Advanced Topics in Signal Processing
Lectures Series on Compressed Sensing

January 2017, Ilmenau
Advanced Topics in Signal Processing
Lectures Series on Compressed Sensing

January 2017, Ilmenau

Dr.-Ing. Florian Römer
on behalf of...
Prof. Giovanni Del Galdo

With contributions from...
Anastasia Lavrenko
Alexandra Craciun
Magdalena Prus
Mohamed Gamal Ibrahim
Roman Alieiev

http://tu-ilmenau.de/dvt
Outline

- PART I
 - Fundamentals of Compressed Sensing

- PART II
 - Advanced aspects of Compressed Sensing
Outline Part I

- Introduction
 - Problem Statement
 - Data Model
 - Motivation

- Deriving the Compressive Sensing Approach
 - Designing the measurement kernel
 - Reconstruction strategy

- Compressed Sensing in Practice
 - Limitations
 - Exemplary Applications

- Conclusions
Goals of the lecture (Part I)

- Answer the following questions:
 - What is Compressed Sensing (CS)?
 - How and why does it work?
 - Which signals can be treated via CS?
 - How to design the measurement kernel without loss of information?
 - How to recover the desired signal?
Can we avoid the redundancy when taking the measurements?

David Brady: „One can regard the possibility of digital compression as a failure of sensor design. If it is possible to compress measured data, one might argue that too many measurements were taken.”
Compressed Sensing: The Big Picture

- Compressed sensing: a new paradigm in sampling theory
 - finds applications in almost all fields of science and engineering

- History
 - from 2004 important breakthroughs of Donoho, Candès, Tao, et al.
 - earlier important results in multidimensional geometry, information theory, and seismology

- Status
 - > 100k papers published
 - “Compressed Sensing” by Donoho: 20k citations in 10 y, 6th-most cited Paper in the entire IEEE library!
 - special sessions appearing at international conferences
 - substantial research grants
 - exponentially growing number of patents
Compressed Sensing: The Big Picture

Published items per year

source: google scholar

- searching for compressed sensing and sparsity publications
Compressed Sensing: The Big Picture

- Special Sessions and Paper Tracks at most major conferences on
 - signal processing: ICASSP, EUSIPCO, Asilomar SSC, …
 - communications: ICC, Globecom, …
 - information theory: ITW, ISIT, …
- Special Issues in Journals and Magazines
 - IEEE Journal of Selected Topics in Signal Processing: vol. 4, no. 2, Apr 2010
- Dedicated Workshops and Conferences
 - CSSIP Workshop on Compressed Sensing, Sparsity and Inverse Problems
 - ICNAAM Symposium on Sparse Approximation and Compressed Sensing
 - EURASIP Workshop on Sparsity and Compressive Sensing
 - International Conference of Compressive Sensing
 - International workshop on Compressed Sensing applied to RADAR
 - Local workshops at many major universities (Duke, UCLA, Edinburgh, Manchester….)
Traditional sampling and sparsity

- Traditional sampling: one value at one time
- At which rate?
 - Shannon-Nyquist: Bandlimited to $\pm B$, periodic with T: $2BT$ samples.
 - It can be hard!
 - It can be wasteful!

Figure from: A. Khilo et.al. “Photonic ADC: overcoming the bottleneck of electronic jitter”, Optics Express, Volume 20, Issue 4, pp. 4454-4469 (2012)
Traditional sampling and sparsity

- Traditional sampling: one value at one time
- At which rate?
 - Shannon-Nyquist: Bandlimited to $\pm B$, periodic with T: $2BT$ samples.
 - How would we know we sampled too high?
 - zeros in the spectrum ("sparsity").
 - reduce rate until $\#$samples $\approx \#$nonzeros
- Do nonzeros have to be around $f = 0$?
 - no, e.g., bandpass sampling
- But then, what if the pattern of (non)zeros is
 - even more irregular
 - unknown (but sparsity is known)
 - in another domain?

Unified framework: Compressive Sensing
Compressed Sensing

- Relevant advantages
 - Hardware complexity ↓, frame rate ↑, acquisition time ↓, accuracy ↑
 - Flexibility, adaptivity

- Two reasons for success: the sensing trick, the reco trick.
Assume a Sparse Analog Signal...

- \(s(t) \) uses only \(K \) degrees of freedom
- The signal \(s(t) \) can be expressed as a \(K \)-sparse vector \(x \) in the basis \(A \)

\[s(t) \begin{bmatrix} A \in \mathbb{R}^{\alpha \times N} \end{bmatrix} \begin{bmatrix} x \in \mathbb{R}^N \end{bmatrix} \]

\[K = \text{supp}\{x\} \]
Classical Approach to Measurements and Compression

- Classical approach: Assume band-limitation and measure at Nyquist-rate or more

- Problems:
 - N samples need to be measured, although we know that the signal possesses a much more compact representation
 - compression is achieved via post-measurement processing
The measurement kernel comprises \(N \) functions.

Assuming band limited functions, \(s \) contains all the information available.

\[s \in \mathbb{R}^N \]

\[\mathcal{A} \in \mathbb{R}^{\alpha \times N} \]

\[x \in \mathbb{R}^N \]
Compressed Sensing Approach (analog signals)

- Compressive Sensing Solution: The signal $s(t)$ is measured by a fixed kernel which achieves compression
 - efficiently, i.e., achieving compression
 - without knowledge of the sparsifying basis \mathcal{A} at the encoder
 - without loss of information, i.e., the reconstruction can retrieve the signal $s(t)$ perfectly as it delivers the correct sparse vector x
Compressive Sensing Approach

\[d \in \mathbb{R}^M \]

\[\mathcal{A} \in \mathbb{R}^{\alpha \times N} \]

\[x \in \mathbb{R}^N \]

- \(M<<N \) measurements of \(s(t) \) are taken
- The functions in the kernel need to be chosen carefully
Compressed sensing is often studied in a purely discrete setting. To do so, we assume a Nyquist-rate sampling prior to any further processing.
Mathematical Model of the CS Measurement

\[d \in \mathbb{R}^M \quad \Phi^T \in \mathbb{R}^{M \times N} \quad s \in \mathbb{R}^N \]

- Assumption: linearity
- We measure by applying the $N \times M$ matrix Φ
The Sparsity Assumption

- $s \in \mathbb{R}^N$
- $A \in \mathbb{R}^{N \times N}$
- $x \in \mathbb{R}^N$

s uses only K degrees of freedom of the N available.

The signal s can be expressed as a K-sparse vector x in the basis A.

\[K = \text{supp}\{x\} \]
Example: Sparsity in Frequency Domain: the iDCT

\[s \in \mathbb{R}^N \quad A \in \mathbb{R}^{N \times N} \quad x \in \mathbb{R}^N \]

- \(x \) contains the coefficients in frequency domain
- \(s \) is the signal in time domain sampled at Nyquist-rate
Example: Sparsity in Frequency Domain: the iDCT

atomic functions $A(:, k)$

signal s
Sparsity in Time Domain

- The sparsifying matrix A is an identity matrix.
- Trivial scenario; the signal s is already sparse.
Overcomplete Basis

\[s = A \cdot x \]
Overcomplete Basis
Complete Data Model of the Encoder

- Goal: be able to reconstruct s from d with M as small as possible
- Ideally: $M \approx K = \text{supp}\{x\}$
Compressed Sensing Approach

\[s \in \mathbb{R}^N \quad d \in \mathbb{R}^M \quad x \in \mathbb{R}^N \]

- Compressive Sensing Solution
 - The signal \(s \) can be measured by a fixed matrix \(\Phi \)
 - non-adaptively, i.e., without knowing the right \(A \) at the encoder
 - efficiently, i.e., with \(M \ll N \) and close to \(K \)
 - in a lossless manner, i.e., without losing information
 - Perfect reconstruction is possible only via non-linear methods
Outline Part I

- Introduction
 - Problem Statement
 - Data Model
 - Motivation

- Deriving the Compressive Sensing Approach
 - Designing the measurement kernel
 - Reconstruction strategy

- Compressed Sensing in Practice
 - Limitations
 - Exemplary Applications

- Conclusions
Deriving the Compressive Sensing Approach

- **Question 1**
 - How do we guarantee that the information reaches \(d \)? How do we make \(x \) observable by \(d \)?
 - Designing the measurement kernel \(\Phi \)

- **Question 2**
 - How do we use the information contained in \(d \) to retrieve \(x \)?
 - The reconstruction strategy
Deriving the Compressive Sensing Approach

- **Question 1**
 - How do we guarantee that the information reaches d? How do we make x observable by d?

- **Designing the measurement kernel Φ**

- **Question 2**
 - How do we use the information contained in d to retrieve x?

- **The reconstruction strategy**

$$d \overset{\Phi}{=} x$$
Mutual Coherence

- **Definition**

\[\mu(\Phi, A) = \sqrt{N} \cdot \max_{k,h} |\varphi_k^H \cdot a_h| \]

- **Assumptions**

\[\|\varphi_k\|^2_{\ell_2} = \|a_k\|^2_{\ell_2} = 1 \quad \forall k \]
\[A^H A = A A^H = I_N \]

- **Property**

\[1 \leq \mu(\Phi, A) \leq \sqrt{N} \]
Geometrical Interpretation of Incoherence

\[1 \leq \mu(\varphi, A) \leq \sqrt{N} \]

maximally incoherent

maximally coherent
Maximally Coherent Φ - The Worst Choice

Let us select M specific atomic functions from A

$M << N$, therefore, we cannot pick all
Maximally Coherent Φ - The Worst Choice

Unless we know where the non-sparse elements are, this approach fails miserably
Maximal Coherence and Full Basis: Transform Coding

Revealing the structure underneath \(s \) (i.e., \(A \)) allows us to find the most compact description of the phenomenon.

Before reducing the description to \(K \) coefficients, all measurements \(M = N \) have to be computed!
Maximal Coherence and Full Basis: Transform Coding

Revealing the structure underneath s (i.e., A) allows us to find the most compact description of the phenomenon.

Before reducing the description to K coefficients, all measurements $M = N$ have to be computed!
Maximally Coherent Φ - The Worst Choice

- With a fully coherent measurement kernel, the vector \mathbf{x} is observable by \mathbf{d} only in special cases.

\[
\mathbf{x} = [1, \ 0]^T
\]

\[
A = I_2
\]

\[
\mathbf{x} = [0, \ 1]^T
\]
Maximally Incoherent Φ – The Best Choice

With an incoherent measurement kernel, the vector x is observable by d in all cases.

$$x = [1, \ 0]^T$$

$$x = [0, \ 1]^T$$

$$A = I_2$$
Random Matrices as a Measuring Kernels

- How to build incoherent bases without knowing A?
- "Randomness" is incoherent with any "structure"!

![Diagram showing random vector and PDF for different values of N]
Random Matrices as a Measuring Kernels

- Random matrices achieve very high incoherence wrt any basis A, especially for larger N

\[
\tilde{\varphi}_{k,h} \text{ i.i.d. } \mathcal{N}(0, 1)
\]

\[
\tilde{\varphi}_{k,h} \text{ i.i.d. } \pm 1
\]
Recap

- **Encoding Strategy**
 - Obtain $M << N$ measurements as linear functionals of the vector $s = Ax$
 - The measurement kernel Φ should be maximally incoherent with A
 - Without knowing A, this is achieved by introducing randomness

$$d = \Phi^T A x$$
Compressed Sensing

- Relevant advantages
 - Hardware complexity↓, frame rate↑, acquisition time↓, accuracy↑
 - Flexibility, adaptivity
- Two reasons for success: the sensing trick, the reco trick.
Deriving the Compressive Sensing Approach

- Question 1
 - How do we guarantee that the information reaches d? How do we make x observable by d?
 - Designing the measurement kernel Φ

- Question 2
 - How do we use the information contained in d to retrieve x?
 - The reconstruction strategy
Reconstruction Strategy – Trivial Approach

- Basically, the LSE \(d = \Phi^T \cdot A \cdot x \) has infinitely many solutions.
- The sparse one is found by solving the problem

\[
\begin{align*}
x^* &= \arg \min_x \supp \{x\} \\
\text{s.t.} \quad d &= \Phi^T \cdot A \cdot x
\end{align*}
\]

- \(A \) must be known at the reconstruction!
- On the contrary, recall that \(A \) may be unknown at the sensor
- It’s an NP-hard problem
Complexity of the \(\ell_0 \) search

- For the \(\ell_0 \)-problem we need to test all possible support sets
 - \(K = 1 \): \(N \) possible choices
 - \(K = 2 \): \(N \) (\(N-1 \)) possible choices
 - …
 - \(k = 1, 2, \ldots, K \): \(O(N^K) \) possible choices
 - Prohibitive: doubling \(N \) increases complexity by \(2^K \), \(N \) can be large.
Reconstruction Strategy – CS Approach

- The sparse vector x is reconstructed by solving a convex L1 optimization problem

$$x^* = \arg \min_x \|x\|_{\ell_1}$$

subject to

$$d = \Phi^T \cdot A \cdot x$$

- A must be known at the reconstruction!
- On the contrary, recall that A may be unknown at the sensor
- Different A’s lead to different reconstructions
Why is an L1 Problem Efficiently Solvable?

- L1 can be recast as a linear problem
 \[\mathbf{x}^* = \arg \min_{\mathbf{x}} \| \mathbf{x} \|_{\ell_1} \]
 \[\text{s.t.} \quad d = \Phi^T \cdot A \cdot \mathbf{x} \]

- Every linear inequality constraint defines a half-space
 - search region becomes an intersection of half-spaces ("polytope")
 - optima are always at the intersection points
 - efficient search algorithms exist, e.g., Interior point method (polynomial-time)

\[\mathbf{x}^* = \arg \min_{\mathbf{x}, \mathbf{z}} \mathbf{1}^T \cdot \mathbf{z} \]
\[\text{s.t.} \quad \mathbf{x} \preceq \mathbf{z} \]
\[\mathbf{x} \succeq -\mathbf{z} \]
\[d = \Phi^T \cdot A \cdot \mathbf{x} \]
Complexity Comparison

- For the L0-problem we need to test all possible support sets
 - $K = 1$: N possible choices
 - $K = 2$: $N(N-1)$ possible choices
 - ...
 - $k = 1, 2, \ldots, K$: $O(N^K)$ possible choices
 - Prohibitive: doubling N increases complexity by 2^K, N can be large.

- For the L1-problem, polynomial-time algorithms are available
 - $O(N^3 \log(N))$ (Basis Pursuit)
 - For large N the polynomial-time nature is crucial
 - Even more so, approximate L1 algorithms exist with $O(N^2)$ or even $O(NK)$
L0 – L1 Equivalence and Uniqueness (I)

- \(x \), solution to the L1 problem, is also the unique solution to the L0 problem iff
 - \(x \) is \(K \) sparse
 - \(\Phi^T \cdot A \) satisfies the null space property of order \(K \)

\[
\forall v : v \in \text{null}(\Phi^T \cdot A) \quad \| v_{[\text{supp}\{x\}]} \|_1 > \| v_{[\text{supp}\{x\}]} \|_1
\]

\[
x = \begin{pmatrix} \vdots \end{pmatrix} \quad v = \begin{pmatrix} \vdots \end{pmatrix} \quad > \begin{pmatrix} \vdots \end{pmatrix} \quad \ell_1 \quad \ell_1
\]
L0 – L1 Equivalence and Uniqueness (II)

- The null space property is guaranteed if the RIP holds with \(\delta_{2K} \leq \frac{1}{3} \)

\[
(1 - \delta_K) \| x \|_{\ell_2}^2 \leq \| \Phi^T A x \|_{\ell_2}^2 \leq (1 + \delta_K) \| x \|_{\ell_2}^2
\]

\(\forall \ K\text{-sparse } x \)

- Restricted Isometry Property: wrt sparse vectors the matrix \(\Phi^T A \) behaves almost as a unitary matrix, i.e., length preserving transformation.
L0 – L1 Equivalence and Uniqueness (III)

If:
- Φ is chosen randomly...
- N is large
- $M \gtrsim \mu^2(\tilde{\Phi}, A) \cdot \text{supp}\{x\} \cdot \log_2(N)$

then:
- the RIP holds with overwhelming probability
- and therefore x can be reconstructed by solving an L1 problem

Non-linear Sampling Theorem (Candès et.al 2006)
Identifiability: L0 vs. L1

- In general, for L0 we have

\[K < \frac{1}{2}(K\text{-rank}(\Phi^T A) + 1) \leq \frac{M + 1}{2} \]

\[M \geq 2K + 1 \]

NB: there are 2K degrees of freedom!
(support indices + amplitudes)

- whereas for L1 the bounds are of the form

\[M \geq C \cdot K \cdot \log(N/K) \]

L1 “penalty”

Kruskal-rank ≥ r if all sets of r columns are linearly independent
Solution Set for the Equality Constraint

\[d = \phi^T \cdot A \cdot x \]

\[d = b^T \cdot x \]

\[d = b_1 \cdot x_1 + b_2 \cdot x_2 \]

\(x \) must lie on a line
Lp-Norms and Lp-Balls

- Definition of Lp-norm: \[\| \mathbf{x} \|_{L^p} = \left(\sum_{k=1}^{N} |x_k|^p \right)^{\frac{1}{p}} \]

Lp-Balls for \(N = 2 \)

- \(p = 0.5 \)
- \(p = 1 \)
- \(p = 2 \)
- \(p = 3 \)
$p = 0.3$
Minimization Problem: $p=2$
Minimization Problem: $p=2$
Minimization Problem: $p=2$

This is the LS solution

\[x_{LS} = (\Phi^T A)^\dagger d \]
Minimization Problem: $p=0.5$
Minimization Problem: $p=0.5$
Minimization Problem: $p=0.5$

The “arms” of the $L_{0.5}$ ball reach out making sparse solutions favored wrt non-sparse
Minimization Problem: $p=1$

- Same effect as $L^{0.5}$, although not as prominent
Minimization Problem: $p=1$
Minimization Problem: $p=1$
Escape Velocities for the L1-ball

- Vertices move faster than edges, which move faster than sides
- They correspond to 1-sparse, 2-sparse, and 3-sparse respectively
Choice of p-Norm

- **p > 1** lead to non-sparse solutions
- **p ≤ 1** lead to sparse solutions
 - p = 0 = cardinality
 - logical choice, sparsest solution
 - combinatorial NP-hard problem
 - 0 ≤ p < 1
 - norms are non-convex
 - p = 1
 - Convex hull of p < 1 norm
 - identical to p = 0 under some conditions
 - linear and convex problem
Recap

- Reconstruction Strategy

IF

- the non-linear sampling theorem holds
 - i.e., M is large enough
 - A is known (at the decoder)

THEN

- s can be perfectly reconstructed by solving a convex optimization problem in L1