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This paper addresses the question of optimal sensor placement for magnetocardiographic field imaging. New magnetic sensor tech-
nologies allow less restrictive sensor positioning in this application. We develop a constraint framework for sensor positioning and use
tabu search (TS) and particle swarm optimization (PSO) for finding an optimal set of sensors, whereby a new PSO algorithm is designed
to fit the needs of our constraint framework. Numerical simulations are carried out with a three compartment boundary element torso
model and a multi-dipole heart model. We find an optimal value of about 20 to 30 vectorial sensors and both TS and PSO yield similar
sensor distributions. The comparison to sensors on regular grids shows that optimization of vectorial magnetic sensor setups may sig-
nificantly improve reconstruction quality and that the number of sensors can be reduced.

Index Terms—Boundary element methods, inverse problems, magnetostatics, multisensor systems, optimization methods.

I. INTRODUCTION

MAGNETOCARDIOGRAPHIC field imaging (MFI) is a
technique used to record contact free the magnetic field

distribution and estimate the underlying source distribution in
the heart [1]. Typically, the cardiomagnetic fields are recorded
with superconducting quantum interference devices (SQUIDs)
[2]. SQUIDs are restricted in their positioning to cryostats, since
they require liquid helium (low temperature superconductors)
or nitrogen (high temperature superconductors) cooling. Re-
cently, however, new technologies of magnetic sensor systems
for magnetocardiography (MCG) (e.g., optically pumped mag-
netic sensors [3]) make less restrictive sensor positioning fea-
sible. Therefore, the general question arises how to optimally
place the sensors obeying a technical minimum distance be-
tween them. To this end, a typical goal function used in sensor
array optimization is the condition number (CN) of the kernel
(leadfield) matrix [4].

Since the generation of the kernel matrix for a given position
of magnetic sensors is computationally expensive, a pre-compu-
tation for a dense enough grid of sensor positions and orienta-
tions is needed. Consequently, the search space of the optimiza-
tion scheme is discretized.

Tabu Search (TS) [5] is a discrete optimization technique that
creates in each step new candidate solutions (sets of sensors) in
the neighborhood of the current solution that are not classified
as tabu (previously examined). Neighbor solutions are created
from the current solution by exchanging elements (sensors) with
unused elements with the advantage that local minima in the
goal function can be overcome.

In order to validate TS optimization results, a new quasi-
continuous particle swarm optimizer (PSO) [6] with minimum
sensor distance constraint is proposed in the present paper.
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Fig. 1. Sensor plane in front of the boundary element model of torso, lungs,
and ventricular blood mass. The source model consists of 13 dipoles.

Swarm intelligence makes use of the gradient. Not one can-
didate solution is optimized but a swarm of solutions (the
particles) is optimized. PSO, like TS, is robust against local
minima. At the same time it is a continuous technique, moving
the sensors through the search volume smoothly.

II. COMPUTATIONAL METHODS

A. Simulation Setup

We construct a boundary element method (BEM) (Fig. 1)
model out of a three-dimensional magnetic resonance image of
a healthy volunteer as described in [7] and [8]. The torso and
both lungs are differentiated as three homogeneous compart-
ments, because they have the strongest impact on the forward
solution. Average isotropic conductivities of 0.2 S/m (torso) and
0.04 S/m (lungs) are assigned, which are derived from physio-
logical tissue conductivities [9]. Although the myocardial fibers
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are known to be anisotropic, isotropic conductivities are as-
sumed here since it is difficult to obtain reliable anisotropy infor-
mation. Additionally, its impact on the external magnetic field
was found to be less important than other modeling errors [10].
The ventricular depolarization phase of a heart beat is modeled
with the help of 13 electric current dipoles, which are placed reg-
ularly around the left ventricle (inside the cardiac muscle). To fa-
cilitate this, the ventricular blood volume is segmented (Fig. 1).
Magnetic field distributions are computed by means of the freely
available SimBio toolbox [11].

By fixing the dipole locations, the inverse problem is lin-
earized and a kernel matrix is set up. The kernel matrix con-
tains information on the geometry of the source space, on the
forward BEM model and on the geometry of the sensor array.
Each row of the kernel matrix contains the linear coef-
ficients that are required to map a set of dipole amplitudes to
a signal amplitude at a sensor with index , corresponding
to with and .

To find an optimal setup with out of altogether sensors, we
first create the kernel matrix for all sensors and
sources. The kernel matrix of a subset of sensors
can then be obtained by taking the respective rows of .

The objective of the optimization is to find the kernel matrix
by choosing the rows of with minimal CN. The

kernel matrix with smallest CN has the highest information con-
tent. Thus, also the array of the respective sensors is the optimal
selection.

B. Tabu Search (TS)

The optimization for the selection of rows from (and
of sensors, respectively) is performed by tabu search (TS) [7]
with an infinite memory (tabu list).

The sensor search space is discretized in positions by a reg-
ular 11 11 grid (distance 2 cm) in front of the torso (similar to
[7]). The full directional space is discretized regularly (distance
45 ). Our minimum distance of 2 cm is implicitly satisfied by
the grid.

To find an optimal configuration with (between 13 and 100)
out of sensors, we first create the kernel matrix for

sensors (11 11 positions, each with 26 discrete
directions) and sources. The TS optimization is con-
strained not to select two sensors with same positions.

In our TS algorithm, neighbor solutions are created from
the current solution by exchanging rows of with un-
used rows of , which means to use different sensors in the
setup. To make a transition from global to local search, we re-
duce the number of exchanged sensors linearly from to
1 over the first 2/3 of the iterations. To prevent reevaluations
of any , the tabu list contains information on all previously
created matrices (indices of used sensors). The applied TS ap-
proach works as follows:

1) create neighbors from the current solution ;
2) compute CN for all that are not in the tabu list;
3) insert newly evaluated into the tabu list;
4) update current solution , if a new best solution is

found in this iteration;
5) continue with 1. or stop, if the maximum number of itera-

tions is reached.

The best out of 10 repetitions is used. The number of itera-
tions and neighbors is chosen to require CN computations
over all.

C. Particle Swarm Optimization (PSO)

In this study the standard PSO algorithm 2006 [12] ( ,
) is implemented and adapted in the object-oriented (C++)

framework SimBio [11]. A swarm of particles is randomly ini-
tialized with positions and orientations for a fixed number of
sensors. The number of particles is with 5
being the number of position and orientation parameters (X, Y,
Z, , ) and being the number of used sensors. The number
of informants per particle is set to exactly 95% of all particles
(almost fully informed swarm).

In each iteration, the velocity vector , describing the indi-
vidual direction in which the global optimum is expected, is up-
dated using the current vector to the individual best solution
so far and the informants’ best solution so far:

(1)

where the function returns a random number in [0, ]. Second,
particles are moved by their velocity vector from the current
position

(2)

Initially, in order to match the available resources of TS, the
optimization is repeated up to 1 million goal function evalua-
tions. Since the first runs show a convergence well below 1500
iterations (1500 goal function evaluations) for all
simulations this limit is used. To eliminate initialization effects
repeated runs are performed up to 1 million goal function
evaluations.

PSO is run in a quasi-continuous fashion. The search space is
discretized because the repeated computation of kernel matrices
is too time consuming. An 85 85 grid (distance 2.5 mm) in
the same plane and location is used. Directions are discretized
regularly using 30 .

D. Constraint Framework for Continuous PSO

The PSO algorithm is equipped with a constraint restora-
tion strategy. After each PSO iteration, the sensor positions are
snapped back into the grid, so that a goal function evaluation is
possible. Additionally, the minimum distance is restored by it-
eratively resolving clashes between sensors with the following
algorithm (Fig. 2):

1) pick a sensor with maximum number of clashes;
2) move all clashing sensors away radially;
3) snap into grid without re-violating restored distances;
4) if mean(minimum distance violation) tolerance, con-

tinue with 1, otherwise stop.
For this algorithm, maximum number of 50 iterations is de-

fined. However, this number of iterations is only reached if the
number of sensors approaches the maximum number of sen-
sors that the search space can hold. The sensor with maximum
number of clashes is the representative (at position in the
search volume) of the sensor cloud (Fig. 2) and is not moved, be-
cause its position can be expected to be valuable. Each clashing
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Fig. 2. Restoring the minimum distance in the constraint of PSO. Black dots
indicate sensor positions in the search volume and black dots with small circles
clashing sensors. Large circles indicate the minimum distance of each sensor,
the gray shaded large circle for the representative of the cloud. Exemplary two
new sensor positions are indicated by small dotted circles (right).

sensor (at position in the search volume) is moved radially by
a length :

(3)

where is actually a weighted sum according to

(4)

The minimum sensor distance is in this paper 2 cm. The
maximum violation is defined as the maximum depth of
intrusion of any clashing sensor into the space of the represen-
tative sensor. The parameter [0,1] regulates the influence
of . If the clashing sensors are moved to the edge
of the space of the representative sensor, which will result in
too close positions of the moved sensors in case they have close
to parallel movement vectors. If this is prevented but
sensor are moved over relatively large distances and the opti-
mization results are potentially disturbed. We heuristically set
to 0.05. The advantage of moving the clashing sensors radially
away from the representative sensor is that the clashing sensors
themselves are moved as little as possible from the cloud center.
At the same time, the distance between two clashing sensors is
increased.

The radial movement of sensors could potentially result in a
new cloud of clashing sensors. A subsequent radial shift would
possibly move the clashing sensors back to the first cloud. This
would result in oscillations when applied in an iterative proce-
dure as outlined above. This problem may theoretically yield in-
finite oscillations in the collinear case. Thus, we implemented a
small additional random angle to the radial shift (here set to 7 ).

The snap into the grid without re-violating restored distances
(Step 3 in algorithm above) is realized by selecting the closest
grid node to the desired new position, which is at the same time
outside the volume occupied by the representative sensor.

Fig. 3. Correction of the velocity of particles in the PSO algorithm. The black
dot indicates the old particle position and the gray dot indicates the new, shifted
particle position. The new velocity (gray) is adjusted with the help of �. Note
that particles encode multiple sensor positions and directions and are thus de-
fined in high-dimensional search space.

Fig. 4. CNs of optimized and regular grid setups (X = all sensors aligned with
positive X-axis, etc.) for a range of numbers of sensors.

E. Modifications to PSO Due to Constraints

From the perspective of the optimizer the fulfillment of the
constraints in each iteration results in a deviation from

in high-dimensional space. The current velocity vector
should then be adjusted (Fig. 3). The new velocity is set

using the scaled deviation vector:

(5)

where [0,1]. The parameter is set heuristically to 0.5.
Keeping the old velocity would distract the optimiza-
tion process, while the case would overcompensate the
shift.

III. NUMERICAL RESULTS

Both optimization techniques reduce the CN significantly
when compared to a regular grid with the same number of
aligned sensors (Fig. 4). In these noise-free simulations, the
optimal number of sensors is around 20–30 for both TS and
PSO. The optimal number of sensors for the regular grids is
between 36 (6 6) and 49 (7 7). The strongest gain (largest
difference between regular grids and optimized sensor setups)
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Fig. 5. TS (gray/green bars) and PSO (black/blue bars) optimized setups of
45 sensors on top of 11 � 11 grid (circles) and a magnetic field map of the X
component (thin solid lines). The sensor grid is positioned centrally in front of
the torso.

is achieved for setups with low number of sensors. This is
expected because the lower the number of sensors available the
higher the information gain of optimal sensor positions.

TS and PSO produce very similar CNs for about s 45
(Fig. 4). For denser sensor setups (s 45), TS performs a bit
better. The higher CNs for PSO at higher numbers of sensors
can be explained by the difficulties PSO encounters in moving
sensors in a densely populated search volume. Moreover, slight
differences between the two optimization approaches can be ex-
plained by the fact that the direction discretization was different
for PSO (30 ) and TS (45 ).

On regular grids, the CNs for the sensor directions show sig-
nificant differences. As expected for single component sensors
the Z-direction sensors exhibit best CNs, while X and Y per-
form worse. When Z-direction sensors are combined with X or
X and Y sensors, yet lower CNs are obtained, which is in line
with our previous findings [7].

TS and PSO optimized setups show similar positions and ori-
entations of sensors (Fig. 5). The main difference to regular
grids is that sensors tend to be placed in areas of strong mag-
netic field gradient. Many of the optimal sensor positions are
close to the boundary of the search volume (see edges of the
square in Fig. 5). This indicates that the search volume might
not have been large enough.

Similar results of PSO and TS and repeated runs (results not
shown) indicate the existence of few strong minima in the goal
function. Thus, there is a potential to develop application spe-
cific setups.

IV. CONCLUSION

Both TS and PSO optimization of vector sensor setups may
improve reconstruction robustness and reduce the number of
sensors while retaining information in terms of CN.

A strength of TS is its ability to handle dense sensor setups,
because sensors are not gradually moved but exchanged. A
limitation of TS is that it can only handle a combinatorial
optimization on a pre-selected set of sensor positions. The new
quasi-continuous PSO optimization incorporates the gradient
and spatial closeness information into the optimization while
being robust against local minima of the goal function.

For future work, projection method based [13], [14] and lower
error bound based [15] sensor setup optimizations and more ex-
tensive search volumes are planned.
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