,K,L) to be a solution of
the Lur’e equation (4.1). Then for all x0 ∈ Vdiff and (x, u) ∈ B[E,A,B] ∩L2(R,Kn+m)
with Ex(0) = Ex0 and limt→∞Ex(t) = 0 it holds that

x∗
0E

∗XEx0 + ∥Kx+ Lu∥2L2(R,Kn+m) = J (x, u). (5.4)

Proof: Let x0 ∈ Vdiff and (x, u) ∈ B[E,A,B] ∩ L2(R,Kn+m) with Ex(0) = Ex0 and
limt→∞ Ex(t) = 0. Similar to the calculations in the proof of Lemma 5.1 we get

x(t2)
∗E∗XEx(t2)− x(t1)

∗E∗XEx(t1)

=

∫ t2

t1

(
x(τ)
u(τ)

)∗ [
A∗XE + E∗XA E∗XB

B∗XE 0

](
x(τ)
u(τ)

)
dτ

(4.1a)
= −

∫ t2

t1

(
x(τ)
u(τ)

)∗ [
Q S
S∗ R

](
x(τ)
u(τ)

)
dτ +

∫ t2

t1

(
x(τ)
u(τ)

)∗ [
K∗

L∗

] [
K L

](x(τ)
u(τ)

)
dτ .

Considering t1 = 0 and t2 → ∞ we arrive at (5.4).

As we want to minimize the value of the cost functional J for a given x0 ∈ Vdiff , it
suffices to minimize the second summand on the left hand side of (5.4). In [IR17,
Theorem 6.6 (a)] it is shown that there exists a sequence of solution trajectories
(x, u) infimizing ∥Kx+ Lu∥2L2(R,Kn+m).

Theorem 5.4. Consider the behaviourally stabilizable system [E,A,B] ∈ Σn,m(K)
and a stabilizing solution (X,K,L) of the Lur’e equation (4.1). Then for all ε > 0
and x0 ∈ Vdiff there exists some (x, u) ∈ B[E,A,B] such that

u ∈ L2(R≥0,Km), lim
t→∞

Ex(t) = 0, and ∥Kx+ Lu∥L2(R≥0,Km) < ε.

Hence, the optimal value function can be calculated.

Theorem 5.5. Consider the behaviourally stabilizable system [E,A,B] ∈ Σn,m(K).
Let (X,K,L) be a stabilizing solution of the Lur’e equation (4.1). Then the optimal
value function (5.2) fulfils

V +(x0) = x∗
0E

∗XEx0 ∀x0 ∈ Vdiff .

Proof: This statement is a direct consequence of Theorem 5.3 and Theorem 5.4.

Theorem 5.5 provides the minimal costs for each x0 ∈ Vdiff . Together with The-
orem 4.20 and Theorem 5.4 the optimal solution (x, u) of the OCP (5.1) can be
characterized.
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Corollary 5.6. Let [E,A,B] ∈ Σn,m(K) behaviourally stabilizable and weighting
matrices Q = Q∗ ∈ Kn×n, S ∈ Kn×m and R = R∗ ∈ Km×m be given. Further, let
(X,K,L) ∈ Kn×n×Kq×n×Kq×m be a stabilizing solution of the Lur’e equation (4.1)
and the projector Π defined as in (4.5). Then (x, u) ∈ L2

loc(R,Kn) × L2
loc(R,Km)

is a solution of the OCP (5.1) if, and only if, (x, u) solves the differential-algebraic
boundary value problem

d
d t

(ΠEx(t)) = Ax(t) +Bu(t) Ex(0) = Ex0 lim
t→∞

Ex(t) = 0

0 = Kx(t) + Lu(t).

5.2 Example
To illustrate our results of Section 5.1 we apply them to an example. Consider the
cost functional J as in (5.1) with weighting matrices

Q = I4, S = 04×2, R = I2,

the DAE system (2.11) with system matrices

E =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , A =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , B =


1 0
0 1
0 −1
0 0

 ,

and the initial value x0 = (1, 2, 3, 4)⊤, where n = 4 and m = 2. Note that the system
is given in FEF (2.7), where n1 = 2, n2 = 2, and n3 = 0, i.e. W = T = I4 and
F = 02×4.

At first, we show that the optimal value function V + is finite with help of the
KYP inequality. Then, we determine a solution of Lur’e equation (4.1) and thereby
calculate V +(x0).

Finiteness of the optimal value function

Choose S∞ =

[
0 0 1 0
0 0 0 1

]⊤
. Obviously, imS∞ = kerE holds true. Further, we

have

rk
[
E AS∞ B

]
= rk


1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 0 0

 = 4 = n,
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i.e. the system [E,A,B] is impulse controllable. Therefore, x0 ∈ R4 = Vdiff holds.
Corollary 2.44 (d) yields

Vsys =
[
A B

]−1
E R4 =

{(
x
u

)
∈ K6

∣∣∣∣ x3 = u2, x4 = 0 and x1, x2, u1, u2 ∈ R
}
.

Since

rk
[
λE − A B

]
= rk


λ −1 0 0 1 0
−1 λ 0 0 0 1
0 0 −1 0 0 −1
0 0 0 −1 0 0

 = 4 = n

holds for all λ ∈ C, the system [E,A,B] is behaviourally controllable and thus
behaviourally stabilizable. Further, the Popov function Φ is given by

Φ(s) =

[
1− 1

s2−1
1

1 2− 1
s2−1

]
.

Hence, Φ(iω) is Hermitian for all ω ∈ R. Due to the minor criterion and

1 +
1

ω2 + 1
≥ 0 and det(Φ(iω)) =

(
1 +

1

ω2 + 1

)(
2 +

1

ω2 + 1

)
− 1 ≥ 0

the Popov function fulfils Φ(iω) ≥ 0 for all ω ∈ R with det(iωE−A) ̸= 0. According
to Theorem 3.2 (b2) there exists some P = P ∗ ∈ R4×4 such that the KYP inequal-
ity (3.2) holds. Hence, Proposition 5.2 yields that the cost functional V + fulfils

V +(x0) ≥ x∗
0E

∗PEx0 ∀x0 ∈ Vdiff .

Solution of the Lur’e equation

The previous findings, i.e. behavioural stabilizability and positive semi-definiteness
of the Popov function on the imaginary axis, together with Theorem 4.14 (b) pro-
vide the existence of a stabilizing solution of the Lur’e equation (4.1). To calculate
a solution (X,K,L) of (4.1) at first we determine a solution of the associated ODE
Lur’e equation, which can be transformed into an algebraic Riccati equation.

Consider the system and weighting matrices partitioned according to the FEF (2.7).
Then the ODE Lur’e equation[

A∗
11X11 +X11A11 +Q11 X11B1 + S1 −Q12B2

B∗
1X11 + S∗

1 −B∗
2Q

∗
12 B∗

2Q22B2 −B∗
2S2 − S∗

2B2 +R

]
=

[
K∗

1

L∗
1

] [
K1 L1

]
(5.5)

is equivalent to the algebraic Riccati equation

A∗
11X11 +X11A11 − (X11B1 + S̃) R̃−1 (X11B1 + S̃)∗ +Q11 = 0, (5.6)
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where

S̃ = S1 −Q12B2 = 0 and R̃ = B∗
2Q22B2 −B∗

2S2 − S∗
2B2 +R =

[
1 1
1 2

]
.

It can be easily verified that X11 =

[
2.3479 2.2601
2.2601 2.9021

]
solves the algebraic Ric-

cati equation (5.6). Further, from the condition L∗
1L1 = R̃ we infer

L1 =

[
1 1
0 1

]
and thus K1 =

[
2.3495 2.2345

0 0.7260

]
.

Since

rk

[
−λIn1 + A11 B1

K1 L1

]
= rk


−λ 1 1 0
1 −λ 0 1

2.3495 2.2345 1 1
0 0.7260 0 1

 = 4 = n1 + q

holds for all λ ∈ C+, the triple (X11, K1, L1) is a stabilizing solution of the ODE
Lur’e equation (5.5). Therefore, Lemma 4.15 (b) yields that (X,K,L), where

X = W ∗
[
X11 0
0 0

]
W, K =

[
K1 0

]
T−1 − LF and L = L1,

is a stabilizing solution of the Lur’e equation (4.1). Due to W = T = I4 and F = 02×4

we get

X =


2.3479 2.2601 0 0
2.2601 2.9021 0 0

0 0 0 0
0 0 0 0

 , K =

[
2.3495 2.2345 0 0

0 0.7260 0 0

]
and L =

[
1 1
0 1

]
.

(5.7)

Remark 5.7. Note that regularity of R̃ is necessary to apply the transformation
into the Riccati equation (5.6). Hence, this approach does not work in general. ♢

Optimal costs and boundary value problem

The triple (X,K,L) as in (5.7) is a stabilizing solution of the Lur’e equation (4.1).
Hence, Theorem 5.5 yields that the optimal cost functional fulfils

V ∗(x0) = x∗
0E

∗XEx0 =


1
2
3
4


∗ 

2.3479 2.2601 0 0
2.2601 2.9021 0 0

0 0 0 0
0 0 0 0



1
2
3
4

 = 22.9966.
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Furthermore, Corollary 5.6 yields that (x, u) ∈ L2
loc(R,K4)×L2

loc(R,K2) is a solution
of the OCP (5.1) if, and only if, (x, u) solves the boundary value problem

ẋ1(t) = x2(t) + u1(t) x1(0) = 1, lim
t→∞

x1(t) = 0

ẋ2(t) = x1(t) + u2(t) x2(0) = 2, lim
t→∞

x2(t) = 0

0 = x3(t)− u2(t)

0 = x4(t)

0 = 2.3495x1(t) + 2.2345x2(t) + u1(t) + u2(t)

0 = 0.7260x2(t) + u2(t).
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6 Summary and Outlook
In this thesis we elaborated the results of [RRV15]. A differential-algebraic version of
the Kalman-Yakubovich-Popov (KYP) lemma was proved. It states the solvability
of the matrix inequality as a sufficient criterion for positive semi-definiteness of the
Popov function. If the differential-algebraic system fulfils certain system properties,
necessity holds true.

Further, we studied the Lur’e equation. Solutions of this matrix equation are rank-
minimizing solutions of the KYP inequality. Existence of a solution of the Lur’e
equation is ensured if the considered system has no uncontrollable modes on the
imaginary axis. Actually, under the condition that the system is behaviourally sta-
bilizable, there even exist stabilizing solutions. If a solution of the Lur’e equation
is stabilizable, this solution is an extremal solution of the KYP inequality. Further-
more, we related the existence of a solution of the Lur’e equation to properties of
associated even matrix pencils and deflating subspaces. The proof of this theorem
enabled us to explain, how deflating subspaces and even matrix pencils can be used
to determine a solution of the Lur’e equation. The problem in implementing the
given guideline is to find the required matrices fulfilling several rank conditions and
deflating subspace properties. In [Rei11, Section 4] the author shows that such ma-
trices can be constructed via the even Kronecker canonical form in the ODE case.
It seems worth trying to transfer this approach to the DAE case.

Using solutions of the Lur’e equation and KYP inequality, we elaborated the results
of [RRV15] on solving the linear-quadratic optimal control problem. We proved that
solvability of the KYP inequality provides finiteness of the optimal value function.
For an arbitrary system we obtained that the optimal cost functional can be rewrit-
ten by using a solution of the Lur’e equation. If further the solution is stabilizing,
the minimal costs can be calculated without knowing the optimal solution. The
optimal solution can be characterized via a differential boundary value problem. In
Chapter 5 we only stated the existence of an infimizing sequence of solution trajec-
tories. Hence, it is not clear, whether an optimal solution exists. This remains to
be shown. [IR17] solved this problem for ODE systems. The authors believe that
their approach to solve the ODE problem is appropriate to solve the optimal control
problem for DAE systems.

Besides the presented approach [RRV15] there are further methods to handle the lin-
ear quadratic optimal control problem. For instance we quote [LMT13], where the
considerations are based on projector analysis, and [Meh91], where the focus is laid
on systems with index at most one. The advantage of the approach in [RRV15] is
that neither impulse controllability has to be assumed nor do we need to make any as-
sumptions on the index of the pencil. This benefit finds its application in solving the
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Lur’e equation instead of the generalized algebraic Riccati equation (see [KTK99]).
For the existence of a stabilizing solution of the generalized Riccati equation impulse
controllability and a pencil with index at most one are required. To solve the op-
timal control problem Lur’e equations admit weaker solvability conditions: neither
do the weighting matrices need to be positive semi-definite (see [Kur02]), nor does
the system need to be impulse controllable (see [KTK99]).
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Nomenclature
Throughout the whole thesis we use the standard notation i, λ̄, A∗, A−∗, In, 0m×n,
rkA, kerA, imA, S, ∅, d

d t
x(t) or equivalently ẋ(t) and x(k)(t) for the imaginary

unit, the complex conjugate of λ ∈ C, the conjugate transpose of a complex matrix
and its inverse, the identity matrix of size n× n and the zero matrix of size m× n
(subscripts are omitted if clear from context), the rank of a matrix A, the kernel and
the image of a linear map A, the closure of a set S, the empty set, the derivative
of a differentiable function x : R → Kn at t and the kth derivative of a k times
differentiable function x : R → Kn. Further, the following abbreviations are used:

A−1 . . . . . . . . . . . . . . . the preimage of a linear map A, page 23
A−1 . . . . . . . . . . . . . . . . the inverse of a matrix A, page 23
A+ . . . . . . . . . . . . . . . . the right inverse of a matrix A, page 11
ACloc(R,Kn) . . . . . . . the set of locally absolutely continuous functions f : R → Kn,

page 6
B[E,A,B] . . . . . . . . . . . . the solution behaviour of the system [E,A,B], page 6
C+,C− . . . . . . . . . . . . the open sets of complex numbers with positive and negative

real part, resp., page 15
C>α . . . . . . . . . . . . . . . the set of complex numbers s with Re(s) > α for α ∈ R, page 7
C1(R,Kn) . . . . . . . . . . the space of continuously differentiable functions f : R → Kn,

page 6
Dα(R≥0,Kn) . . . . . . . the set of all locally integrable functions f : R≥0 → Kn such

that e−α·f(·) is (globally) integrable for α ∈ R, page 7
ess supt∈R ∥f(t)∥ . . . the essential supremum of f : R → Kn+m measurable, page 15
Glk(K) . . . . . . . . . . . . the linear group of invertible k × k matrices with coefficients

in K, page 8
ind sE − A . . . . . . . . the index of a regular matrix pencil sE − A, page 9
J (x, u) . . . . . . . . . . . . the cost associated with a solution (x, u) ∈ B[E,A,B], page 81
K . . . . . . . . . . . . . . . . . . either the field R of real numbers or C of complex numbers,

page 5
K[s] . . . . . . . . . . . . . . . the polynomial ring with coefficients in K, page 7
K[s]ℓ×n . . . . . . . . . . . . the ring of matrices with coefficients in K[s], page 7
K(s) . . . . . . . . . . . . . . . the field of rational functions with coefficients in K, page 7
L(f)(s) . . . . . . . . . . . . the Laplace transformation of a function f ∈ Dα(Kn) at s,

page 7
L2

(loc)(R,Kn) . . . . . . . the set of measurable and (locally) square integrable functions
f : R → Kn, resp., page 6
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N,N0 . . . . . . . . . . . . . . the set of natural numbers and N0 = N ∪ {0}, resp., page 9
nil indM . . . . . . . . . . the nilpotency index of a nilpotent matrix M , page 9

Φ : C → K(s)m×m . . the Popov function, page 31

Rm×n . . . . . . . . . . . . . . the set of m× n matrices with entries in a ring R, page 5
Re(s), Im(s) . . . . . . . the real/imaginary part of a complex number s, resp., page 7
rkK(s) . . . . . . . . . . . . . . the rank of a matrix with respect to the field K(s), page 7
R≥0 . . . . . . . . . . . . . . . . the set of real numbers greater or equal 0, page 6

Σn,m(K) . . . . . . . . . . . the set of systems [E,A,B] such that the pencil sE − A is
regular, page 14

σ(A) . . . . . . . . . . . . . . . the spectrum of a matrix A, page 53

Vdiff . . . . . . . . . . . . . . . the space of consistent initial differential variables, page 6
Vsys . . . . . . . . . . . . . . . . the system space, page 22
V +(x0) . . . . . . . . . . . . the optimal value of the OCP (5.1) for a given initial value x0,

page 81

V⊥ . . . . . . . . . . . . . . . . the orthogonal complement of a linear sub,space V , page 35
X ⊕ Y . . . . . . . . . . . . . the direct sum of two linear subspaces X and Y , page 35
W,T,F
≃fe . . . . . . . . . . . . . . . feedback equivalence, page 10
W,T
≃se . . . . . . . . . . . . . . . . system equivalence, page 10
≃,

W,T
≃ . . . . . . . . . . . . . pencil equivalence, page 8

x⊥y . . . . . . . . . . . . . . . x orthogonal y, page 35
=V , ≥V . . . . . . . . . . . . relation on a subspace V :

M =V N :⇔ x∗Mx = x∗Nx ∀x ∈ V ,
M ≥V N :⇔ x∗Mx ≥ x∗Nx ∀x ∈ V , resp., page 31

a.e.
= . . . . . . . . . . . . . . . . . equality almost everywhere, page 12

Moreover, the blockdiagonal matrix composed of Ai ∈ Kmi×ni with mi, ni ∈ N0 for
i = 1, . . . , k is denoted by diag(A1, . . . , Ak) ∈ Km×n, where m = m1 + . . .+mk and
n = n1 + . . .+ nk.
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List of Acronyms

DAE . . . . . . . . . . . . . . differential-algebraic equation

FEF . . . . . . . . . . . . . . feedback equivalence form

KYP . . . . . . . . . . . . . . Kalman-Yakubovich-Popov

OCP . . . . . . . . . . . . . . optimal control problem

ODE . . . . . . . . . . . . . . ordinary differential equation

QWF . . . . . . . . . . . . . quasi Weierstraß form

SEF . . . . . . . . . . . . . . . system equivalence form
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