Spectral properties of singular Sturm-Liouville operators with indefinite weight sgn \(x \)

Illya Karabash and Carsten Trunk

We consider a singular Sturm-Liouville expression with the indefinite weight sgn \(x \).
To this expression there is naturally a self-adjoint operator in some Krein space associated. We characterize the local definitizability of this operator in a neighbourhood of \(\infty \). Moreover, in this situation, the point \(\infty \) is a regular critical point. We construct an operator \(A = (\text{sgn} \, x)(-d^2/dx^2 + q) \) with non-real spectrum accumulating to a real point. The obtained results are applied to several classes of Sturm-Liouville operators.

1. Introduction

We consider the singular Sturm-Liouville differential expression

\[
a(y)(x) = (\text{sgn} \, x)(-y''(x) + q(x)y(x)), \quad x \in \mathbb{R},
\]

with the signum function as indefinite weight and a real potential \(q \in L^1_{\text{loc}}(\mathbb{R}) \). We assume that (1.1) is in the limit point case at both \(-\infty \) and \(+\infty \). This differential expression is naturally connected with a self-adjoint operator \(A \) in the Krein space \((L^2(\mathbb{R}), [, ,]))\) (see e.g. [12]), where the indefinite inner product \([, ,]\) is defined by

\[
[f, g] = \int_{\mathbb{R}} f(x) g(x) \text{sgn} \, x \, dx, \quad f, g \in L^2(\mathbb{R}).
\]

The operator \(J : f(x) \mapsto (\text{sgn} \, x)f(x) \) is a fundamental symmetry in the Krein space \((L^2(\mathbb{R}), [, ,]))\). Let us define the operator \(L := JA \). Then \(L = -d^2/dx^2 + q \) is a self-adjoint Sturm-Liouville operator in the Hilbert space \(L^2(\mathbb{R}) \). It was shown in [12] that if \(L \) is a non-negative operator in the Hilbert space sense then \(A \) is a definitizable operator with \(\infty \) as a regular critical point.

In general, the operator \(A \) may be not definitizable (in Section 3 we give a criterion). However, under certain assumptions, \(A \) is still locally definitizable over an appropriate subset of \(\mathbb{C} \). It seems that the first result of such type was obtained in [5] for the operator \(y \mapsto \frac{1}{2} \left((py')' + qy\right) \) with \(w \) as indefinite weight function. Note that in [5] \(w \) may have many turning points, but rather strong assumptions on the spectra of certain associated self-adjoint operators are supposed.

As a main result we show the equivalence of the semi-boundedness from below of the operator \(L \) and the local definitizability of the operator \(A \) in a neighbourhood of \(\infty \). Moreover, we give a precise description of the domain of definitizability of \(A \). If \(L \) is semi-bounded from below, we show the existence of a decomposition \(A = A_{\infty} + A_b \) such that the operator \(A_{\infty} \) is similar to a self-adjoint operator in
the Hilbert space sense and \(A \) is a bounded operator, that is, the point \(\infty \) is a regular critical point. Hence, the non-real spectrum of \(A \) remains bounded. But, in contrast to the case of a non-negative operator \(L \), now the non-real spectrum may accumulate to the real axis. We prove in Section 4 the existence of an even continuous potential \(q \) with a sequence of non-real eigenvalues of \(A \) accumulating to a real point. This potential \(q \) can be chosen in such a way that \(A \) is definitizable over \(\mathbb{C} \setminus \{0\} \).

Finally, in Section 5, we discuss the spectrum and the sets of definitizability of \(A \) for various classes of potentials \(q \).

Differential operators with indefinite weights appears in many areas of physics and applied mathematics (see [4, 21, 28, 43] and references therein). Under certain assumptions such operators are definitizable; this case was studied extensively (see [8, 12, 13, 14, 15, 18, 19, 20, 32, 35, 36, 42, 44, 47] and references therein). In [5, 6, 7, 29, 31, 33, 34] certain classes of differential operators that contain definitizable as well as not definitizable operators were considered.

Notation: Let \(T \) be a linear operator in a Hilbert space \(\mathcal{H} \). In what follows \(\text{dom}(T) \), \(\ker(T) \), \(\text{ran}(T) \) are the domain, kernel, range of \(T \), respectively. We denote the resolvent set by \(\rho(T) \); \(\sigma(T) := \mathbb{C} \setminus \rho(T) \) stands for the spectrum of \(T \). By \(\sigma_{\text{disc}}(T) \) the set of eigenvalues of \(T \) is indicated. The discrete spectrum \(\sigma_{\text{disc}}(T) \) is the set of isolated eigenvalues of finite algebraic multiplicity; the essential spectrum is \(\sigma_{\text{ess}}(T) := \sigma(T) \setminus \sigma_{\text{disc}}(T) \). We denote the indicator function of a set \(S \) by \(\chi_S(\cdot) \).

2. Sturm-Liouville operators with the indefinite weight \(\text{sgn} \ x \)

2.1. Differential operators

We consider the differential expression

\[
\ell(y)(x) = -y''(x) + q(x)y(x), \quad x \in \mathbb{R}
\]

with a real potential \(q \in L^1_{\text{loc}}(\mathbb{R}) \). Throughout this paper it is assumed that we have limit point case at both \(-\infty \) and \(+\infty \). We set

\[
a(y)(x) = (\text{sgn} \ x) (-y''(x) + q(x)y(x)), \quad x \in \mathbb{R}.
\]

Let \(\mathcal{D} \) be the set of all \(f \in L^2(\mathbb{R}) \) such that \(f \) and \(f' \) are absolutely continuous with \(\ell(f) \in L^2(\mathbb{R}) \). On \(\mathcal{D} \) we define the operators \(A \) and \(L \) as follows:

\[
\text{dom}(A) = \text{dom}(L) = \mathcal{D}, \quad Ay = a(y), \quad Ly = \ell(y).
\]

We equip \(L^2(\mathbb{R}) \) with the indefinite inner product

\[
[f, g] := \int_{\mathbb{R}} (\text{sgn} \ x)f(x)\overline{g(x)}dx, \quad f, g \in L^2(\mathbb{R}).
\]

Then \((L^2(\mathbb{R}), [\cdot, \cdot]) \) is a Krein space (for the definition of a Krein space and basic notions therein we refer to [2]). A fundamental symmetry \(J \) in \((L^2(\mathbb{R}), [\cdot, \cdot]) \) is given by

\[
(Jf)(x) = (\text{sgn} \ x)f(x), \quad f \in L^2(\mathbb{R}).
\]
Obviously,

\[A = JL \]

holds.

Since the differential expressions \(a(\cdot) \) and \(\ell(\cdot) \) are in the limit point case both at \(+\infty\) and \(-\infty\), the operator \(L \) is self-adjoint in the Hilbert space \(L^2(\mathbb{R}) \). As \(A = JL \), the operator \(A \) is self-adjoint in the Krein space \(L^2(\mathbb{R}, [\cdot, :]) \).

Definition 2.1. We shall say that \(A \) is the operator associated with the differential expression \(a(\cdot) \).

2.2. Titchmarsh-Weyl coefficients

In the following we denote by \(C_\pm \) the set \(\{ z \in \mathbb{C} : \pm \text{Im} z > 0 \} \). Let \(c_\lambda(x) \) and \(s_\lambda(x) \) denote the fundamental solutions of the equation

\[-y''(x) + q(x)y(x) = \lambda y(x), \quad x \in \mathbb{R}, \quad (2.3) \]

which satisfy the following conditions

\[c_\lambda(0) = s'_\lambda(0) = 1; \quad c'_\lambda(0) = s_\lambda(0) = 0. \]

Since the equation (2.3) is limit-point at \(+\infty\), the Titchmarsh-Weyl theory (see, for example, \([40]\)) states that there exists a unique holomorphic function \(m_+(\lambda) \), \(\lambda \in C_+ \cup C_- \), such that the function \(s_\lambda(\cdot) - m_+(\lambda)c_\lambda(\cdot) \) belongs to \(L^2(\mathbb{R}_+) \). Similarly, the limit point case at \(-\infty\) yields the fact that there exists a unique holomorphic function \(m_-(\lambda) \), \(\lambda \in C_+ \cup C_- \), such that \(s_\lambda(\cdot) + m_-(\lambda)c_\lambda(\cdot) \in L^2(\mathbb{R}-) \). The function \(m_+ (m_-) \) is called the Titchmarsh-Weyl m-coefficient for (2.3) on \(\mathbb{R}_+ \) (on \(\mathbb{R}_- \), respectively).

We put

\[M_\pm(\lambda) := \pm m_\pm(\pm\lambda). \]

Definition 2.2. The function \(M_+(\cdot) \) (\(M_-(\cdot) \)) is said to be the Titchmarsh-Weyl coefficient of the differential expression \(a(\cdot) \) on \(\mathbb{R}_+ \) (on \(\mathbb{R}_- \)).

It is easy to see that for \(\lambda \in C_+ \cup C_- \) the functions

\[\psi^\pm_\lambda(x) := \begin{cases} s_\pm_\lambda(x) - M_\pm(\lambda)c_\pm_\lambda(x), & x \in \mathbb{R}_+, \\ 0, & x \in \mathbb{R}_- \end{cases} \quad (2.4) \]

belong to \(L^2(\mathbb{R}) \). Moreover, the following formula (see \([40]\)) for the norms of \(\psi^\pm_\lambda \) in \(L^2(\mathbb{R}) \) holds true

\[\|\psi^\pm_\lambda(x)\|^2 = \frac{\text{Im} M_\pm(\lambda)}{\text{Im} \lambda}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R}. \quad (2.5) \]

A holomorphic function \(G : C_+ \cup C_- \rightarrow \mathbb{C} \) is called Nevanlinna function or of class \((R) \), see e.g. \([27]\), if \(G(\lambda) = \overline{G(\lambda)} \) and \(\text{Im} \lambda \cdot \text{Im} G(\lambda) \geq 0 \) for \(\lambda \in C_+ \cup C_- \). It
follows easily from (2.5) that the functions M_+ and M_- (as well as m_\pm) belong to the class (\mathcal{R}). Moreover, the functions M_\pm have the following asymptotic behavior

$$M_\pm(\lambda) = \pm \frac{i}{\sqrt{-\lambda}} + O\left(\frac{1}{|\lambda|}\right), \quad (\lambda \to \infty, \ 0 < \delta < \arg \lambda < \pi - \delta) \quad (2.6)$$

for $\delta \in \left(0, \frac{\pi}{2}\right)$, see [17]. Here and below \sqrt{z} is the branch of the multifunction on the complex plane \mathbb{C} with the cut along \mathbb{R}^+, singled out by the condition $\sqrt{-1} = i$.

2.3. The non-real spectrum of A

In the following we identify functions $f \in L^2(\mathbb{R})$ with elements $(f_+ + f_-)$, where $f_\pm := f |_{\mathbb{R}_\pm} \in L^2(\mathbb{R}_\pm)$. Similarly we write $q_\pm := q |_{\mathbb{R}_\pm} \in L^1_{\text{loc}}(\mathbb{R}_\pm)$. Note that the differential expressions $-\frac{d^2}{dx^2} + q_+$ and $\frac{d^2}{dx^2} - q_-$ in $L^2(\mathbb{R}_+)$ and $L^2(\mathbb{R}_-)$ are both regular at the endpoint 0 and in the limit point case at the singular endpoint $+\infty$ and $-\infty$, respectively. Therefore the operators

$$A_{\text{min}}^+ f_+ = -f_+'' + q_+ f_+ \quad \text{and} \quad A_{\text{min}}^- f_- = f_-'' - q_- f_-$$

defined on

$$\text{dom } A_{\text{min}}^\pm = \{ f_\pm \in D_{\text{max}}^\pm : f_\pm(0) = f_\pm'(0) = 0 \},$$

with

$$D_{\text{max}}^+ = \{ f_+ \in L^2(\mathbb{R}_+) : f_+, f_+'' \text{ absolutely continuous, } -f_+'' + q_+ f_+ \in L^2(\mathbb{R}_+) \},$$

$$D_{\text{max}}^- = \{ f_- \in L^2(\mathbb{R}_-) : f_-, f_-'' \text{ absolutely continuous, } f_-'' - q_- f_- \in L^2(\mathbb{R}_-) \},$$

are closed symmetric operators in the Hilbert spaces $L^2(\mathbb{R}_+)$ and $L^2(\mathbb{R}_-)$, respectively, cf. [45, 46], with deficiency indices $(1, 1)$. The adjoint operators $(A_{\text{min}}^\pm)^*$ in the Hilbert space $L^2(\mathbb{R}_\pm)$ are the usual maximal operators defined on D_{max}^\pm.

We introduce the operators

$$A_0^+ f_+ = -f_+'' + q_+ f_+ \quad \text{and} \quad A_0^- f_- = f_-'' - q_- f_-$$

defined on

$$\text{dom } A_0^\pm = \{ f_\pm \in D_{\text{max}}^\pm : f_\pm(0) = 0 \},$$

Evidently, A_0^\pm are self-adjoint extensions of A_{min}^\pm in the Hilbert spaces $L^2(\mathbb{R}_+)$ and $L^2(\mathbb{R}_-)$, respectively, cf. [45, 46]. In the following we consider $\text{dom } A_{\text{min}}^\pm$ as subsets of $L^2(\mathbb{R})$. Then above considerations imply the following lemma.

Lemma 2.3. Let dom $A_{\text{min}} := \text{dom } A_{\text{min}}^+ \oplus \text{dom } A_{\text{min}}^-$ and let the operator A_{min} be defined on $\text{dom } A_{\text{min}}$,

$$A_{\text{min}} := \begin{pmatrix} A_{\text{min}}^+ & 0 \\ 0 & A_{\text{min}}^- \end{pmatrix},$$
Definition 3.1. For a self-adjoint operator A in $\mathcal{L}^2(\mathbb{R}) = L^2(\mathbb{R}_+) \oplus L^2(\mathbb{R}_-)$. Then A_{min} is a closed symmetric operator in the Hilbert space $L^2(\mathbb{R})$ with deficiency indices $(2, 2)$. Moreover, we have

$$A_{min} = A |_{\text{dom } A_{min}}, \quad A = A_{min}^* |_{\mathcal{D}},$$

where

$$\mathcal{D} = \text{dom}(A) = \{ f = (f_+^*, f_-^*) : f_+^* \in \text{dom}(A_{min}^+), f_-^* \in \text{dom}(A_{min}^-) \}.$$

In the following proposition we collect some spectral properties of A.

Proposition 2.4. Let A be the operator associated with the differential expression $a(\cdot)$. Then:

(i) $\{ \lambda \in \mathbb{C} \setminus \mathbb{R} : M_+(\lambda) = M_-(\lambda) \} = \sigma_p(A) \setminus \mathbb{R};$

(ii) $\{ \lambda \in \mathbb{C} \setminus \mathbb{R} : M_+(\lambda) \neq M_-(\lambda) \} = \rho(A) \setminus \mathbb{R};$

(iii) $\rho(A) \neq \emptyset.$

(iv) The essential spectrum $\sigma_{ess}(A)$ of A is real and

$$\sigma_{ess}(A) = \sigma_{ess}(A^+_0) \cup \sigma_{ess}(A^-_0).$$

The sets $\sigma_p(A) \cap \mathbb{C}_{\pm}$ are at most countable with possible limit points belonging to $\sigma_{ess}(A) \cup \{ \infty \}.$

For a proof of Proposition 2.4 we refer to [34, Proposition 2.5] and [30, 31]. We mention only that the statements (iii) and (iv) follow from the first and second statement and (2.6).

3. Criteria for definitizability

3.1. Definitizable and locally definitizable operators

Let $(\mathcal{H}, [\cdot, \cdot])$ be a Krein space and let A be a closed operator in \mathcal{H}. We define the extended spectrum $\sigma_e(A)$ of A by $\sigma_e(A) := \sigma(A)$ if A is bounded and $\sigma_e(A) := \sigma(A) \cup \{ \infty \}$ if A is unbounded. We set $\rho_e(A) := \overline{\mathbb{C}} \setminus \sigma_e(A)$. A point $\lambda_0 \in \mathbb{C}$ is said to belong to the approximative point spectrum $\sigma_{ap}(A)$ of A if there exists a sequence $(x_n) \subset \text{dom}(A)$ with $\|x_n\| = 1$, $n = 1, 2, \ldots$, and $\|(A - \lambda_0)x_n\| \to 0$ if $n \to \infty$. For a self-adjoint operator A in \mathcal{H} all real spectral points of A belong to $\sigma_{ap}(A)$ (see e.g. [9, Corollary VI.6.2]).

First we recall the notions of spectral points of positive and negative type.

The following definition was given in [37], [39] (for bounded self-adjoint operators).

Definition 3.1. For a self-adjoint operator A in \mathcal{H} a point $\lambda_0 \in \sigma(A)$ is called a spectral point of positive (negative) type of A if $\lambda_0 \in \sigma_{ap}(A)$ and for every sequence $(x_n) \subset \text{dom}(A)$ with $\|x_n\| = 1$ and $\|(A - \lambda_0)x_n\| \to 0$ for $n \to \infty$, we have

$$\liminf_{n \to \infty} [x_n, x_n] > 0 \quad (\text{resp. } \limsup_{n \to \infty} [x_n, x_n] < 0).$$
Illya Karabash and Carsten Trunk

The point ∞ is said to be of positive (negative) type of A if A is unbounded and for every sequence $(x_n) \subset \text{dom}(A)$ with $\lim_{n \to \infty} \|x_n\| = 0$ and $\|Ax_n\| = 1$ we have

$$\liminf_{n \to \infty} [Ax_n, Ax_n] > 0 \quad (\text{resp. } \limsup_{n \to \infty} [Ax_n, Ax_n] < 0).$$

We denote the set of all points of $\sigma_e(A)$ of positive (negative) type by $\sigma_{++}(A)$ (resp. $\sigma_{--}(A)$). We shall say that an open subset δ of $\mathbb{R} (= \mathbb{R} \cup \infty)$ is of positive type (negative type) with respect to A if

$$\delta \cap \sigma_e(A) \subset \sigma_{++}(A) \quad (\text{resp. } \delta \cap \sigma_e(A) \subset \sigma_{--}(A)).$$

An open set δ of \mathbb{R} is called of definite type if δ is of positive or negative type with respect to A.

The sets $\sigma_{++}(A)$ and $\sigma_{--}(A)$ are contained in \mathbb{R}. The non-real spectrum of A cannot accumulate at a point belonging to an open set of definite type.

Recall, that a self-adjoint operator A in a Krein space $(\mathcal{H}, [\cdot, \cdot])$ is called definitizable if $\rho(A) \neq \emptyset$ and there exists a rational function $p \neq 0$ having poles only in $\rho(A)$ such that $[p(A)x, x] \geq 0$ for all $x \in \mathcal{H}$. Then the non-real part of the spectrum of A consists of no more than a finite number of points. Moreover, A has a spectral function E defined on the ring generated by all connected subsets of \mathbb{R} whose endpoints do not coincide with the points of some finite set which is contained in $\{t \in \mathbb{R} : p(t) = 0\} \cup \{\infty\}$ (see [38]).

A self-adjoint operator in a Krein space is definitizable if and only if it is definitizable over \mathcal{U} in the sense of the following definition (see e.g. [24, Definition 4.4]), which localizes the notion of definitizability.

Definition 3.2. Let Ω be a domain in \mathbb{C} such that

$$\Omega \quad \text{is symmetric with respect to } \mathbb{R}, \quad \Omega \cap \mathbb{R} \neq \emptyset,$$

and the domains $\Omega \cap \mathbb{C}^+, \Omega \cap \mathbb{C}^-$ are simply connected.

Let A be a self-adjoint operator in the Krein space $(\mathcal{H}, [\cdot, \cdot])$ such that $\sigma(A) \cap (\Omega \setminus \mathbb{R})$ consists of isolated points which are poles of the resolvent of A, and no point of $\Omega \cap \mathbb{R}$ is an accumulation point of the non-real spectrum $\sigma(A) \setminus \mathbb{R}$ of A. The operator A is called definitizable over Ω, if the following holds.

(i) For every closed subset Δ of $\Omega \cap \mathbb{R}$ there exist an open neighbourhood \mathcal{U} of Δ in \mathbb{C} and numbers $m \geq 1, M > 0$ such that

$$\|(A - \lambda)^{-1}\| \leq M(|\lambda| + 1)^{2m-2}|\text{Im}\lambda|^{-m}$$

for all $\lambda \in \mathcal{U} \setminus \mathbb{R}$. (3.3)

(ii) Every point $\lambda \in \Omega \cap \mathbb{R}$ has an open connected neighbourhood I_λ in \mathbb{R} such that both components of $I_\lambda \setminus \{\lambda\}$ are of definite type (cf. Definition 3.1) with respect to A.

A self-adjoint operator definitizable over Ω where Ω is as in Definition 3.2 possesses a local spectral function E. For the construction and the properties of this
Let Lemma 3.5. The following lemma is a easy consequence of Definitions 3.1 and 3.2.

Theorem 3.3. Let T_1 and T_2 be self-adjoint operators in the Krein space \mathcal{H}, let $\rho(T_1) \cap \rho(T_2) \cap \Omega \neq \emptyset$ and assume that

$$(T_1 - \lambda_0 I)^{-1} - (T_2 - \lambda_0 I)^{-1}$$

is a finite rank operator for some $\lambda_0 \in \rho(T_1) \cap \rho(T_2)$. Then T_1 is definitizable over Ω if and only if T_2 is definitizable over Ω.

Moreover, if T_1 is definitizable over Ω and $\Delta \subset \Omega \cap \mathbb{R}$ is an open interval with end point $\eta \in \Omega \cap \mathbb{R}$ and Δ is of positive type (negative type) with respect to T_1, then there exist open interval Δ', $\Delta' \subset \Delta$, with endpoint η such that Δ' is of positive type (resp. negative type) with respect to T_2.

3.2. Definitizability of A

In this section we will give conditions which ensures the definitizability of the operator A from Definition 2.1. The following definition is needed below.

Definition 3.4. We shall say that the sets S_1 and S_2 of real numbers are separated by a finite number of points if there exists a finite ordered set $\{\alpha_j\}_{j=1}^N \in \mathbb{N}$, $\alpha_j < \alpha_{j+1}$, such that one of the sets S_j, $j = 1, 2$, is a subset of $\bigcup_{k \text{ is even}} [\alpha_k, \alpha_{k+1}]$ and another one is a subset of $\bigcup_{k \text{ is odd}} [\alpha_k, \alpha_{k+1}]$.

The operator $A^+_0 \oplus A^-_0$, where A^\pm_0 are defined as in Section 2.3, is fundamentally reducible (cf. [22, Section 3]) in the Krein space $L^2(\mathbb{R}), [\cdot, \cdot]$) (cf. (2.2)). Hence the following lemma is a easy consequence of Definitions 3.1 and 3.2.

Lemma 3.5. Let $\lambda \in \mathbb{R}$. Then $\lambda \in \sigma_{++}(A^+_0 \oplus A^-_0)$ $\lambda \in \sigma_{--}(A^+_0 \oplus A^-_0)$ if and only if $\lambda \in \sigma(A^+_0) \setminus \sigma(A^-_0)$ $\lambda \in \sigma(A^-_0) \setminus \sigma(A^+_0)$, resp. The operator $A^+_0 \oplus A^-_0$ is definitizable if and only if the sets $\sigma(A^+_0)$ and $\sigma(A^-_0)$ are separated by a finite number of points.

It follows from Proposition 2.4 and $\sigma(A^+_0 \oplus A^-_0) \subset \mathbb{R}$ that $\rho(A) \cap \rho(A^+_0 \oplus A^-_0) \neq \emptyset$. Let $\lambda_0 \in \rho(A) \cap \rho(A^+_0 \oplus A^-_0)$. The operators $A^+_0 \oplus A^-_0$ and A are extensions of A_{\min}
and \(\dim \left(\text{dom}(A_0^+ \oplus A_0^-)/\text{dom}(A_{\min}) \right) = \dim \left(\text{dom}(A)/\text{dom}(A_{\min}) \right) = 2 \). This implies that
\[
(A_0^+ \oplus A_0^- - \lambda_0 I)^{-1} - (A - \lambda_0 I)^{-1}
\]
is an operator of rank 2. Then [25] and Lemma 3.5 imply the following theorem.

Theorem 3.6 ([30, 31]). The operator \(A \) is definitizable if and only if the sets \(\sigma(A_0^+) \) and \(\sigma(A_0^-) \) are separated by a finite number of points.

Example 3.7. Let \(q \) be a constant potential, \(q(x) \equiv c, \ c \in \mathbb{R} \). It is easy to calculate that \(\sigma(A_0^+) = [c, +\infty) \) and \(\sigma(A_0^-) = (-\infty, -c] \). Thus, Corollary 3.6 implies that the operator \((\text{sgn} \ x)(-d^2/dx^2 + c) \) is definitizable in the Krein space \(L^2(\mathbb{R}, \text{sgn} \ x \ dx) \) if and only if \(c \geq 0 \).

3.3. Local definitizability of \(A \)

In this subsection we consider Sturm-Liouville operators defined as in Section 2 and we prove that the operator \(A \) is a definitizable operator in a certain neighbourhood of \(\infty \) (in the sense of the Krein space \((L^2(\mathbb{R}), [, ,]) \)) if and only if the operator \(L \) is semi-bounded from below (in the sense of the Hilbert space \(L^2(\mathbb{R}) \)).

Remark 3.8. Clearly, \(L \geq \eta_0 > -\infty \) whenever \(q(x) \geq \eta_0 > -\infty, \ x \in \mathbb{R} \).

The operator \(A_0^+ \oplus A_0^- \) is a self-adjoint operator both in the Hilbert space \(L^2(\mathbb{R}) \) and in the Krein space \((L^2(\mathbb{R}), [, ,]) \), cf. (2.2).

Lemma 3.9. The following statements are equivalent:

(i) The operator \(L \) is semi-bounded from below.

(ii) There exists \(R > 0 \) such that the operator \(A_0^+ \oplus A_0^- \) is definitizable over the domain \(\{ \lambda \in \mathbb{C} : |\lambda| > R \} \).

Proof. (i) \(\Rightarrow \) (ii). Since \(A_0^+ \oplus A_0^- \) is a self-adjoint operator in the Hilbert space \(L^2(\mathbb{R}) \), we see that
\[
\sigma(A_0^+ \oplus A_0^-) \subset \mathbb{R} \quad \text{and (3.3) holds for all} \ \lambda \in \mathbb{C} \setminus \mathbb{R} \quad \text{with} \ m = 1.
\] (3.4)

Assume that \(L \geq \eta_0 \). The operator \(L \) is a self-adjoint extension of \(A_{\min}^+ \oplus (-A_{\min}^-) \), hence the operator \(A_{\min}^+ \) is semi-bounded from below, \(A_{\min}^+ \geq \eta_0 \), and \(A_{\min}^- \) is semi-bounded from above, \(A_{\min}^- \leq -\eta_0 \). The operators \(A_0^+ \) are self-adjoint extensions in \(L^2(\mathbb{R}_+) \) of the symmetric operators \(A_{\min}^+ \) with deficiency indices \((1,1)\). Hence the spectrum of \(A_0^+ \) \((A_0^-)\) lies, with the possible exception of at most one normal eigenvalue, in \([\eta_0, \infty) \) (in \((-\infty, -\eta_0]\), respectively), see e.g. [1, Section VII.85].

Choose \(R := \eta_0 \). Lemma 3.5 implies that the set \((R, +\infty)\), with the possible exception of at most one eigenvalue, is of positive type and the set \((-\infty, -R)\), with the possible exception of at most one eigenvalue, is of negative type with respect to \(A_0^+ \oplus A_0^- \). Thus, the operator \(A_0^+ \oplus A_0^- \) is definitizable over \(\{ \lambda \in \mathbb{C} : |\lambda| > R \} \).

(i) \(\Leftrightarrow \) (ii) Obviously, the Sturm-Liouville operator \(A_0^+ \) \((A_0^-)\) is not semi-bounded from above (below, resp.). That is,
\[
\sup \sigma(A_0^+) = +\infty, \quad \inf \sigma(A_0^-) = -\infty.
\] (3.5)
Assume that L is not semi-bounded from below. Then A_{\min}^+ or $-A_{\min}$ is not semi-bounded from below. Thus, $\inf \sigma(A_0^+) = -\infty$ or $\sup \sigma(A_0^-) = +\infty$.

Consider the case

$$\inf \sigma(A_0^+) = -\infty. \quad (3.6)$$

It follows from (3.6), (3.5) and Lemma 3.5 that

$$(\infty, -r) \cap \sigma_{++}(A_0^+ \oplus A_0^-) \neq \emptyset \quad \text{and} \quad (\infty, -r) \cap \sigma_{--}(A_0^+ \oplus A_0^-) \neq \emptyset$$

for all $r > 0$. Thus, by definition, the operator $A_0^+ \oplus A_0^-$ is not definitizable over $\{ \lambda \in \mathbb{C} : |\lambda| > r \}$ for arbitrary $r > 0$. The case $\sup \sigma(A_0^-) = +\infty$ can be considered in the same way.

The following theorem is one of the main results.

Theorem 3.10. The following assertions are equivalent:

(i) The operator L is semi-bounded from below.

(ii) There exists $R > 0$ such that the operator A is definitizable over the domain $\{ \lambda \in \mathbb{C} : |\lambda| > R \}$.

Proof. It follows from Proposition 2.4 (iii) and $\sigma(A_0^+ \oplus A_0^-) \subset \mathbb{R}$ that $\rho(A) \cap \rho(A_0^+ \oplus A_0^-) \neq \emptyset$. Let $\lambda_0 \in \rho(A) \cap \rho(A_0^+ \oplus A_0^-)$. The operators $A_0^+ \oplus A_0^-$ and A are extensions of A_{\min} and $\text{dim}(\text{dom}(A_0^+ \oplus A_0^-)/\text{dom}(A_{\min})) = \text{dim}(\text{dom}(A)/\text{dom}(A_{\min})) = 2$. This implies that

$$(A_0^+ \oplus A_0^- - \lambda_0 I)^{-1} - (A - \lambda_0 I)^{-1} \quad (3.7)$$

is an operator of rank 2. Combining Lemma 3.9 and Theorem 3.3, Theorem 3.10 is proved.

By Theorem 3.10, the semi-boundedness of L implies the definitizability of A over some domain. Now we give a precise description of the domain of definitizability of A in terms of the spectra of A_0^+ and A_0^-. Let T be an operator such that $\sigma(T) \subset \mathbb{R}$. Let us introduce the sets $\sigma_{\text{left}}(T)$ and $\sigma_{\text{right}}(T)$ by the following way: a point $\lambda \in \mathbb{R} = \mathbb{R} \cup \{ \pm \infty \}$ is said to belong to $\sigma_{\text{left}}(T)$ ($\sigma_{\text{right}}(T)$) if there exists an increasing (resp. decreasing) sequence $\{ \lambda_n \}_{1}^{\infty} \subset \sigma(T)$ such that $\lim_{n \to \infty} \lambda_n = \lambda$.

Note that

$$\sigma_{\text{left}}(T) \cup \sigma_{\text{right}}(T) \subset \sigma_{\text{ess}}(T) \cup \{ \infty \}. \quad (3.8)$$

For differential operators A_0^\pm, equality holds in (3.8) since every point of $\sigma_{\text{ess}}(A_0^\pm)$ is an accumulation point of $\sigma(A_0^\pm)$.

We put

$$S_A := \left(\sigma_{\text{left}}(A_0^+) \cap \sigma_{\text{left}}(A_0^-) \right) \cup \left(\sigma_{\text{right}}(A_0^+) \cap \sigma_{\text{right}}(A_0^-) \right). \quad (3.9)$$

Theorem 3.11. Let Ω be a domain in \mathbb{C} such that (3.1)-(3.2) are fulfilled. Then the operator $A = (\text{sgn} \ x)(-d^2/dx^2 + q)$ is definitizable over Ω if and only if $\Omega \subset \Omega_A$, where $\Omega_A := \mathbb{C} \setminus S_A$.

Proof. Arguments from the proof of Theorem 3.10 show that it is enough to prove the theorem for the operator \(A^+_0 \oplus A^-_0 \).

Let \(\lambda \in \mathcal{S}_A \) and let \(I_\lambda \) be an open connected neighbourhood of \(\lambda \). Then (3.9) and Lemma 3.5 imply that one of the components of \(I_\lambda \setminus \{\lambda\} \) is not of definite type. So if \(A^+_0 \oplus A^-_0 \) is definitizable over \(\Omega \), then \(\lambda \notin \Omega \).

Conversely, if \(\mathcal{S}_A \neq \mathbb{R} \), then condition (ii) from Definition 3.2 is fulfilled for \(\Omega_A = \mathbb{T} \setminus \mathcal{S}_A \). Taking (3.4) into account, we see that \(A^+_0 \oplus A^-_0 \) is definitizable over \(\Omega_A \).

Remark 3.12. Note that \(\Omega_A \cap \mathbb{R} = \emptyset \) is equivalent to \(\sigma_{ess}(A^+_0) = \sigma_{ess}(A^-_0) = \mathbb{R} \). In the converse case, (3.1)-(3.2) are fulfilled for \(\Omega_A \) and it is the greatest domain over which the operator \(A \) is definitizable.

The following statement is a simple consequence of Theorem 3.10, Theorem 3.11, and (3.8).

Corollary 3.13. Assume that \(L \) is semi-bounded from below. Then the operator \(A \) is definitizable over the set \(\mathbb{T} \setminus (\sigma_{ess}(A^+_0) \cap \sigma_{ess}(A^-_0)) \).

3.4. Regularity of the critical point \(\infty \)

In the sequel we will use a result which follows easily from [12, Lemma 3.5 (iii)] and [12, Theorem 3.6 (i)].

Proposition 3.14. If the operator \(\tilde{L} := -d^2/dx^2 + \tilde{q}(x) \), for some real \(\tilde{q} \in L^1_{loc}(\mathbb{R}) \), defined on \(\mathcal{D} \) is nonnegative in the Hilbert space \(L^2(\mathbb{R}) \), then the operator \(\tilde{A} := (\text{sgn } x)\tilde{L} \) is definitizable and \(\infty \) is a regular critical point of \(\tilde{A} \).

The following theorem can be considered as the main result of this note.

Theorem 3.15. Assume that assertions (i), (ii) of Theorem 3.10 hold true. Then there exists a decomposition

\[
A = A_\infty + A_0 \tag{3.10}
\]

such that the operator \(A_\infty \) is similar to a self-adjoint operator in the Hilbert space sense and \(A_0 \) is a bounded operator.

Remark 3.16. The conclusion of Theorem 3.15 is equivalent to the regularity of critical point \(\infty \) of the operator \(A \).

Proof of Theorem 3.15. Assume that \(A \) is an operator definitizable over \(\{\lambda \in \mathbb{T} : |\lambda| > R\} \), \(R > 0 \). By Theorem 3.10, this is equivalent to the fact that \(L \geq \eta_0 \) for certain \(\eta_0 \in \mathbb{R} \).

Denote by \(E^A \) the spectral function of \(A \). Choose \(r > R \) such that \(\sigma(A) \setminus \mathbb{R} \subset \{\lambda \in \mathbb{C} : |\lambda| \leq r\} \) and \(E^A(\mathbb{R} \setminus (-r, r)) \) is defined. Then \(A \) decomposes,

\[
A = A_1 + A_0, \quad A_1 := A \upharpoonright \text{dom}(A) \cap (E^A(\mathbb{R} \setminus (-r, r))L^2(\mathbb{R})), \quad A_0 := A \upharpoonright \text{dom}(A) \cap ((I - E^A(\mathbb{R} \setminus (-r, r)))L^2(\mathbb{R}))
\]

and the following statements holds (cf. [22, Theorem 2.6]):
A_1 is a definitizable operator in the Krein space $(E^A(\mathbb{R} \setminus (-r, r))L^2(\mathbb{R}), [\cdot, \cdot])$.

A_0 is a bounded operator and $\sigma(A_0) \subset \{ \lambda : |\lambda| \leq r \}$. Let us show that ∞ is not a singular critical point of A_1.

Consider the operator A_2 defined by $A_2 = A_1 + 0$, where the direct sum is considered with respect to the decomposition

$$L^2(\mathbb{R}) = E^A(\mathbb{R} \setminus (-r, r))L^2(\mathbb{R}) \oplus (I - E^A(\mathbb{R} \setminus (-r, r)))L^2(\mathbb{R}),$$

and 0 is the zero operator in the subspace $\text{ran}(I - E^A(\mathbb{R} \setminus (-r, r)))$. Since A_0 is a bounded operator, we have

$$\text{dom}(A_2) = \text{dom} A.$$

Moreover, ∞ is not a singular critical point of A_2 if and only if ∞ is not a singular critical point of A.

Now we prove that ∞ is not a singular critical point of A_2. Let $\eta_1 < \eta_0$. Since $L \geq \eta_0$, we see that $L - \eta_1 I$ is a uniformly positive operator in the Hilbert space $L^2(\mathbb{R})$ (i.e., $L - \eta_1 I \geq \delta > 0$). Therefore $A := J(L - \eta_1 I)$,

$$\tilde{A} y(x) = (\text{sgn} x)(-y''(x) + q(x)y(x) - \eta_1 y(x)), \quad \text{dom}(\tilde{A}) = \text{dom}(A),$$

is a definitizable nonnegative operator in the Krein space $(L^2(\mathbb{R}), [\cdot, \cdot])$. By Proposition 3.14, ∞ is not a singular critical point of \tilde{A}. The Čurgus criterion of the regularity of critical point ∞, see [11, Corollary 3.3], implies that ∞ is not a singular critical point of the operator A_2. So ∞ is not a singular critical point of A_1. It follows from $L \geq \eta_0$ and Lemma 3.5 that for sufficiently large $r_1 > 0$ the set $(-\infty, -r_1]$ is of negative type and the set $[r_1, +\infty)$ is of positive type with respect to $A_0^\perp \oplus A_0^\perp$. Combining this with Theorem 3.3, we obtain that there exists $r_2 \geq r_1$ such that $(-\infty, -r_2]$ is of negative type and the set $[r_2, +\infty)$ is of positive type with respect to the operator A. Evidently, we obtain the desired decomposition

$$A = A_\infty + A_0, \quad A_\infty := A | \text{dom}(A) \cap (E^A(\mathbb{R} \setminus (-r_2, r_2))L^2(\mathbb{R})), \quad A_0 := A | \text{dom}(A) \cap ((I - E^A(\mathbb{R} \setminus (-r_2, r_2)))L^2(\mathbb{R})),$$

where A_0 is a bounded operator and A_∞ is similar to a self-adjoint operator in the Hilbert space sense.

4. Accumulation of non-real eigenvalues to a real point

By Proposition 2.4 (i), the non-real spectrum $\sigma(A) \setminus \mathbb{R}$ of A consists of eigenvalues. Let S_A be the set defined by (3.9). The following proposition is a consequence of Theorems 3.11 and 3.10.

Proposition 4.1. If λ is an accumulation point of $\sigma(A) \setminus \mathbb{R}$, then $\lambda \in S_A$. In particular, if the operator $L = -d^2/dx^2 + q(x)$ is semi-bounded from below, then non-real spectrum of A is a bounded set.
The goal of this subsection is to show that there exists a potential \(q \) continuous in \(\mathbb{R} \) such that the set of non-real eigenvalues of the operator \(A = (\text{sgn} \ x)(-d^2/dx^2 + q(x)) \) has a real accumulation point.

It is well known (e.g. [40]) that \(M_+ \), the Titchmarsh-Weyl m-coefficient for (2.3) (see Subsection 2.2), admits the following integral representation

\[
M_+(\lambda) = \int_{\mathbb{R}} \frac{d\Sigma_+(t)}{t - \lambda}, \quad \lambda \in \mathbb{C} \setminus \mathbb{R},
\]

where \(\Sigma_+(\cdot) \) is a nondecreasing scalar function such that \(\int_{\mathbb{R}} (1 + |t|)^{-1} d\Sigma_+(t) < \infty \).

The function \(\Sigma_+ \) is called a spectral function of the boundary value problem

\[
-y''(x) + q_+(x)y(x) = \lambda y(x), \quad y'(0) = 0, \quad x \in [0, +\infty).
\]

This means that the self-adjoint operator \(A_+^0 \) introduced in Subsection 2.3 is unitary equivalent to the operator of multiplication by the independent variable in the Hilbert space \(L^2(\mathbb{R}, d\Sigma_+(t)) \). This fact obviously implies

\[
\sigma(A_+^0) = \text{supp}(d\Sigma_+), \quad (4.2)
\]

where \(\text{supp} \ d\tau \) denotes the topological support of a Borel measure \(d\Sigma_+ \) on \(\mathbb{R} \) (i.e., \(\text{supp} \ d\Sigma_+ \) is the smallest closed set \(\Omega \subset \mathbb{R} \) such that \(d\Sigma_+(\mathbb{R} \setminus \Omega) = 0 \)).

Lemma 4.2. Assume that \(q \) is an even potential, \(q(x) = q(-x) \), \(x \in \mathbb{R} \). If \(\varepsilon > 0 \), then \(\varepsilon i \in \sigma_p(A) \) if and only if \(\Re M_+(i\varepsilon) = 0 \).

Proof. Since \(q \) is even, we get \(m_+(\lambda) = m_-(\lambda), \lambda \in \mathbb{C} \setminus \mathbb{R} \). So \(M_-(i\varepsilon) = -M_+(i\varepsilon) \). Since \(M_+ \) is a Nevanlinna function, we see that \(M_+(-i\varepsilon) = \overline{M_+(i\varepsilon)} \). Thus,

\[
M_+(i\varepsilon) - M_-(i\varepsilon) = M_+(i\varepsilon) + \overline{M_+(i\varepsilon)} = 2 \Re M_+(i\varepsilon).
\]

Proposition 2.4 completes the proof. \(\square \)

The following lemma follows easily from the Gelfand–Levitan theorem (see e.g. [41, Subsection 26.5]).

Lemma 4.3. Let \(\Sigma(t), t \in \mathbb{R}, \) be a nondecreasing function such that

\[
\int_{-\infty}^{T_1} d\Sigma(t) = 0 \quad \text{and} \quad \int_{-\infty}^{s} d\Sigma(t) = \int_{0}^{s} \frac{1}{\pi \sqrt{t}} \frac{\pi}{\sqrt{\pi}} dt = \text{for all } s > T_2,
\]

with certain constants \(T_1, T_2 \in \mathbb{R}, T_1 < T_2 \). Then there exists a potential \(q_+ \) continuous in \([0, +\infty) \), such that \(\Sigma(t) \) is a spectral function of the boundary value problem

\[
-y''(x) + q_+(x)y(x) = \lambda y(x), \quad y'(0) = 0, \quad x \in [0, +\infty).
\]

Lemma 4.4. There exist a nondecreasing function \(\Sigma(t), t \in \mathbb{R}, \) with the following properties:
(i) $\Sigma(t) = \Sigma_1(t) + \Sigma_2(t)$, where

$$\Sigma_1 \in AC_{loc}(\mathbb{R}), \quad \Sigma_1'(t) = \begin{cases} 0, & t \in (-\infty, 1), \\ \frac{1}{\pi \sqrt{t}}, & t \in (1, +\infty), \end{cases}$$

and the measure $d\Sigma_2$ has the form

$$d\Sigma_2(t) = \sum_{k=1}^{+\infty} h_k \delta(t - s_k),$$

where $h_k > 0$, $s_k \in (-1, 1)$, $k \in \mathbb{N}$; $\sum_{k=1}^{+\infty} h_k < \infty$, (4.6)

(here $\delta(t)$ is the Dirac delta-function).

(ii) Conditions (4.3)-(4.4) are valid for Σ with $T_1 = -1$ and $T_2 = 1$.

(iii) There exists a sequence $\varepsilon_k > 0$, $k \in \mathbb{N}$, such that $\lim_{k \to \infty} \varepsilon_k = 0$ and $r(\varepsilon_k) = 0$, $k \in \mathbb{N}$, where the function $r(\varepsilon)$, $\varepsilon > 0$, is defined by

$$r(\varepsilon) := \text{Re} \int_{\mathbb{R}} \frac{1}{t - i\varepsilon} d\Sigma(t) = \int_{\mathbb{R}} \frac{t}{t^2 + \varepsilon^2} d\Sigma_1(t).$$

Proof. Let $h_k = 2^{-k+1}/\pi$. Then

$$\sum_{k=1}^{+\infty} h_k = 2/\pi.$$ (4.7)

Now, if $s_k \notin (-1, 1)$ for all $k \in \mathbb{N}$, then Σ possesses property (ii). We should only choose $\{s_k\}_{k=1}^{+\infty} \subset (-1, 1)$ such that statements (iii) holds true.

Consider for $\varepsilon \geq 0$ the functions

$$r_0(\varepsilon) = \int_{1}^{\infty} \frac{t}{t^2 + \varepsilon^2} d\Sigma_1(t)$$

and

$$r_n(\varepsilon) := \int_{1}^{\infty} \frac{t}{t^2 + \varepsilon^2} d\Sigma_1(t) + \sum_{k=1}^{n} \frac{s_k h_k}{s_k^2 + \varepsilon^2}, \quad n \in \mathbb{N}.$$

Let $s_k \neq 0$ for all $k \in \mathbb{N}$. Then r_n are well-defined and continuous on $[0, +\infty)$. Besides, $\lim_{n \to \infty} r_n(\varepsilon) = r(\varepsilon)$ for all $\varepsilon > 0$. It is easy to see that $\lim_{\varepsilon \to \infty} r_n(\varepsilon) = 0$, $n \in \mathbb{N}$. Since r_n are continuous on $[0, +\infty)$, we see that

$$\text{SUP}_n := \sup_{\varepsilon \in [0, +\infty)} |r_n(\varepsilon)| < \infty, \quad n \in \mathbb{N}.$$

Now we give a procedure to choose $s_k \in (-1, 1) \setminus \{0\}$.

Singular Sturm-Liouville operators with indefinite weight $\text{sgn} x$
Let s_1 be an arbitrary number in $(-1, 0)$ such that
\[
\frac{s_1 h_1}{s_1^2 + \varepsilon^2} \bigg|_{\varepsilon = |s_1|} = \frac{1}{\pi} \frac{1}{2s_1} < -\text{SUP}_0 - 1,
\]
in other words, \[-\frac{1}{2\pi(\text{SUP}_0 + 1)} < s_1 < 0. \]
Then
\[
r_1(|s_1|) = r_0(|s_1|) + \frac{s_1 h_1}{s_1^2 + \varepsilon^2} \bigg|_{\varepsilon = |s_1|} < r_0(|s_1|) - \sup_{\varepsilon \in [0, +\infty)} |r_0(\varepsilon)| - 1 < -1. \tag{4.8}
\]
Let
\[
\{s_k\}_{k=2}^{\infty} \in (-b_1, b_1) \setminus \{0\} \quad \text{with certain} \quad b_1 \in (0, |s_1|/2). \tag{4.9}
\]
Let us show that we may choose a number b_1 such that (4.9) implies
\[
r(|s_1|) < 0. \tag{4.10}
\]
Indeed, (4.8) and (4.7) yield
\[
r(|s_1|) = r_1(|s_1|) + \sum_{k=2}^{\infty} \frac{s_k h_k}{s_k^2 + \varepsilon^2} \bigg|_{\varepsilon = |s_1|} < \notag
\]
\[
< -1 + \sum_{k=2}^{\infty} \frac{h_k |s_k|}{s_k^2} < -1 + \frac{b_1}{s_1^2} \sum_{k=2}^{\infty} h_k < -1 + \frac{2b_1}{\pi s_1^2}
\]
and therefore (4.10) is valid whenever $0 < b_1 < \pi s_1^2/2$.
Similarly, there exist $s_2 \in (0, b_1)$ such that
\[
\frac{s_2 h_2}{s_2^2 + \varepsilon^2} \bigg|_{\varepsilon = s_2} = \frac{1}{\pi} \frac{1}{2s_2} > \text{SUP}_1 + 1,
\]
and therefore
\[
r_2(s_2) > 1.
\]
Further, there exist $b_2 \in (0, s_2/2)$ such that \[\{s_k\}_{k=2}^{\infty} \subset (-b_2, b_2) \setminus \{0\} \] implies that $r(s_2) > 0$.
Continuing this process, we obtain a sequence \[\{s_k\}_{k=1}^{\infty} \subset (-1, 1) \setminus \{0\} \] with the following properties:
\[
s_k \in (-1, 0) \quad \text{if } k \text{ is odd}, \quad s_k \in (0, 1) \quad \text{if } k \text{ is even},
\]
\[
|s_1| > \frac{|s_1|}{2} > |s_2| > \frac{|s_2|}{2} > |s_3| > \ldots > |s_k| > \frac{|s_k|}{2} > |s_{k+1}| > \ldots, \tag{4.11}
\]
\[
r(|s_k|) < 0 \quad \text{if } k \text{ is odd}, \quad r(|s_k|) > 0 \quad \text{if } k \text{ is even}. \tag{4.12}
\]
It is easy to show that r is continuous on $(0, +\infty)$. Combining this with (4.12), we see that there exists $\varepsilon_k \in \{|s_{k-1}|, |s_k|\}$ such that $r(\varepsilon_k) = 0$, $k \in \mathbb{N}$. Besides, (4.11) implies $\lim |s_k| = \lim \varepsilon_k = 0$. \qed
Theorem 4.5. There exist an even potential \hat{q} continuous on \mathbb{R} and a sequence $\{\varepsilon_k\}_1^\infty \subset \mathbb{R}_+$ such that

(i) the operator \hat{A} defined by the differential expression

\[
\text{sgn } x \left(-\frac{d^2}{dx^2} + \hat{q}(x) \right)
\]

on the natural domain \mathcal{D} (see Subsection 2.1) is a self-adjoint operator in the Krein space $L^2(\mathbb{R}, [\cdot, \cdot])$;

(ii) $\{i\varepsilon_k\}_1^\infty \subset \sigma_p(\hat{A})$, i.e., $i\varepsilon_k$, $k \in \mathbb{N}$, are non-real eigenvalues of \hat{A};

(iii) $\lim_{k \to \infty} \varepsilon_k = 0$;

(iv) the operator \hat{A} is definitizable over the domain $\mathbb{C} \setminus \{0\}$.

Proof. (i) Let Σ and $\{\varepsilon_k\}_1^\infty$ be from Lemma 4.4. Then, by Lemma 4.3, Σ is a spectral function of the boundary value problem (4.1) with a certain potential \hat{q}_+. Let us consider an even continuous potential $\hat{q}(x) = \hat{q}_+(|x|)$, $x \in \mathbb{R}$, and the corresponding operator $\hat{A} = (\text{sgn } x) \left(-\frac{d^2}{dx^2} + \hat{q}(x) \right)$ defined as in Subsection 2.1.

It is well known that if equation (2.3) is in the limit-circle case at $+\infty$ then $M_+(\cdot)$ is a meromorphic function on \mathbb{C} and the spectral function Σ_+ is a step function with jumps at the poles of $M_+(\cdot)$ only (see e.g. [10, Theorem 9.4.1]). As $\Sigma_+(t) = \Sigma(t)$, $t > 0$, this condition does not hold for the function Σ since Σ satisfies (4.4). Indeed, (4.4) means that $\Sigma'(t) = \frac{1}{\pi\sqrt{t}}$ for $t > T_2 = 1$ and therefore Σ is not a step function. So (2.3) is limit-point at $+\infty$.

Since the potential \hat{q} is even, the same is true for $-\infty$. Thus, \hat{A} is a self-adjoint operator in the Krein space $L^2(\mathbb{R}, [\cdot, \cdot])$, see Subsection 2.1.

(ii) and (iii) follow from Lemma 4.2 and statement (iii) of Lemma 4.4.

(iv) Let \hat{A}_0^\pm be the self-adjoint operators in the Hilbert spaces $L^2(\mathbb{R}_\pm)$ defined by the differential expression (4.13) in the same way as in Subsection 2.3 where q is replaced by \hat{q}. By (4.2), $\sigma(\hat{A}_0^+) = \{s_k\}_1^\infty \cup [1, +\infty)$. Since \hat{q} is even, one gets $\sigma(\hat{A}_0^-) = \{-s_k\}_1^\infty \cup (-1, -1]$. It follows from $\{s_k\}_1^\infty \subset (-1, 1)$ and $\lim_{k \to \infty} s_k = 0$ that

\[
\min \sigma_{ess}(\hat{A}_0^+) = \max \sigma_{ess}(\hat{A}_0^-) = 0
\]

and Theorem 3.13 concludes the proof.

5. Some classes of Sturm-Liouville operators

As an illustration of the results from the previous sections, we discuss in this section various potentials $q \in L^1_{\text{loc}}(\mathbb{R})$ such that the differential operator $A = (\text{sgn } x)(-d^2/dx^2 + q)$ is definitizable over specific subsets of \mathbb{C}. As before it is supposed that the differential expression (2.1) is in limit point case at $+\infty$ and at $-\infty$ (for instance, the letter holds if $\liminf_{|x| \to \infty} \frac{q(x)}{x^2} > -\infty$, see e.g., [47, Example 7.4.1]).
5.1. The case \(q(x) \to -\infty \)

In this subsection we assume that for some \(X > 0 \) the potential \(q \) has the following properties on the interval \((X, +\infty)\):

\[q', q'' \text{ exist and are continuous on } (X, +\infty), \quad q(x) < 0, \quad q'(x) < 0, \quad (5.1) \]

\[q''(x) \text{ is of fixed sign, i.e., } q''(x_1)q''(x_2) \geq 0 \text{ for all } x_1, x_2 > X, \quad (5.2) \]

\[\lim_{x \to +\infty} q(x) = -\infty, \quad \int_X^{+\infty} |q(x)|^{-1/2} dx = \infty, \quad \text{and} \quad \limsup_{x \to +\infty} \frac{|q'(x)|}{|q(x)|^p} < \infty, \quad (5.3) \]

where \(p \in (0, 3/2) \) is a constant.

Then the well-known result of Titchmarsh (see e.g. [40, Theorems 3.4.1 and 3.4.2]) states that (2.1) is in the limit point case at \(+\infty\) and \(\sigma(A^+_0) = \mathbb{R} \). Hence the set \(S_A \) defined by (3.9) coincides with \(\sigma_{ess}(A^+_0) \cup \infty \). By Theorem 3.11, there are two cases:

(i) Let \(\sigma_{ess}(A^+_0) \neq \mathbb{R} \). Then the greatest domain over which \(A \) is definitizable is

\[\Omega_A := \mathbb{C} \setminus \sigma_{ess}(A^+_0) \text{ (note that } \infty \notin \Omega_A). \]

(ii) Let \(\sigma_{ess}(A^+_0) = \mathbb{R} \). Then \(\Omega_A \cap \overline{\mathbb{R}} = \emptyset \) and there exists no domain \(\Omega \) in \(\mathbb{C} \) such that \(A \) is definitizable over \(\Omega \). In particular, the letter holds if the analogues of assumptions (5.1)-(5.3) are fulfilled for \(x \in (-\infty, 0] \).

Example 5.1. Let us consider the operator \(A = (\text{sgn } x)(-d^2/dx^2 - x) \). By [45, Theorem 6.6] the differential expression \(-d^2/dx^2 - x\) is in limit point case at \(+\infty\) and \(-\infty\). Assumptions (5.1)-(5.3) hold for \(x \in (0, +\infty) \), hence \(\sigma_{ess}(A^+_0) = \sigma(A) = \mathbb{R} \). On the other hand, \(\sigma_{ess}(A^-_0) = \emptyset \) (see Subsection 5.2 and [40, Section 3.1]). Therefore the operator \(A \) is definitizable over \(\mathbb{C} \) and there exists no domain \(\Omega \) in \(\mathbb{C} \) with \(\infty \in \Omega \) such that \(A \) is definitizable over \(\Omega \). By Proposition 4.1, the only possible accumulation point for non-real spectrum of \(A \) is the point \(\infty \).

5.2. The case \(q(x) \to +\infty \)

Let us assume that the following conditions holds with certain constants \(X, c > 0 \):

\[q(x) \geq c \quad \text{for } x > X, \quad \text{and for any } \omega > 0, \quad \lim_{x \to +\infty} \int_x^{x+\omega} q(t) dt = +\infty. \quad (5.4) \]

Molčanov proved (see e.g., [40, Lemma 3.1.2] and [41, Subsection 24.5]) that (5.4) yields \(\sigma_{ess}(A^-_0) = \emptyset \), i.e., the spectrum of the operator \(A^-_0 \) is discrete. Besides, (5.4) implies that \(A^-_0 \) is semi-bounded from below. It follows from the results of Subsection 3.3 that the operator \(A \) is definitizable over \(\mathbb{C} \). More precisely,

(i) Let the operator \(A^-_0 \) be semi-bounded from above. Then the operator \(A \) is definitizable, \(\infty \) is a regular critical point of \(A \) (cf. [12]), and \(A \) admits decomposition (3.10).

(ii) Let \(A^-_0 \) be not semi-bounded from above. Then \(A \) is definitizable over \(\mathbb{C} \) and there exists no domain \(\Omega \) in \(\mathbb{C} \) with \(\infty \in \Omega \) such that \(A \) is definitizable over \(\Omega \). The only possible accumulation point for non-real spectrum of \(A \) is the point \(\infty \).

Note that \(A^-_0 \) is not semi-bounded from above if \(\lim_{x \to -\infty} q(x) = -\infty \).
5.3. Summable potentials

We denote by \(q_{neg}(x) := \min\{q(x), 0\} \), \(x \in \mathbb{R} \).

Assumption 5.2. \(\int_{t}^{t+1} |q_{neg}(x)|dx \to 0 \) as \(|t| \to \infty \).

If Assumption 5.2 is fulfilled then the differential expression \(-d^2/dx^2 + q\) is in limit point case at \(+\infty \) and \(-\infty\), cf. [46, Satz 14.21]. By [45, Theorem 15.1], \(A_{0}^{+} \) is semi-bounded from below, \(A_{0}^{-} \) is semi-bounded from above with

\[
\sigma_{\text{ess}}(A_{0}^{+}) \subset [0, +\infty) \quad \text{and} \quad \sigma_{\text{ess}}(A_{0}^{-}) \subset (-\infty, 0].
\]

This implies that the negative spectrums of the operators \(A_{0}^{+} \) and \(A_{0}^{-} \) consist of eigenvalues,

\[
\sigma(\pm A_{0}^{\pm}) \cap (-\infty, 0) = \{ \pm \lambda_{n}^\pm \}_{n=1}^{\infty} \subset \sigma_{p}(\pm A_{0}^{\pm}),
\]

where \(0 \leq N_{\pm} \leq \infty \). Besides, \(\lim_{n \to \infty} \lambda_{n}^\pm = 0 \) if \(N_{\pm} = \infty \). Then, by Theorem 3.13, \(A \) is definitizable over \(\mathbb{C} \setminus \{0\} \). Theorems 3.11 and 3.15 imply easily the following statement.

Theorem 5.3. Let Assumption 5.2 be fulfilled. Then the operator \(A = (\text{sgn } x)(-d^2/dx^2 + q) \) admits the decomposition (3.10). Moreover,

(i) If \(\min \sigma_{\text{ess}}(A_{0}^{+}) > 0 \) or \(\max \sigma_{\text{ess}}(A_{0}^{-}) < 0 \), then \(A \) is a definitizable operator and \(\infty \) is a critical point of \(A \).

(ii) If \(\min \sigma_{\text{ess}}(A_{0}^{+}) = \max \sigma_{\text{ess}}(A_{0}^{-}) = 0 \) and \(N^{+} + N^{-} < \infty \), then \(A \) is a definitizable operator, \(0 \) and \(\infty \) are critical points of \(A \).

(iii) If \(\min \sigma_{\text{ess}}(A_{0}^{+}) = \max \sigma_{\text{ess}}(A_{0}^{-}) = 0 \) and \(N^{+} + N^{-} = \infty \), then the operator \(A \) is not definitizable. It is definitizable over \(\mathbb{C} \setminus \{0\} \). In particular, \(0 \) is the only possible accumulation point of the non-real spectrum of \(A \).

We mention (cf. [5]) that Assumption 5.2, and therefore the statements of Theorem 5.3, hold true if \(q \in L^{1}(\mathbb{R}) \).

Remark 5.4. By Theorem 3.15 (see also [12]) we have that if the operator \(A = (\text{sgn } x)(-d^2/dx^2 + q) \) is definitizable, then \(\infty \) is its regular critical point. In the case when \(A \) has a finite critical point, the question of the character of this critical point is difficult (see [13, 14, 18, 19, 33, 34, 32] and references therein). Let us mention one case. Assume that \(q \) is continuous in \(\mathbb{R} \) and \(\int_{\mathbb{R}} (1 + x^2)|q(x)|dx < \infty \), then \(\min \sigma_{\text{ess}}(A_{0}^{+}) = \max \sigma_{\text{ess}}(A_{0}^{-}) = 0 \) and \(N^{+} < \infty \) and \(N^{-} < \infty \) (see [40]). Therefore Theorem 5.3 (as well as [12, Proposition 1.1]) implies that \(A = (\text{sgn } x)(-d^2/dx^2 + q) \) is definitizable. It was shown (implicitly) in [18] that \(0 \) is a regular critical point of \(A \).

In the following case, more detailed information may be obtained.

Corollary 5.5. Suppose \(\lim_{x \to -\infty} q(|x|) = 0 \). Then \(\min \sigma_{\text{ess}}(A_{0}^{+}) = \max \sigma_{\text{ess}}(A_{0}^{-}) = 0 \) and either the case (ii) or the case (iii) of Theorem 5.3 takes place. Moreover, the following holds.
(i) If $\liminf_{x \to \infty} x^2 q(|x|) > -1/4$, then A is a definitizable operator and 0 and ∞ are critical points of A.

(ii) If $\limsup_{x \to \infty} x^2 q(|x|) < -1/4$, then the operator A is not definitizable. It is definitizable over $\mathbb{C} \setminus \{0\}$.

Proof. The statement follows directly from [16, Corollary XIII.7.57], which was proved in [16] for infinitely differentiable q. Actually, this proof is valid for bounded potentials q. Finally, note that $\lim_{x \to \infty} q(|x|) = 0$ implies that q is bounded on $(-\infty, -X) \cup [X, +\infty)$ with X large enough. On the other hand, L^1 perturbations of potential q on any finite interval does not change $\sigma_{ess}(A_0^+)$, $\sigma_{ess}(A_0^-)$. Also such perturbations increase or decrease N^+, N^- on finite numbers only due to Sturm Comparison Theorem (see e.g., [47, Theorem 2.6.3]). This completes the proof.

Example 5.6. Let $q(x) = -\frac{1}{1+|x|^4}$. Then Corollary 5.5 yields that the operator $A = (\text{sgn } x)(-d^2/dx^2 + q)$ is not definitizable. It is definitizable over $\mathbb{C} \setminus \{0\}$.

It was shown above that under certain assumption on the potential q the operator $A = (\text{sgn } x)(-d^2/dx^2 + q)$ is not definitizable, but it is definitizable over the domain $\mathbb{C} \setminus \{\lambda_0\}$, where $\lambda_0 \in \mathbb{R}$ ($\lambda_0 = \infty$ in Example 5.1 and $\lambda_0 = 0$ in Example 5.6). In this case, unusual spectral behavior may appear near points of the set $c(A) \cup \{\lambda_0\}$ only ($c(A)$ is the set of critical points, see Subsection 3.1). Indeed, a bounded spectral projection $E^A(\Delta)$ exists for any connected set $\Delta \subset \mathbb{R} \setminus \{\lambda_0\}$ such that the endpoints of Δ do not belong to $c(A) \cup \{\lambda_0\}$. Note also that $c(A)$ is at most countable and that λ_0 is the only possible accumulation point of the non-real spectrum of A.

Acknowledgement
The first author acknowledges the hospitality and support of the Technische Universität Berlin and of the University of Zürich.

References
Singular Sturm-Liouville operators with indefinite weight $\text{sgn} \ x$

Ilya Karabash and Carsten Trunk

Illya Karabash
Department of Partial Differential Equations
Institute of Applied Mathematics and Mechanics of NAS of Ukraine
R. Luxemburg str. 74
Donetsk 83114
Ukraine
karabashi@yahoo.com, karabashi@mail.ru

Carsten Trunk
Institut für Mathematik
Technische Universität Berlin
Sekretariat MA 6-3
Straße des 17. Juni 136
D-10623 Berlin
Germany
trunk@math.tu-berlin.de