ANIMON

advantages
- high mechanical, thermal and chemical stability
- variable geometrical forms
- transport pores with axial orientation
- hierarchical pore structure
- good flow profile and low pressure loss
- high surface area suitable for coatings

challenges
- functional pores with preferable orientation
- controlled synthesis of functional pores between 1 nm and 1 µm and transport pores between 200 nm and 1 mm
- pseudomorphic transformation into other porous silicates
- so far, only small monoliths can be produced (Ø ≤ 1 mm, l ≤ 20 cm)

idea & motivation
Development of technologies for redrawing & joining
Development of technologies for production of pore systems
Development of technologies for functionalization of glass surfaces for biological and sensorical applications
Development of optical-chemical sensors for measurement of O₂, CO₂, and pH
Development of marking systems for curved and movable surfaces
Development of technologies for laser-assisted thin coatings
Development of technologies for glass melting & preforms

first results

solution

bundle stacking

different shapes of monoliths [1]

Sharon Krenkel, Edda Rädlein
Faculty of Mechanical Engineering
Dept. of Inorganic-Nonmetallic Materials
Gustav-Kirchhoff-Str.6
98693 Ilmenau

Phone +49 3677 69-3346
Fax +49 3677 69-1436
info@tu-ilmenau.de
www.tu-ilmenau.de/anm

advantages
- synthesis of MONOLITHS with high chemical and mechanical STABILITY, low pressure loss and improved flow profile
- production of high surface areas for coatings
- modifications of the glass surfaces
- manufacturing of GLASS-TUBE-BUNDLES to produce innovative glass monoliths

concept: HIERARCHICAL PORE STRUCTURE similar to a TOPOLOGY LIKE A LUNG

transport pores: adjustment by the arrangement and selection of the preform tubes and rods

functional pores: adjustment by the glass composition, parameters of the heat treatment and extraction

development of Na₂O·8·SiO₂·SO₃ glass taking account to the functional pores

cheap manufacturing of MICROCAPILLARY COMPONENTS by drawing technology

development of pH-, CO₂-, and O₂- SENSORS

cheap manufacturing of MICROCAPILLARY COMPONENTS by drawing technology

A maximum length of 1.2 m and a minimum pipe diameter of 25 µm could be achieved. First experiments with rod-shaped preforms resulted in gussets with final minimal diameters of 5 to 10 µm. After the extraction process the preforms shows a segregation. A minimal pore diameter of 44 nm, a surface area of 67 m²/g and a pore volume of 0.65 cm³/g can be established. To obtain smaller pores another glass must be developed. A possible glass may be 70_23_7 with a drawing temperature between 725 - 750 °C. The temperature range is close to the remixing temperature.

first results

solution

bundle stacking

different shapes of monoliths [1]