We study randomized algorithms that take as input a set S of n keys from some large universe U or a set of n key-value pairs, associating each key from S with a specific value, and build a data structure that solves one of the following tasks. On "lookup" for some key $x \in U$: \begin{itemize} \item Decide set membership with respect to S (membership tester). \item If $x \in S$, then return the value associated with x. If $x \in U-S$, then return either some specific value "not in S" (dictionary), or some arbitrary value (retrieval data structure). \item If $x \in S$, then return a natural number associated with x, where for all elements of S the numbers are pairwise distinct and the numbers for elements $x \in U-S$ are arbitrary (perfect hash function). \end{itemize} The data structures that we cover have the same simple structure. They consist of a table with m cells, each capable of holding entries of size r bits, as well as of a constant number of hash functions, which are used to map elements from U to a constant number of table cells. Assuming fully random hash functions, we will discuss how such data structures can be constructed in time linear in n, and what load $c=n/m$ or space utilization $m \cdot r$, respectively, can be achieved in trade-off with the number of cell probes for "lookup". This leads to the question if a random bipartite graph with n nodes (keys) on the left, m nodes (cells) on the right, and edges determined by the hash functions, with high probability has a matching of a certain type, and furthermore, how such a matching can be calculated efficiently.