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Abstract

We show that well known Sobolev spaces can quite naturally be treated as Pontrya-
gin spaces. This point of view gives a possibility to obtain new properties for some
traditional objects such as simplest differential operators.
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1 Introduction

Let H be a separable Hilbert space with a scalar product (·, ·). H is said to
be an indefinite metric space if it is equipped by a sesquilinear continuous
Hermitian form (indefinite inner product) [·, ·] such that the corresponding
quadratic form has indefinite sign (i.e. [x, x] takes positive, negative and zero
values). The indefinite inner product can be represented in the form [·, ·] =
(G·, ·), where G is a so-called Gram operator. The operator G is bounded and
self-adjoint. If the Gram operator for an indefinite metric space is boundedly
invertible and its invariant subspace corresponding to the negative spectrum of
G is finite-dimensional, lets say κ-dimensional, the space is called a Pontryagin
space with κ negative squares. There are a lot of problems in different areas
of mathematics, mechanics or physics that can be naturally considered as
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problems in terms of Operator Theory in Pontryagin spaces. We have no aim
to give here an overview on this theory and its application. We refer only to
the standard text books [1,2,10] and to [14] for a brief introduction.

Our scope is a modest illustration of some singular situations that shows an
essential difference between Operator Theory in Hilbert spaces and in Pon-
tryagin spaces. For this goal we use Sobolev spaces that represents a new
approach.

2 Preliminaries

A Krein space (K, [·, ·]) is a linear space K which is equipped with an (indefi-
nite) inner product (i.e., a hermitian sesquilinear form) [., .] such that K can
be written as

K = G+[
.

]G− (1)

where (G±,±[., .]) are Hilbert spaces and [
.

] means that the sum of G+ and G−
is direct and [G+,G−] = 0. The norm topology on a Krein space K is the norm
topology of the orthogonal sum of the Hilbert spaces G± in (1). It can be shown
that this norm topology is independent of the particular decomposition (1);
all topological notions in K refer to this norm topology and ‖ · ‖ denotes any
of the equivalent norms. Krein spaces often arise as follows: In a given Hilbert
space (G, (., .)), every bounded self-adjoint operator G in G with 0 ∈ ρ(G)
induces an inner product

[x, y] := (Gx, y), x, y ∈ G, (2)

such that (G, [., .]) becomes a Krein space; here, in the decomposition (1), we
can choose G+ as the spectral subspace of G corresponding to the positive
spectrum of G and G− as the spectral subspace of G corresponding to the
negative spectrum of G. A subspace L of a linear space K with inner product
[., .] is called non- degenerated if there exists no x ∈ L, x 6= 0, such that [x,L] =
0, otherwise L is called degenerated; note that a Krein space K is always non-
degenerated, but it may have degenerated subspaces. An element x ∈ K is
called positive (non-negative, negative, non-positive, neutral, respectively) if
[x, x] > 0 (≥ 0, < 0,≤ 0, = 0, respectively); a subspace of K is called positive
(non-negative, etc., respectively), if all its nonzero elements are positive (non-
negative, etc., respectively). For the definition and simple properties of Krein
spaces and linear operators therein we refer to [2], [13] and [1].

If in some decomposition (1) one of the components G±is of finite dimension,
it is of the same dimension in all such decompositions, and the Krein space
(K, [., .]) is called a Pontryagin space. For the Pontryagin spaces K occurring
in this paper, the negative component G− is of finite dimension, say κ; in
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this case, K is called a Pontryagin space with κ negative squares. If K arises
from a Hilbert space G by means of a self-adjoint operator G with inner
product (2), then K is a Pontryagin space with κ negative squares if and
only if the negative spectrum of the invertible operator G consists of exactly κ
eigenvalues, counted according to their multiplicities. In a Pontryagin space K
with κ negative squares each non-positive subspace is of dimension ≤ κ, and
a non-positive subspace is maximal non-positive (that is, it is not properly
contained in another non-positive subspace) if and only if it is of dimension
κ. If L is a non-degenerated linear space with inner product [., .] such that for
a κ-dimensional subspace L− we have

[x, x] < 0, x ∈ L−, x 6= 0,

but there is no (κ + 1)-dimensional subspace with this property, then there
exists a Pontryagin space K with κ negative squares such that L is a dense
subset of K. This means that L can be completed to a Pontryagin space in a
similar way as a pre-Hilbert space can be completed to a Hilbert space. The
spectrum of a selfadjoint operator A in a Pontryagin space with κ negative
squares is real with the possible exception of at most κ non-real pairs of
eigenvalues λ, λ of finite type. We denote by Lλ(A) the algebraic eigenspace
of A at λ. Then dimLλ(A) = dimLλ(A) and the Jordan structure of A in
Lλ(A) and in Lλ(A) is the same. Further the relation

κ =
∑

λ∈σ0∩R
κ−λ (A) +

∑

λ∈σ(A)∩C+

dimLλ(A)

holds, where σ0 denotes the set of all eigenvalues of A with a nonpositive eigen-
vector and κ−λ (A) denotes the maximal dimension of a nonpositive subspace
of Lλ(A).

Moreover, according to a theorem of Pontryagin, A has a κ-dimensional invari-
ant non-positive subspace Lmax

− . If q denotes the minimal polynomial of the

resriction A|Lmax
− , then the polynomial q∗q, where q∗(z) = q(z), is independent

of the particular choice of Lmax
− and one can show that [q∗(A)q(A)x, x] ≥ 0

for x ∈ D(Aκ). As a consequence, a selfadjoint operator in a Pontryagin space
possesses a spectral function with possible critical points. For details we refer
to [11,13].

The linear space of bounded linear operators defined on a Pontryagin or
Krein space K1 with values in a Pontryagin or Krein space K2 is denoted
by L(K1,K2). If K := K1 = K2 we write L(K). We study linear relations in
K, that is, linear subspaces of K2. The set of all closed linear relations in K
is denoted by C̃(K). Linear operators are viewed as linear relations via their
graphs. For the usual definitions of the linear operations with relations and
the inverse we refer to [7], [8], [9]. We recall only that the multivalued part

mul S of a linear relation S is defined by mul S =
{
y

∣∣∣
(

0
y

)
∈ S

}
.
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Let S be a closed linear relation in K. The resolvent set ρ(S) of S is defined
as the set of all λ ∈ C such that (S − λ)−1 ∈ L(K). The spectrum σ(S) of S
is the complement of ρ(S) in C. The extended spectrum σ̃(S) of S is defined
by σ̃(S) = σ(S) if S ∈ L(K) and σ̃(S) = σ(S) ∪ {∞} otherwise. We set
ρ̃(S) := C\σ̃(S). The adjoint S+ of S is defined as

S+ :=
{(

h
h′

) ∣∣∣ [f ′, h] = [f, h′] for all
(

f
f ′

)
∈ S

}
.

S is said to be symmetric (selfadjoint) if S ⊂ S+ (resp. S = S+).

For the description of the selfadjoint extensions of closed symmetric relations
we use the so-called boundary value spaces (for the first time the corresponding
approach was applied in fact by A.V. Strauss [15], [16] without employing the
term “boundary value space”).

Definition 1 Let A be a closed symmetric relation in the Krein space (K, [·, ·]).
We say that {G, Γ0, Γ1} is a boundary value space for A+ if (G, (·, ·)) is a
Hilbert space and there exist linear mappings Γ0, Γ1 : A+ → G such that
Γ :=

(
Γ0
Γ1

)
: A+ → G × G is surjective, and the relation

[f ′, g]− [f, g′] = (Γ1f̂ , Γ0ĝ)− (Γ0f̂ , Γ1ĝ) (3)

holds for all f̂ =
(

f
f ′

)
, ĝ =

(
g
g′

)
∈ A+.

If a closed symmetric relation A has a selfadjoint extension Â in K with
ρ(Â) 6= ∅, then there exists a boundary value space {G, Γ0, Γ1} for A+ such
that Â coincides with ker Γ0 (see [4]).

For basic facts on boundary value spaces and further references see e.g. [3],
[4], [5] and [6]. We recall only a few important consequences. For the rest of
this section let A be a closed symmetric relation and assume that there exists
a boundary value space {G, Γ0, Γ1} for A+. Then

A0 := ker Γ0 and A1 := ker Γ1 (4)

are selfadjoint extensions of A. The mapping Γ =
(

Γ0
Γ1

)
induces, via

AΘ := Γ−1Θ =
{
f̂ ∈ A+ |Γf̂ ∈ Θ

}
, Θ ∈ C̃(G), (5)

a bijective correspondence Θ 7→ AΘ between C̃(G) and the set of closed ex-
tensions AΘ ⊂ A+ of A. In particular (5) gives a one-to-one correspondence
between the closed symmetric (selfadjoint) extensions of A and the closed
symmetric (resp. selfadjoint) relations in G. Moreover, AΘ is an operator if
and only if

Θ ∩ Γ
{(

0
h

) ∣∣∣ h ∈ mul A+
}

= {0}. (6)
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If Θ is a closed operator in G, then the corresponding extension AΘ of A is
determined by

AΘ = ker
(
Γ1 −ΘΓ0

)
. (7)

Let Nλ := ker(A+ − λ) = ran (A− λ)[⊥] be the defect subspace of A and set

N̂λ :=
{(

f
λf

)∣∣∣f ∈ Nλ

}
.

Now we assume that the selfadjoint relation A0 in (4) has a nonempty resolvent
set. For each λ ∈ ρ(A0) the relation A+ can be written as a direct sum of (the
subspaces) A0 and N̂λ (see [4]). Denote by π1 the orthogonal projection onto
the first component of K2. The functions

λ 7→ γ(λ) := π1(Γ0|N̂λ)
−1 ∈ L(G,K), λ ∈ ρ(A0),

and
λ 7→ M(λ) := Γ1(Γ0|N̂λ)

−1 ∈ L(G), λ ∈ ρ(A0) (8)

are defined and holomorphic on ρ(A0) and are called the γ-field and the Weyl
function corresponding to A and {G, Γ0, Γ1}. For λ, ζ ∈ ρ(A0) the relation (3)
implies M(λ)∗ = M(λ) and

γ(ζ) =
(
1 + (ζ − λ)(A0 − ζ)−1

)
γ(λ) (9)

and
M(λ)−M(ζ)∗ = (λ− ζ)γ(ζ)+γ(λ) (10)

hold (see [4]). Moreover, by [4], we have the following connection between the
spectra of extensions of A and the Weyl function.

Lemma 2 If Θ ∈ C̃(G) and AΘ is the corresponding extension of A then a
point λ ∈ ρ(A0) belongs to ρ(AΘ) if and only if 0 belongs to ρ(Θ−M(λ)). A
point λ ∈ ρ(A0) belongs to σi(AΘ) if and only if 0 belongs to σi(Θ −M(λ)),
i = p, c, r.

For λ ∈ ρ(AΘ) ∩ ρ(A0) the well-known resolvent formula

(AΘ − λ)−1 = (A0 − λ)−1 + γ(λ)
(
Θ−M(λ)

)−1
γ(λ)+ (11)

holds (for a proof see e.g. [4]).

3 The Underlying Space

Let H1,2(0, 1) be the Sobolev space of all absolutely continuous functions f
with f ′ ∈ L2(0, 1). Let k be a positive real number, k > 0. We define for
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f, g ∈ H1,2(0, 1) 1

[f, g]k := k(f ′, g′)L2(0,1) − (f, g)L2(0,1). (12)

If L is an arbitrary subset of H1,2(0, 1) we set

L[⊥]k := {x ∈ H1,2(0, 1) : [x, y]k = 0 for all y ∈ L}.

Then we have the following.

Proposition 3 For the space (H1,2(0, 1), [., .]k) we have the following proper-
ties.

(1) If k equals 1
n2π2 for some n ∈ N, then the function g ∈ H1,2(0, 1), defined by

g(x) = cos(nπx) belongs to the isotropic part of (H1,2(0, 1), [., .]k), that is

[f, g]k = 0 for all f ∈ H1,2(0, 1).

(2) If k > 1
π2 , then (H1,2(0, 1), [., .]k) is a Pontryagin space with one negative

square.
(3) If k ≤ 1

π2 and k 6= 1
n2π2 for all n ∈ N, then (H1,2(0, 1), [., .]k) is a Pontryagin

space with a finite number of negative squares. Set

H− := span {fj

∣∣∣ k ≤ 1

j2π2
, j ∈ N},

where fj ∈ H1,2(0, 1) is defined by fj(x) = sin(jπx). Then the number κ−
of negative squares of (H1,2(0, 1), [., .]k) satisfies

κ− = dimH− + 1.

Proof: Assertion (1) is an easy calculation. We assume k 6= 1
n2π2 for all n ∈ N.

Define the operator C0 by

D(C0) := {g ∈ H1,2(0, 1)
∣∣∣ g′ ∈ H1,2(0, 1) and g(0) = g(1) = 0},

C0g := −g′′ for g ∈ D(C0).

Let us note that the functions fj(x) = sin(jπx), j = 1, 2 . . ., are eigen functions
of C0. Moreover, each function g in L2(0, 1) can be written as

g =
∞∑

j=1

αjfj,

1 Let us note that the expression k(y′(t))2 − y(t)2 with t as the time is (up to a
constant) the Lagrangian for free small oscillations in one dimension (see [12], p.
58 for details). From this point of view the corresponding integral represents the
action.
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where αj, j = 1, 2 . . ., are some constants.

For g ∈ D(C0) ∩ H⊥
−, where H⊥

− denotes the orthogonal complement with
respect to the usual scalar product (·, ·)L2(0,1) but within the Hilbert space
H1,2(0, 1), we have also that (f, g)L2(0,1) = 0 for all f ∈ H−. Thus, g has
the representation g =

∑∞
j> 1

π
√

k

αjfj, where the sum converges in the norm

of L2(0, 1). This implies that there exists an ε > 0 with (C0g, g)L2(0,1) >
( 1

k
+ ε)(g, g)L2(0,1) for all g ∈ D(C0) ∩ H⊥

−. Therefore there exists constants
c, c̃ > 0 with

[g, g]k > c(C0g, g)L2(0,1) + ε(g, g)L2(0,1) ≥ c̃(g, g)H1,2(0,1)

for g ∈ D(C0) ∩ H⊥
−, so D(C0) ∩ H⊥

− is a uniformly positive linear manifold.
It is easy to see that for f ∈ H− we have [f, f ]k < 0. Let us note, that
[fj, fl]k = (kj2π2 − 1)(fj, fl)L2(0,1) = (kj2π2 − 1)δjl, where δjl is the symbol
of Kronecker. This means that (D(C0) ∩ H⊥

−)[⊥]kH−. Thus, D(C0) is a pre-
Pontryagin space with respect to the product [·, ·]k, where the number of
negative squares equals dimH−. Let us note also that the subspace D(C0)

[⊥]k

is two-dimensional. Indeed, we define h1, h2 ∈ H1,2(0, 1) by

h1(x) = sin(
x√
k
) + cos(

x√
k
), h2(x) = sin(

x√
k
)− cos(

x√
k
)

and z1, z2 ∈ H1,2(0, 1) by

z1(x) = − 1√
k · sin 1√

k

cos(
x√
k
), z2(x) = − 1√

k
cot(

1√
k
) cos(

x√
k
)− 1√

k
sin(

x√
k
).

For every g ∈ H1,2(0, 1) we have [g, z1]k = g(1) and [g, z2]k = g(0). Thus,

(D(C0))
[⊥]k = sp {z1, z2} = sp {h1, h2}.

Moreover, we have

[h1, h1]k = − 2√
k
(sin

1√
k
)2 and [h2, h2]k =

2√
k
(sin

1√
k
)2.

This proves (3). If k > 1
π2 , then H− = {0} and the above considerations imply

(2). ¤
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4 A Symmetric Operator Associated to the Second Derivative of
Defect Four

For the rest of this paper, we assume that k is such, that

sin
1√
k
6= 0.

Then, according to Proposition 3, the space (H1,2(0, 1), [., .]k) is a Pontryagin
space. We consider the following operator A, defined by

D(A) := {g ∈ H1,2(0, 1)
∣∣∣ g′, g′′ ∈ H1,2(0, 1) with

g(0) = g(1) = g′(0) = g′(1) = g′′(0) = g′′(1) = 0}

and

Ag := −g′′, g ∈ D(A).

Let us calculate A+. By the definition g ∈ D(A+) if and only if there is g+ ∈
H1,2(0, 1) such that [Af, g]k = [f, g+]k for every f ∈ D(A). Let f ∈ H1,2(0, 1)
be smooth and f(x) = 0 for x ∈ [0, δ) ∪ (ε, 1] for some δ, ε > 0. Then the
expression k

∫ 1
0 f ′′′(t)g′(t)dt− ∫ 1

0 f ′′(t)g(t)dt can be considered as an action of
the generalized function −kgIV − g′′ on the test function f . From the other
hand the expression [f, g+]k can be consider as an action of the generalized
function −k(g+)′′ − g+ on the same probe function f . Thus, kgIV (t)+g′′(t) =
k(g+)′′(t) + g+(t). The latter yields

g+(t) = g′′(t) + αf1(t) + βf2(t), (13)

where f1, f2 are defined by

f1(x) = sin
x√
k

, f2(x) = cos
x√
k

,

and

g′′ ∈ H1,2(0, 1). (14)

Now the direct calculation shows that the equality [Af, g]k = [f, g+]k is fulfilled
for every f ∈ D(A), if g is under Condition (14) and g+ is defined by (13). So,

A+ =
{(

g
−g′′

)
+ ( 0

αf1+βf2

) ∣∣∣ g′, g′′ ∈ H1,2(0, 1), α, β ∈ C
}
.

and

mul A+ = sp {f1, f2}, (15)

Lemma 4 Then A is a closed symmetric operator in (H1,2(0, 1), [., .]k).
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Proof: Obviously, A is symmetric. The best way to show the closeness is via
the calculation of A++. We leave it to the reader. ¤

Let
(

f
−f ′′+α1f1+β1f2

)
and

(
g

−g′′+α2f1+β2f2

)
be elements from A+ with f, g ∈

D(A) and α1, α2, β1, β2 ∈ C. Then we have

[−f ′′+α1f1 + β1f2, g]k − [f,−g′′ + α2f1 + β2f2]k =

= −fg′
∣∣∣
1

0
+f ′g

∣∣∣
1

0
−kf ′′g′

∣∣∣
1

0
+kf ′g′′

∣∣∣
1

0
+

+
√

k(α1f2 − β1f1)g
∣∣∣
1

0
−
√

k(α2f2 − β2f1)
∣∣∣
1

0
.

We define mappings Γ0, Γ1 : A+ → C4 by

Γ0

(
f

−f ′′+α1f1+β1f2

)
=




f(0)+kf ′′(0)
f(1)+kf ′′(1)

f(0)
f(1)


 and

Γ1

(
f

−f ′′+α1f1+β1f2

)
=




−f ′(0)
f ′(1)

−α1

√
k√

k(α1 cos 1√
k
−β1 sin 1√

k
)


 for

(
f

−f ′′+α1f1+β1f2

)
∈ A+.

Theorem 5 The triplet {Γ0, Γ1} is a boundary value space for A+. In partic-
ular A1 := ker Γ1 is an operator and a selfadjoint extension of A, i.e.

D(A1) := {g ∈ H1,2(0, 1)
∣∣∣ g′, g′′ ∈ H1,2(0, 1) with g′(0) = g′(1) = 0}

and
A1g := −g′′, g ∈ D(A1).

Moreover, for λ ∈ ρ(A0), the Weyl function is given by M(λ) =




1
1−kλ

( √
λ

tan
√

λ
−

1√
k

tan 1√
k

)
1

1−kλ

(
−

√
λ

sin
√

λ
+

1√
k

sin 1√
k

)
1√

k tan 1√
k

−1√
k sin 1√

k

1
1−kλ

(
−

√
λ

sin
√

λ
+

1√
k

sin 1√
k

)
1

1−kλ

( √
λ

tan
√

λ
−

1√
k

tan 1√
k

)
−1√

k sin 1√
k

1√
k tan 1√

k

1√
k tan 1√

k

−1√
k sin 1√

k

− 1−kλ√
k tan 1√

k

1−kλ√
k sin 1√

k

−1√
k sin 1√

k

1√
k tan 1√

k

1−kλ√
k sin 1√

k

− 1−kλ√
k tan 1√

k




Proof: The above calculations imply that {Γ0, Γ1} is a boundary value space
for A+. Let λ ∈ C \ R. Define g1, g2 ∈ H1,2(0, 1) by

g1(x) = cos(
√

λx) and g2(x) = sin(
√

λx). (16)

Then we have
ker (A+ − λ) = sp {g1, g2, f1, f2}.
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Let f = αg1 + βg2 + γf1 + δf2 for some α, β, γ, δ ∈ C. Then

Γ0

(
f
λf

)
= Γ0

(
f

−f ′′+γ(λ− 1
k
)f1+δ(λ− 1

k
)f2

)
=




α(1−kλ)

α(1−kλ) cos
√

λ+β(1−kλ) sin
√

λ
α+δ

α cos
√

λ+β sin
√

λ+γ sin
√

k
1
+δ cos 1√

k




and

Γ1

(
f
λf

)
=




−β
√

λ−γ 1√
k

−α
√

λ sin
√

λ+β
√

λ cos
√

λ+γ
√

k
1
cos 1√

k
−δ
√

k
1
sin 1√

k

−γ
√

k(λ− 1
k
)

γ
√

k(λ− 1
k
) cos 1√

k
−δ
√

k(λ− 1
k
) sin 1√

k




Now, by (8), it follows that M is of the above form. ¤

Now, via (5) we can parameterize all selfadjoint extensions of A via all self-
adjoint relations Θ in C4.

Theorem 6 Let Θ be a selfadjoint relation in C4. Then AΘ is a selfadjoint
extension of A. If for all α, β ∈ C

( 0
0
α

β sin 1√
k
−α cos 1√

k

)
/∈ mul Θ \ {0} (17)

holds, then AΘ is an operator. If, in particular, Θ is a selfadjoint matrix, then
AΘ is a selfadjoint operator and an extension of A with domain

D(AΘ) :=



g ∈ H1,2(0, 1)

∣∣∣ g′, g′′ ∈ H1,2(0, 1),

( −g′(0)
g′(1)

0
0

)
= Θ




g(0)+kg′′(0)
g(1)+kg′′(1)

g(0)
g(1)






 .

Proof: Relation (17) follows from (6), (15) and the definitions of Γ0 and Γ1.
If Θ is a matrix, (17) is satisfied and the description of D(AΘ) follows from
(7). ¤

5 A Symmetric Operator Associated to the Second Derivative of
Defect Two

We start this Section opposite to Section 4. For this we put

D(Ã) := {g ∈ H1,2(0, 1)
∣∣∣ g′, g′′ ∈ H1,2(0, 1)} (18)

and
Ãg := −g′′, g ∈ D(Ã).

Thus, the operator Ã corresponds to the same formal differential expression
as the operator considered in the previous section, but with a different domain
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which is in some sense maximal. Let us calculate Ã+. For f, g ∈ D(Ã) we have

[Ãf, g]k = −k
∫ 1

0
f ′′′(t)g′(t)dt +

∫ 1

0
f ′′(t)g(t)dt =

= −k
(
f ′′(t)g′(t)− f ′(t)g′′(t)

)∣∣∣
1

0
+

(
f ′(t)g(t)− f(t)g′(t)

)∣∣∣
1

0
−

− k
∫ 1

0
f ′(t)g′′′(t)dt +

∫ 1

0
f(t)g′′(t)dt =

= −
(
kf ′′(1) + f(1)

)
g′(1) + f ′(1)

(
kg′′(1) + g(1)

)
−

− f ′(0)
(
kg′′(0) + g(0)

)
+

(
kf ′′(0) + f(0)

)
g′(0) + [f, Ãg]k

Note that the maps f(t) 7→
(
kf ′′(1) + f(1)

)
, f(t) 7→ f ′(1), f(t) 7→

(
kf ′′(0) +

f(0)
)

and f(t) 7→ f ′(0) represent unbounded linear functionals on H1,2(0, 1).

Thus, the expression [Ãf, g]k gives a continuous linear functional (with respect

to f) on H1,2(0, 1) if and only if g′(1) =
(
kg′′(1) + g(1)

)
=

(
kg′′(0) + g(0)

)
=

g′(0) = 0 and by the definition of the adjoint operator the latter conditions
restrict the domain of Ã+. For brevity below we set A : = Ã+. Thus, we have
the following operator A, defined by

D(A) := {g ∈ H1,2(0, 1)
∣∣∣ g′, g′′ ∈ H1,2(0, 1) with g′(0) = g′(1) = 0,

g(0) + kg′′(0) = 0 and g(1) + kg′′(1) = 0}

and
Ag := −g′′, g ∈ D(A).

Then A is a closed symmetric operator in (H1,2(0, 1), [., .]k), which is, in con-
trast to Section 4, densely defined. In particular

A+ = Ã =
{(

g
−g′′

)∣∣∣ g′, g′′ ∈ H1,2(0, 1)
}

is an operator and therefore all selfadjoint extensions of A are operators.

We define mappings Γ0, Γ1 : A+ → C2 by

Γ0

(
f
−f ′′

)
=

(
f(0)+kf ′′(0)
f(1)+kf ′′(1)

)
and Γ1

(
f
−f ′′

)
=

( −f ′(0)
f ′(1)

)
for

(
f
−f ′′

)
∈ A+.

Theorem 7 The triplet {Γ0, Γ1} is a boundary value space for A+. The Weyl
function is given by

M(λ) =




√
λ

(1−kλ) tan
√

λ
−
√

λ
(1−kλ) sin

√
λ

−
√

λ
(1−kλ) sin

√
λ

√
λ

(1−kλ) tan
√

λ


 , λ ∈ ρ(A0).

Proof: The above calculations imply that {Γ0, Γ1} is a boundary value space

11



for A+. Let λ ∈ C \ R and g1, g2 ∈ H1,2(0, 1) as in (16). Then we have

ker (A+ − λ) = sp {g1, g2}.

Let f = αg1 + βg2 for some α, β ∈ C. Then

Γ0

(
f
λf

)
= Γ0

(
f
−f ′′

)
=

(
α(1−kλ)

α(1−kλ) cos
√

λ+β(1−kλ) sin
√

λ

)

and
Γ1

(
f
λf

)
= Γ1

(
f
−f ′′

)
=

( −β
√

λ

−α
√

λ sin
√

λ+β
√

λ cos
√

λ

)

Now, by (8), it is follows that M is of the above form. ¤

Lemma 8 The operator A0 = ker Γ0 is a selfadjoint extension of A with a
compact resolvent and

σ(A0) = σp(A0) = {k−1, π2, 4π2, 9π2, 16π2, . . .}. (19)

Proof: The operator A1 = ker Γ1 is selfadjoint in the Hilbert space H1,2(0, 1).
We have for f ∈ D(A1)

((A1 + I)f, f)H1,2(0,1) = ‖f ′‖2
L2(0,1) + ‖f‖2

H2,2(0,1),

where H2,2(0, 1) is the Sobolev space of all functions f ∈ H1,2(0, 1) with
f ′ ∈ H1,2(0, 1). This gives

‖f‖2
H2,2(0,1) ≤ ‖(A1 + I)f‖H1,2(0,1)‖f‖H2,2(0,1).

Therefore, as the embedding of H2,2(0, 1) into H1,2(0, 1) is compact, the self-
adjoint operator A1 has a compact resolvent. By (11) the difference between
the resolvents of A0 and A1 is of finite rank, hence A0 has a compact resolvent.
We have σ(A0) = σp(A0). Now (19) follows from a simple calculation. ¤

Proposition 9 Let α ∈ R, α 6= 0 and

|α| < 2
√

k. (20)

Then the operator Aα defined by

D(Aα) := {g ∈ H1,2(0, 1)
∣∣∣ g′, g′′ ∈ H1,2(0, 1) with

αg′(0) = g(0) + kg′′(0) and αg′(1) = g(1) + kg′′(1)}

and
Aαg := −g′′, g ∈ D(Aα).

is a selfadjoint extension of A with non-real eigenvalues.
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In the case α = 2
√

k we have that the selfadjoint extension A2
√

k of A has a
Jordan chain of length two corresponding to the eigenvalue − 1

k
.

Proof: Set

Θ =



−α−1 0

0 α−1
.


 .

Then AΘ = Aα, hence, by Lemma 2 and the fact that σ(A0) ⊂ R (see
Lemma 8), we have for all non-real λ that λ ∈ σp(Aα) if and only if

0 = det (M(λ)−Θ) =
k2

α2(1− kλ)2

(
λ2 +

λα2

k2
− 2

λ

k
+

1

k2

)
. (21)

Hence,

λ1,2 =
1

k
− α2

2k2
± α

k2

√
α2

4
− k

are the solutions of Equation (21). Assertion (20) implies now the existence
of two non-real eigenvalues of Aα.

In the case α = 2
√

k we have that the functions h0, h1 ∈ D(A2
√

k) given by

h0(x) = e
x 1√

k and h1(x) = −x

2
e

x 1√
k

satisfy (
A2

√
k +

1

k

)
h1 = h0 and

(
A2

√
k +

1

k

)
h0 = 0,

i.e. {h1, h0} is a Jordan chain of A2
√

k corresponding to the eigenvalue − 1
k
. ¤
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