Balanced Truncation for Stochastic Differential Equations with Levy Noise

Martin Redmann

Computational Methods in Systems and Control Theory
Max Planck Institute for Dynamics of Complex Technical Systems
Magdeburg, Germany
Content

1 Introduction

2 Concept of Reachability

3 Concept of Observability

4 Balanced Truncation
1 Introduction

2 Concept of Reachability

3 Concept of Observability

4 Balanced Truncation
1. Introduction

2. Concept of Reachability

3. Concept of Observability

4. Balanced Truncation
Content

1. Introduction
2. Concept of Reachability
3. Concept of Observability
4. Balanced Truncation
Introduction

Concept of Reachability

Concept of Observability

Balanced Truncation

Levy processes

Properties of Levy processes

- Levy processes generalize Wiener processes.
- The trajectories may have jumps but at most countably many.
- The trajectories are right-continuous and have left limits.

We will focus on square integrable Levy processes \((M(t))_{t \geq 0}\) with zero mean, which means that

\[
\mathbb{E} [M(t)] = 0 \text{ and } \mathbb{E} [M(t)^2] < \infty
\]

for all \(t \geq 0\).
Levy processes

Properties of Levy processes

- Levy processes generalize Wiener processes.
- The trajectories may have jumps but at most countably many.
- The trajectories are right-continuous and have left limits.

We will focus on square integrable Levy processes \((M(t))_{t \geq 0}\) with zero mean, which means that

\[
\mathbb{E}[M(t)] = 0 \text{ and } \mathbb{E}[M(t)^2] < \infty
\]

for all \(t \geq 0\).
Levy processes

Properties of Levy processes

- Levy processes generalize Wiener processes.
- The trajectories may have jumps but at most countably many.
- The trajectories are right-continuous and have left limits.

We will focus on square integrable Levy processes \((M(t))_{t \geq 0}\) with zero mean, which means that

\[
E[M(t)] = 0 \text{ and } E[M(t)^2] < \infty
\]

for all \(t \geq 0\).
Levy processes

Properties of Levy processes

- Levy processes generalize Wiener processes.
- The trajectories may have jumps but at most countably many.
- The trajectories are right-continuous and have left limits.

We will focus on square integrable Levy processes \((M(t))_{t \geq 0}\) with zero mean, which means that

\[
\mathbb{E} [M(t)] = 0 \quad \text{and} \quad \mathbb{E} [M(t)^2] < \infty
\]

for all \(t \geq 0\).
Levy processes

Properties of Levy processes

- Levy processes generalize Wiener processes.
- The trajectories may have jumps but at most countably many.
- The trajectories are right-continuous and have left limits.

We will focus on square integrable Levy processes \((M(t))_{t \geq 0}\) with zero mean, which means that

\[
\mathbb{E} [M(t)] = 0 \quad \text{and} \quad \mathbb{E} [M(t)^2] < \infty
\]

for all \(t \geq 0\).
We consider the following equation for $t \geq 0$:

$$
\begin{align*}
\frac{dX(t)}{dt} &= [AX(t) + Bu(t)] dt + \Psi X(t-)dM(t), \\
Y(t) &= CX(t),
\end{align*}
$$

where $X(0) = x_0$, $A, \Psi \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, M is a real-valued square integrable Levy process with zero mean and u is an adapted stochastic processes with

$$
\|u\|_{L^2}^2 := \mathbb{E} \int_0^\infty \|u(t)\|^2 dt < \infty.
$$

Definition

see [Damm '04]

The system (1) is called asymptotically mean square stable if the homogeneous solution $X_{x_0}^h$ fulfills

$$
\mathbb{E} \|X_{x_0}^h(t)\|_2^2 \to 0
$$

for $t \to \infty$ and every initial condition $x_0 \in \mathbb{R}^n$.
We consider the following equation for $t \geq 0$:

$$
dX(t) = [AX(t) + Bu(t)] \, dt + \Psi X(t-)dM(t),
$$

$$
Y(t) = CX(t),
$$

where $X(0) = x_0$, $A, \Psi \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, M is a real-valued square integrable Levy process with zero mean and u is an adapted stochastic processes with

$$
\|u\|_{L^2}^2 := \mathbb{E} \int_0^\infty \|u(t)\|_2^2 \, dt < \infty.
$$

Definition see [Damm ’04]

The system (1) is called asymptotically mean square stable if the homogeneous solution $X^h_{x_0}$ fulfills

$$
\mathbb{E} \|X^h_{x_0}(t)\|_2^2 \to 0
$$

for $t \to \infty$ and every initial condition $x_0 \in \mathbb{R}^n$.
We introduce the stochastic processes \((\Phi(t, \tau))_{t \geq \tau}\) with values in \(\mathbb{R}^{n \times n}\), which satisfy

\[
\Phi(t, \tau) = I_n + \int_{\tau}^{t} A\Phi(s, \tau)ds + \int_{\tau}^{t} \Psi\Phi(s-, \tau)dM(s)
\]

for \(t \geq \tau \geq 0\). We write \(\Phi(t, 0) = \Phi(t)\).

Proposition

The solution of equation (1) is given by

\[
\Phi(t)x_0 + \int_{0}^{t} \Phi(t, s)Bu(s)ds, \quad t \geq 0.
\]
We introduce the stochastic processes \((\Phi(t, \tau))_{t \geq \tau}\) with values in \(\mathbb{R}^{n \times n}\), which satisfy

\[
\Phi(t, \tau) = I_n + \int_{\tau}^{t} A\Phi(s, \tau)ds + \int_{\tau}^{t} \Psi_s\Phi(t-\tau) dM(s)
\]

for \(t \geq \tau \geq 0\). We write \(\Phi(t, 0) = \Phi(t)\).

Proposition

The solution of equation (1) is given by

\[
\Phi(t)x_0 + \int_{0}^{t} \Phi(t, s)Bu(s)ds, \quad t \geq 0.
\]
Concept of Reachability
Reachability Gramian

We call $P_t := \int_0^t \mathbb{E} \left[\Phi(s)B B^T \Phi^T(s) \right] ds$ finite reachability Gramian at time $t \geq 0$.

The asymptotic stability in mean square also provides the existence of the infinite reachability Gramian

$$P := \int_0^\infty \mathbb{E} \left[\Phi(s)B B^T \Phi^T(s) \right] ds.$$

Proposition

For all $t \geq 0$ it holds

$$im \, P_t = im \, P.$$

One can show that

$$0 = B B^T + P \, A^T + A \, P + \psi \, P \, \psi^T \mathbb{E} \left[M(1)^2 \right].$$
Reachability Gramian

[Benner, Damm '11]

We call \(P_t := \int_0^t \mathbb{E} \left[\Phi(s)BB^T \Phi^T(s) \right] ds \) finite reachability Gramian at time \(t \geq 0 \).

The asymptotic stability in mean square also provides the existence of the infinite reachability Gramian

\[
P := \int_0^\infty \mathbb{E} \left[\Phi(s)BB^T \Phi^T(s) \right] ds.
\]

Proposition

For all \(t \geq 0 \) it holds

\(\text{im } P_t = \text{im } P \).

One can show that

\[
0 = BB^T + P A^T + A P + \psi P \psi^T \mathbb{E} \left[M(1)^2 \right].
\]
Reachability Gramian

We call $P_t := \int_0^t \mathbb{E} \left[\Phi(s)B B^T \Phi^T(s) \right] ds$ finite reachability Gramian at time $t \geq 0$. The asymptotic stability in mean square also provides the existence of the infinite reachability Gramian

$$P := \int_0^\infty \mathbb{E} \left[\Phi(s)B B^T \Phi^T(s) \right] ds.$$

Proposition

For all $t \geq 0$ it holds

$$\text{im } P_t = \text{im } P.$$

One can show that

$$0 = B B^T + P A^T + A P + \psi \, P \psi^T \mathbb{E} [M(1)^2].$$

[Benner, Damm ’11]
We call $P_t := \int_0^t \mathbb{E} \left[\Phi(s)BB^T\Phi^T(s) \right] ds$ finite reachability Gramian at time $t \geq 0$.

The asymptotic stability in mean square also provides the existence of the infinite reachability Gramian

$$P := \int_0^\infty \mathbb{E} \left[\Phi(s)BB^T\Phi^T(s) \right] ds.$$

Proposition

For all $t \geq 0$ it holds

$$im \ P_t = im \ P.$$

One can show that

$$0 = BB^T + P A^T + A P + \psi P \psi^T \mathbb{E} \left[M(1)^2 \right].$$
By $X(T, 0, u)$ we denote the solution of the inhomogeneous system (1) at time T with initial condition 0 for a given input u.

Definition

An average state $x \in \mathbb{R}^n$ is called reachable (from zero) if a time $T > 0$ and a control function $u \in L_T^2$ exist such that

$$
\mathbb{E}[X(T, 0, u)] = x.
$$

Proposition

An average state $x \in \mathbb{R}^n$ is reachable (from zero) if and only if $x \in \text{im } P$.
By $X(T, 0, u)$ we denote the solution of the inhomogeneous system (1) at time T with initial condition 0 for a given input u.

Definition

An average state $x \in \mathbb{R}^n$ is called reachable (from zero) if a time $T > 0$ and a control function $u \in L^2_T$ exist such that

$$\mathbb{E}[X(T, 0, u)] = x.$$

Proposition

An average state $x \in \mathbb{R}^n$ is reachable (from zero) if and only if $x \in \text{im } P$.

Max Planck Institute Magdeburg
By $X(T, 0, u)$ we denote the solution of the inhomogeneous system (1) at time T with initial condition 0 for a given input u.

Definition

An average state $x \in \mathbb{R}^n$ is called reachable (from zero) if a time $T > 0$ and a control function $u \in L^2_T$ exist such that

$$\mathbb{E}[X(T, 0, u)] = x.$$

Proposition

An average state $x \in \mathbb{R}^n$ is reachable (from zero) if and only if $x \in \text{im } P$.

Max Planck Institute Magdeburg

M. Redmann, *Balanced Truncation for Stochastic Differential Equations with Levy Noise*
Proposition

The control \(u \) with minimal energy to reach \(x \in \text{im } P \) at time \(T > 0 \) is given by

\[
 u(t) = B^T \Phi^T(T, t) P^\# T x, \quad t \in [0, T],
\]

with

\[
 \|u\|_{L^2_T}^2 = x^T P^\# T x.
\]

Thus, the minimal energy that is needed to steer the system to \(x \) is given by

\[
 \inf_{T > 0} x^T P^\# T x = x^T P^\# x.
\]
Proposition

The control u with minimal energy to reach $x \in \text{im } P$ at time $T > 0$ is given by

$$u(t) = B^T \Phi^T(T, t) P_T^# x, \quad t \in [0, T],$$

with

$$\|u\|_{L_T^2}^2 = x^T P_T^# x.$$

Thus, the minimal energy that is needed to steer the system to x is given by

$$\inf_{T > 0} x^T P_T^# x = x^T P^# x.$$
Concept of Observability
Due to the asymptotic stability in mean square the observability Gramian

\[Q = \mathbb{E} \left[\int_0^\infty \Phi^T(s) C^T C \Phi(s) ds \right] \]

exists and it is the solution of

\[A^T Q + Q A + \Psi^T Q \Psi \mathbb{E} \left[M(1)^2 \right] + C^T C = 0. \]
We consider an uncontrolled system (1) \((u \equiv 0)\).
Hence, \(X(t) = \Phi(t)x_0\) and
\[
\mathcal{Y}(t) = C\Phi(t)x_0.
\]

The observation energy produced by \(x_0\) is
\[
\|\mathcal{Y}\|_{L^2}^2 := \mathbb{E} \int_0^\infty \mathcal{Y}^T(t)\mathcal{Y}(t) dt = x_0^T \mathbb{E} \int_0^\infty \Phi^T(t)C^T C\Phi(t) dt x_0 \\
= x_0^T Q x_0.
\]

Definition

An initial condition \(x_0\) is unobservable if \(x_0 \in \ker Q\).
We consider an uncontrolled system (1) \((u \equiv 0) \).
Hence, \(X(t) = \Phi(t)x_0 \) and
\[
Y(t) = C\Phi(t)x_0.
\]
The observation energy produced by \(x_0 \) is
\[
\|Y\|_{L^2}^2 := \mathbb{E} \int_0^\infty Y^T(t)Y(t)dt = x_0^T \mathbb{E} \int_0^\infty \Phi^T(t)C^TC\Phi(t)dt x_0 = x_0^T Qx_0.
\]

Definition

An initial condition \(x_0 \) is unobservable if \(x_0 \in \ker Q \).
We consider an uncontrolled system (1) \(u \equiv 0 \).
Hence, \(X(t) = \Phi(t)x_0 \) and

\[\mathcal{Y}(t) = C\Phi(t)x_0. \]

The observation energy produced by \(x_0 \) is

\[
\|\mathcal{Y}\|_{L^2}^2 := \mathbb{E} \int_0^\infty \mathcal{Y}^T(t)\mathcal{Y}(t)dt = x_0^T\mathbb{E} \int_0^\infty \Phi^T(t)C^TC\Phi(t)dt \ x_0 \\
= x_0^TQx_0.
\]

Definition

An initial condition \(x_0 \) is unobservable if \(x_0 \in \ker Q \).
Balanced Truncation
We start with a system

\[dX(t) = [AX(t) + Bu(t)] \, dt + \Psi X(t-)dM(t),\]

\[Y(t) = CX(t), \quad t \geq 0,\]

which is completely reachable and observable, which is equivalent to \(P \) and \(Q \) are positive definite.

We transfer the states with a regular matrix \(T \) and obtain a system with

\[(\tilde{A}, \tilde{B}, \tilde{\Psi}, \tilde{C}) = (TAT^{-1}, TB, T\Psi T^{-1}, CT^{-1}),\]

which has the same output as system (2).

The Gramians of the transformed system are given by

\[\tilde{P} = TPT^T \text{ and } \tilde{Q} = T^{-T} QT^{-1}.\]
We start with a system

\[
\begin{aligned}
 dX(t) &= [AX(t) + Bu(t)] \, dt + \Psi X(t-) \, dM(t), \\
 \mathcal{Y}(t) &= CX(t), \quad t \geq 0,
\end{aligned}
\]

which is completely reachable and observable, which is equivalent to \(P \) and \(Q \) are positive definite.

We transfer the states with a regular matrix \(T \) and obtain a system with

\[
(\tilde{A}, \tilde{B}, \tilde{\Psi}, \tilde{C}) = (TAT^{-1}, TB, T\Psi T^{-1}, CT^{-1}),
\]

which has the same output as system (2).

The Gramians of the transformed system are given by

\[
\tilde{P} = TPT^T \text{ and } \tilde{Q} = T^{-T} QT^{-1}.
\]
We start with a system

\[
dX(t) = [AX(t) + Bu(t)] \, dt + \Psi X(t-) \, dM(t),
\]

\[
Y(t) = CX(t), \quad t \geq 0,
\]

which is completely reachable and observable, which is equivalent to \(P \) and \(Q \) are positive definite.

We transfer the states with a regular matrix \(T \) and obtain a system with

\[
(\tilde{A}, \tilde{B}, \tilde{\Psi}, \tilde{C}) = (TAT^{-1}, TB, T\Psi T^{-1}, CT^{-1}),
\]

which has the same output as system (2).

The Gramians of the transformed system are given by

\[
\tilde{P} = TPT^T \text{ and } \tilde{Q} = T^{-T} QT^{-1}.
\]
We want to choose T, such that the Gramians are equal, which means that $\tilde{P} = \tilde{Q} = \Sigma = \text{diag}(\sigma_1, \ldots, \sigma_n)$.

Theorem

The balancing transformation T and its inverse are given by

$$T = \Sigma^{\frac{1}{2}} K^T U^{-1},$$

$$T^{-1} = U K \Sigma^{-\frac{1}{2}},$$

where $P = UU^T$ and $U^T QU = K \Sigma^2 K^T$.
We consider the following partitions:

\[
T = \begin{bmatrix}
W^T \\
T_2^T
\end{bmatrix}, \quad T^{-1} = \begin{bmatrix}
V & T_1
\end{bmatrix} \quad \text{and} \quad \hat{X} = \begin{pmatrix}
\tilde{X} \\
X_1
\end{pmatrix},
\]

where \(W^T \in \mathbb{R}^{r \times n} \), \(V \in \mathbb{R}^{n \times r} \) and \(\tilde{X} \in \mathbb{R}^r \).

Hence,

\[
\begin{pmatrix}
d\tilde{X}(t) \\
dX_1(t)
\end{pmatrix} = \begin{bmatrix}
W^T AV & W^T AT_1 \\
T_2^T AV & T_2^T AT_1
\end{bmatrix} \begin{pmatrix}
\tilde{X}(t) \\
X_1(t)
\end{pmatrix} dt + \begin{bmatrix}
W^T B \\
T_2^T B
\end{bmatrix} u(t) dt
\]

\[
+ \begin{bmatrix}
W^T \psi V & W^T \psi T_1 \\
T_2^T \psi V & T_2^T \psi T_1
\end{bmatrix} \begin{pmatrix}
\tilde{X}(t-) \\
X_1(t-)
\end{pmatrix} dM(t)
\]

and

\[
\mathcal{Y}(t) = \begin{bmatrix}
CV & CT_1
\end{bmatrix} \begin{pmatrix}
\tilde{X}(t) \\
X_1(t)
\end{pmatrix}.
\]
We consider the following partitions:

\[T = \begin{bmatrix} W^T \\ T_2^T \end{bmatrix}, \quad T^{-1} = \begin{bmatrix} V & T_1 \end{bmatrix} \quad \text{and} \quad \hat{X} = \begin{pmatrix} \tilde{X} \\ X_1 \end{pmatrix}, \]

where \(W^T \in \mathbb{R}^{r \times n}, V \in \mathbb{R}^{n \times r} \) and \(\tilde{X} \in \mathbb{R}^r \).

Hence,

\[
\begin{align*}
\begin{pmatrix} d\tilde{X}(t) \\ dX_1(t) \end{pmatrix} &= \begin{bmatrix} W^T AV & W^T A T_1 \\ T_2^T AV & T_2^T A T_1 \end{bmatrix} \begin{pmatrix} \tilde{X}(t) \\ X_1(t) \end{pmatrix} dt + \begin{bmatrix} W^T B \\ T_2^T B \end{bmatrix} u(t) dt \\
&\quad + \begin{bmatrix} W^T \psi V & W^T \psi T_1 \\ T_2^T \psi V & T_2^T \psi T_1 \end{bmatrix} \begin{pmatrix} \tilde{X}(t-) \\ X_1(t-) \end{pmatrix} dM(t)
\end{align*}
\]

and

\[
\mathcal{Y}(t) = \begin{bmatrix} CV & CT_1 \end{bmatrix} \begin{pmatrix} \tilde{X}(t) \\ X_1(t) \end{pmatrix}.
\]
Selecting the first r rows and neglecting the X_1 terms provide the following reduced order model:

$$d\tilde{X}(t) = W^TAV\tilde{X}(t)dt + W^T Bu(t)dt + W^T\Psi V\tilde{X}(t-)dM(t)$$

$$\tilde{Y}(t) = CV\tilde{X}(t).$$

Open Questions

- Is the reduced order model stable in general?
 deterministic case: The reduced order model is stable.

- What is the structure of the Gramians of the reduced model?
 deterministic case: $P_R = Q_R = diag(\sigma_1, \ldots, \sigma_r)$

- What is the structure of the Hankel values of the reduced model?
 deterministic case: The Hankel values are $\sigma_1, \ldots, \sigma_r$.
Selecting the first r rows and neglecting the X_1 terms provide the following reduced order model:

$$d\tilde{X}(t) = W^T AV\tilde{X}(t)dt + W^T Bu(t)dt + W^T \Psi V\tilde{X}(t-)dM(t)$$
$$\tilde{Y}(t) = CV\tilde{X}(t).$$

Open Questions

1. Is the reduced order model stable in general?
 - Deterministic case: The reduced order model is stable.
2. What is the structure of the Gramians of the reduced model?
 - Deterministic case: $P_R = Q_R = \text{diag}(\sigma_1, \ldots, \sigma_r)$
3. What is the structure of the Hankel values of the reduced model?
 - Deterministic case: The Hankel values are $\sigma_1, \ldots, \sigma_r$.
Selecting the first r rows and neglecting the X_1 terms provide the following reduced order model:

$$d\tilde{X}(t) = W^T AV\tilde{X}(t)dt + W^T Bu(t)dt + W^T \Psi V\tilde{X}(t-)dM(t)$$

$$\tilde{y}(t) = CV\tilde{X}(t).$$

Open Questions

1. Is the reduced order model stable in general?
 - Deterministic case: The reduced order model is stable.

2. What is the structure of the Gramians of the reduced model?
 - Deterministic case: $P_R = Q_R = diag(\sigma_1, \ldots, \sigma_r)$

3. What is the structure of the Hankel values of the reduced model?
 - Deterministic case: The Hankel values are $\sigma_1, \ldots, \sigma_r$.
Selecting the first \(r \) rows and neglecting the \(X_1 \) terms provide the following reduced order model:

\[
d\tilde{X}(t) = W^T AV \tilde{X}(t)dt + W^T Bu(t)dt + W^T \Psi V \tilde{X}(t-)dM(t) \\
\tilde{Y}(t) = CV \tilde{X}(t).
\]

Open Questions

1. Is the reduced order model stable in general?
 - Deterministic case: The reduced order model is stable.

2. What is the structure of the Gramians of the reduced model?
 - Deterministic case: \(P_R = Q_R = \text{diag}(\sigma_1, \ldots, \sigma_r) \)

3. What is the structure of the Hankel values of the reduced model?
 - Deterministic case: The Hankel values are \(\sigma_1, \ldots, \sigma_r \).
Example

The following matrices provide a balanced system:

\[
A = \begin{pmatrix}
-5.12 & 2.99 & 2.05 \\
1.25 & -4.86 & 0.96 \\
1.26 & 0.07 & -9.52
\end{pmatrix},
B = \begin{pmatrix}
-3.39 & -1.19 & -0.61 \\
1.31 & -4.60 & -0.09 \\
-0.68 & 1.70 & 4.57
\end{pmatrix},
\]
\[
\Psi = \begin{pmatrix}
-2.20 & 2.09 & -0.57 \\
1.30 & -0.67 & -2.06 \\
0.30 & -0.57 & -1.14
\end{pmatrix},
C = \begin{pmatrix}
-2.77 & 1.31 & 1.62 \\
-3.94 & -2.18 & 0.74 \\
-1.31 & -2.49 & 1.74
\end{pmatrix}.
\]

The Gramians are given by

\[
P = Q = \Sigma = \begin{pmatrix}
5.97 & 0 & 0 \\
0 & 4.23 & 0 \\
0 & 0 & 1.48
\end{pmatrix}.
\]

The reduced order model has the following properties:

\[
P_R = \begin{pmatrix}
5.46 & -0.38 \\
-0.38 & 3.43
\end{pmatrix},
Q_R = \begin{pmatrix}
5.88 & 0.06 \\
0.06 & 4.16
\end{pmatrix},
HV_R = \begin{pmatrix}
5.68 \\
3.76
\end{pmatrix}.
\]
Example

The following matrices provide a balanced system:

\[
A = \begin{pmatrix}
 -5.12 & 2.99 & 2.05 \\
 1.25 & -4.86 & 0.96 \\
 1.26 & 0.07 & -9.52
\end{pmatrix}, \quad
B = \begin{pmatrix}
 -3.39 & -1.19 & -0.61 \\
 1.31 & -4.60 & -0.09 \\
 -0.68 & 1.70 & 4.57
\end{pmatrix},
\]

\[
\Psi = \begin{pmatrix}
 -2.20 & 2.09 & -0.57 \\
 1.30 & -0.67 & -2.06 \\
 0.30 & -0.57 & -1.14
\end{pmatrix}, \quad
C = \begin{pmatrix}
 -2.77 & 1.31 & 1.62 \\
 -3.94 & -2.18 & 0.74 \\
 -1.31 & -2.49 & 1.74
\end{pmatrix}.
\]

The Gramians are given by

\[
P = Q = \Sigma = \begin{pmatrix}
 5.97 & 0 & 0 \\
 0 & 4.23 & 0 \\
 0 & 0 & 1.48
\end{pmatrix}.
\]

The reduced order model has the following properties:

\[
P_R = \begin{pmatrix}
 5.46 & -0.38 \\
 -0.38 & 3.43
\end{pmatrix}, \quad
Q_R = \begin{pmatrix}
 5.88 & 0.06 \\
 0.06 & 4.16
\end{pmatrix}, \quad
HV_R = \begin{pmatrix}
 5.68 \\
 3.76
\end{pmatrix}.
\]
Example

The following matrices provide a balanced system:

\[
A = \begin{pmatrix}
 -5.12 & 2.99 & 2.05 \\
 1.25 & -4.86 & 0.96 \\
 1.26 & 0.07 & -9.52 \\
\end{pmatrix},
\]

\[
B = \begin{pmatrix}
 -3.39 & -1.19 & -0.61 \\
 1.31 & -4.60 & -0.09 \\
 -0.68 & 1.70 & 4.57 \\
\end{pmatrix},
\]

\[
\Psi = \begin{pmatrix}
 -2.20 & 2.09 & -0.57 \\
 1.30 & -0.67 & -2.06 \\
 0.30 & -0.57 & -1.14 \\
\end{pmatrix},
\]

\[
C = \begin{pmatrix}
 -2.77 & 1.31 & 1.62 \\
 -3.94 & -2.18 & 0.74 \\
 -1.31 & -2.49 & 1.74 \\
\end{pmatrix}.
\]

The Gramians are given by

\[
P = Q = \Sigma = \begin{pmatrix}
 5.97 & 0 & 0 \\
 0 & 4.23 & 0 \\
 0 & 0 & 1.48 \\
\end{pmatrix}.
\]

The reduced order model has the following properties:

\[
P_R = \begin{pmatrix}
 5.46 & -0.38 \\
 -0.38 & 3.43 \\
\end{pmatrix},
\]

\[
Q_R = \begin{pmatrix}
 5.88 & 0.06 \\
 0.06 & 4.16 \\
\end{pmatrix},
\]

\[
HV_R = \begin{pmatrix}
 5.68 \\
 3.76 \\
\end{pmatrix}.
\]
We introduce the following partitions of a balanced realization:

\[
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad \Psi = \begin{bmatrix} \Psi_{11} & \Psi_{12} \\ \Psi_{21} & \Psi_{22} \end{bmatrix}, \quad B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.
\]

We write \(E = \mathbb{E} \| \mathcal{Y}(t) - \tilde{\mathcal{Y}}(t) \|_2 \) and obtain

\[
E = \mathbb{E} \left\| C \int_0^t \Phi(t,s)Bu(s)ds - C_1 \int_0^t \tilde{\Phi}(t,s)B_1u(s)ds \right\|_2 \\
\leq \mathbb{E} \int_0^t \left\| (C\Phi(t,s)B - C_1\tilde{\Phi}(t,s)B_1)u(s) \right\|_2 ds \\
\leq \mathbb{E} \int_0^t \left\| C\Phi(t,s)B - C_1\tilde{\Phi}(t,s)B_1 \right\|_F \| u(s) \|_2 ds \\
\leq \left(\mathbb{E} \int_0^t \left\| C\Phi(t,s)B - C_1\tilde{\Phi}(t,s)B_1 \right\|^2_F ds \right)^{1/2} \left(\mathbb{E} \int_0^t \| u(s) \|^2_2 ds \right)^{1/2}.
\]
We introduce the following partitions of a balanced realization:

\[
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad \Psi = \begin{bmatrix} \Psi_{11} & \Psi_{12} \\ \Psi_{21} & \Psi_{22} \end{bmatrix}, \quad B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} c_1 & c_2 \end{bmatrix}.
\]

We write \(\mathcal{E} = \mathbb{E} \| \mathcal{Y}(t) - \tilde{\mathcal{Y}}(t) \|_2 \) and obtain

\[
\begin{align*}
\mathcal{E} &= \mathbb{E} \left\| C \int_0^t \Phi(t,s)Bu(s)ds - C_1 \int_0^t \tilde{\Phi}(t,s)B_1u(s)ds \right\|_2 \\
&\leq \mathbb{E} \int_0^t \left\| \left(C\Phi(t,s)B - C_1\tilde{\Phi}(t,s)B_1 \right)u(s) \right\|_2 ds \\
&\leq \mathbb{E} \int_0^t \left\| C\Phi(t,s)B - C_1\tilde{\Phi}(t,s)B_1 \right\|_F \left\| u(s) \right\|_2 ds \\
&\leq \left(\mathbb{E} \int_0^t \left\| C\Phi(t,s)B - C_1\tilde{\Phi}(t,s)B_1 \right\|_F^2 ds \right)^{1/2} \left(\mathbb{E} \int_0^t \left\| u(s) \right\|_2^2 ds \right)^{1/2}.
\end{align*}
\]
We have

$$\sup_{t \geq 0} \mathbb{E} \left\| \mathcal{Y}(t) - \tilde{\mathcal{Y}}(t) \right\|_2^2 \
\leq \left(\mathbb{E} \int_0^\infty \left\| C \Phi(t, s) B - C_1 \tilde{\Phi}(t, s) B_1 \right\|_F^2 \, ds \right)^{\frac{1}{2}} \| u \|_{L^2}.$$

It holds

$$\# = \left(\text{tr} \left(C \Sigma C^T \right) + \text{tr} \left(C_1 P_R C_1^T \right) - 2 \text{tr} \left(C P_M C_1^T \right) \right)^{\frac{1}{2}},$$

where

$$0 = B B_1^T + P_M A_{11}^T + A P_M + \Psi P_M \Psi_{11}^T \mathbb{E} \left[M(1)^2 \right].$$
We have

$$\sup_{t \geq 0} \mathbb{E} \left\| \mathcal{Y}(t) - \tilde{\mathcal{Y}}(t) \right\|_2^2 \leq \left(\mathbb{E} \int_0^\infty \left\| C\Phi(t, s)B - C_1\tilde{\Phi}(t, s)B_1 \right\|_F^2 ds \right)^{1/2} \left\| u \right\|_{L^2}.$$

It holds

$$\# = \left(tr \left(C\Sigma C^T \right) + tr \left(C_1 P_R C_1^T \right) - 2 \ tr \left(CP_M C_1^T \right) \right)^{1/2},$$

where

$$0 = BB_1^T + P_M A_{11}^T + A P_M + \Psi P_M \Psi_{11}^T \mathbb{E} \left[M(1)^2 \right].$$
We assume

$$\Psi = \begin{bmatrix} \Psi_{11} & 0 \\ 0 & \Psi_{22} \end{bmatrix}.$$

We additionally need the partitions

$$\Sigma = \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \quad \text{and} \quad P_M = \begin{bmatrix} P_{M,1} \\ P_{M,2} \end{bmatrix}.$$

Then, $P_R = Q_R = \Sigma_1$ and

$$\#^2 = \text{tr}((C_2^T C_2 + 2P_{M,2}A_{21}^T)\Sigma_2).$$
How to check stability of the reduced order model?

Theorem

Let Y be an arbitrary symmetric and negative definite matrix. Then, the reduced order model is asymptotically mean square stable, if and only if the solution X of

$$A_{11}^T X + X A_{11} + \psi_{11}^T X \psi_{11} \mathbb{E} \left[M(1)^2 \right] = Y$$

is unique, symmetric and positive definite.

see [Damm '04]
We consider a company, which produces \(n \) goods. \(X_i \) represents the asset of the company corresponding to good \(i \).

We assume that the vector of all assets satisfies

\[
dX(t) = [u(t) - \text{diag}(\lambda_1, \ldots, \lambda_n)X(t)] \, dt + X(t-)dM(t)
\]

\[
X(0) = x_0,
\]

where \(\lambda_i \) is the depreciation rate of \(X_i \) and \(u \) is the vector of investments.

We observe that the system is asymptotically mean square stable if and only if \(\lambda_i > 0.5 \mathbb{E} \left[M(1)^2 \right] \) for all \(i = 1, \ldots, n \).

The output equation we consider is given by

\[
Y(t) = (1, \ldots, 1) \, X(t).
\]
We consider a company, which produces n goods. X_i represents the asset of the company corresponding to good i.

We assume that the vector of all assets satisfies

$$dX(t) = [u(t) - \text{diag}(\lambda_1, \ldots, \lambda_n)X(t)] \, dt + X(t-) \, dM(t)$$

$$X(0) = x_0,$$

where λ_i is the depreciation rate of X_i and u is the vector of investments.

We observe that the system is asymptotically mean square stable if and only if $\lambda_i > 0.5 \, \mathbb{E}[M(1)^2]$ for all $i = 1, \ldots, n$.

The output equation we consider is given by

$$Y(t) = (1, \ldots, 1) \, X(t).$$
Example

We consider a company, which produces \(n \) goods. \(X_i \) represents the asset of the company corresponding to good \(i \).

We assume that the vector of all assets satisfies

\[
dX(t) = [u(t) - \text{diag}(\lambda_1, \ldots, \lambda_n)X(t)] \, dt + X(t-)dM(t)
\]

\[
X(0) = x_0,
\]

where \(\lambda_i \) is the depreciation rate of \(X_i \) and \(u \) is the vector of investments.

We observe that the system is asymptotically mean square stable if and only if \(\lambda_i > 0.5 \, \mathbb{E} [M(1)^2] \) for all \(i = 1, \ldots, n \).

The output equation we consider is given by

\[
Y(t) = (1, \ldots, 1) \, X(t).
\]
Example

We consider a company, which produces \(n \) goods. \(X_i \) represents the asset of the company corresponding to good \(i \).

We assume that the vector of all assets satisfies

\[
dX(t) = [u(t) - \text{diag}(\lambda_1, \ldots, \lambda_n)X(t)] \, dt + X(t-)dM(t)
\]

\[
X(0) = x_0,
\]

where \(\lambda_i \) is the depreciation rate of \(X_i \) and \(u \) is the vector of investments.

We observe that the system is asymptotically mean square stable if and only if \(\lambda_i > 0.5 \, \mathbb{E} \left[M(1)^2 \right] \) for all \(i = 1, \ldots, n \).

The output equation we consider is given by

\[
Y(t) = (1, \ldots, 1) \, X(t).
\]
We assume that $n = 80$, $\mathbb{E}[M(1)^2] = 1$ and $\lambda_i \in (0.5, 1.5]$:

<table>
<thead>
<tr>
<th>Dimension of reduced order model</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>7.2277 $\cdot 10^{-6}$</td>
</tr>
<tr>
<td>20</td>
<td>7.2237 $\cdot 10^{-6}$</td>
</tr>
<tr>
<td>10</td>
<td>0.0026</td>
</tr>
<tr>
<td>5</td>
<td>0.3517</td>
</tr>
<tr>
<td>2</td>
<td>4.5929</td>
</tr>
</tbody>
</table>
Thank you for your attention!

References

