Perturbation theory for eigenvalues of Hermitian pencils

Christian Mehl
Institut für Mathematik
TU Berlin, Germany

9th Elgersburg Workshop

Elgersburg, March 3, 2014

joint work with Shreemayee Bora, Michael Karow, and Punit Sharma
Question: Why are eigenvalues of Hermitian pencils of interest in system theory?
Question: Why are eigenvalues of Hermitian pencils of interest in system theory?

Answer: Because Hermitian pencils are related to Hamiltonian matrices.
Why Hermitian pencils?

Question: Why are eigenvalues of Hermitian pencils of interest in system theory?

Answer: Because Hermitian pencils are related to Hamiltonian matrices.

A matrix $\mathcal{H} \in \mathbb{C}^{2n \times 2n}$ is called Hamiltonian if

$$\mathcal{H} = \begin{bmatrix} A & C \\ D & -A^* \end{bmatrix},$$

where $A, C, D \in \mathbb{C}^{n \times n}$ and where C, D are Hermitian.
Why Hermitian pencils?

Question: Why are eigenvalues of Hermitian pencils of interest in system theory?

Answer: Because Hermitian pencils are related to Hamiltonian matrices.

A matrix $\mathcal{H} \in \mathbb{C}^{2n \times 2n}$ is called **Hamiltonian** if

$$
\mathcal{H} = \begin{bmatrix}
A & C \\
D & -A^*
\end{bmatrix},
$$

where $A, C, D \in \mathbb{C}^{n \times n}$ and where C, D are Hermitian.

Observation: The spectrum of Hamiltonian matrices is symmetric with respect to the imaginary axis: if $\lambda \in \mathbb{C}$ is an eigenvalue of \mathcal{H}, then so is $-\bar{\lambda}$ with the same multiplicities.
The Linear Quadratic Optimal Control Problem: minimize the cost functional

\[
\int_0^\infty \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^T \begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} \, dt
\]

subject to the dynamics

\[
\dot{x} = Ax + Bu, \quad x(0) = x_0, \quad t \in [0, \infty),
\]

where \(x(t), x_0 \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, A, Q \in \mathbb{R}^{n \times n}, S \in \mathbb{R}^{n \times m}, R \in \mathbb{R}^{m \times m}, \)

\[
\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \geq 0, \quad R > 0.
\]

The solution can be obtained by solving the eigenvalue problem for the Hamiltonian matrix

\[
\mathcal{H} := \begin{bmatrix} A - BR^{-1}S^T & -BR^{-1}B^T \\ SR^{-1}S^T - Q & -A^T + SR^{-1}B^T \end{bmatrix}.
\]
Application 1: Optimal Control

More general problem: minimize the cost functional

\[
\int_0^\infty \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^T \begin{bmatrix} Q & S \\ ST & R \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} \, dt
\]

subject to the dynamics

\[
E\dot{x} = Ax + Bu, \quad x(0) = x_0, \quad t \in [0, \infty),
\]

where \(x(t), x_0 \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, E, A, Q \in \mathbb{R}^{n \times n}, S \in \mathbb{R}^{n \times m}, R \in \mathbb{R}^{m \times m},\)

\[
\begin{bmatrix} Q & S \\ ST & R \end{bmatrix} \succeq 0, \quad R \succeq 0.
\]

The solution can be obtained by solving the generalized eigenvalue problem for the matrix pencil of the form:
Application 1: Optimal Control

More general problem: minimize the cost functional

$$\int_0^\infty \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^T \begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} \, dt$$

subject to the dynamics

$$E \dot{x} = Ax + Bu, \quad x(0) = x_0, \quad t \in [0, \infty),$$

where $x(t), x_0 \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, E, A, Q \in \mathbb{R}^{n \times n}, S \in \mathbb{R}^{n \times m}, R \in \mathbb{R}^{m \times m}, \begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \succeq 0, \quad R \succeq 0.$

$$\lambda \mathcal{E} - \mathcal{A} := \lambda \begin{bmatrix} 0 & -E^* & 0 \\ E & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} Q & A^* & S \\ A & 0 & B \\ S^* & B^* & R \end{bmatrix}.$$
Observations: on the generalized eigenvalue problem:

\[\lambda E - A := \lambda \begin{bmatrix} 0 & -E^* & 0 \\ E & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} Q & A^* & S \\ A & 0 & B \\ S^* & B^* & R \end{bmatrix}. \]

- \(L(\lambda) := \lambda E - A \) is an **even matrix pencil**, that is, \(L(\lambda)^* = L(-\lambda) \).
- The eigenvalues of \(L(\lambda) \) are symmetric wrt the imaginary axis.
- \(L(i\lambda) = i\lambda E - A \) is a **Hermitian matrix pencil**.
- The eigenvalues of \(L(i\lambda) \) are symmetric wrt the real axis.
- If \(R \) is invertible, then the generalized eigenvalue problem can be reduced to the form

\[\lambda \begin{bmatrix} 0 & -E^* \\ E & 0 \end{bmatrix} - \begin{bmatrix} Q - SR^{-1}S^* & A^* - SR^{-1}B^* \\ A - BR^{-1}S^* & -BR^{-1}B^* \end{bmatrix}. \]
Application 2: Algebraic Riccati Equations

Algebraic Riccati Equation (ARE): find a solution $X \in \mathbb{C}^{n \times n}$ such that

$$D + XA + A^*X - XCY = 0,$$

where $A, C, D \in \mathbb{C}^{n \times n}$ and C, D are Hermitian.

The solution can be obtained by solving the eigenvalue problem for the **Hamiltonian matrix**

$$\mathcal{H} := \begin{bmatrix} A & C \\ D & -A^* \end{bmatrix}.$$

If the columns of

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \in \mathbb{C}^{2n \times n}$$

form a basis of an invariant subspace \mathcal{H} associated with the eigenvalues in the left half plane and if X_1 is invertible, then $X = X_2X_1^{-1}$ is a solution of the ARE such that $A + GX \subseteq \mathbb{C}^-$.

Application 2: gyroscopic systems

Gyroscopic systems: have the form

\[I \ddot{x} + G \dot{x} + K x = 0, \]

where \(G, K \in \mathbb{C}^n \) and where \(G = -G^* \) and \(K = K^* \).

Introducing the new variables \(y_1 = \dot{x} - \frac{1}{2} G x \) and \(y_2 = x \) this system can be reduced to the first order system

\[\dot{y} + \mathcal{H} y = 0 \]

with the **Hamiltonian matrix**

\[\mathcal{H} = \begin{bmatrix} \frac{1}{2} G & K + \frac{1}{4} G^2 \\ I_n & \frac{1}{2} G \end{bmatrix}. \]

Consequently, the gyroscopic system is stable if all eigenvalues of \(\mathcal{H} \) are on the imaginary axis and semisimple.
Experiment: Consider two Hamiltonian systems:

\[
\dot{x} = \mathcal{H}_1 x = \begin{bmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
\end{bmatrix} x, \quad \dot{y} = \mathcal{H}_2 y = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
\end{bmatrix} y.
\]

Observation: Both matrices have the semisimple eigenvalues \(+i\) and \(-i\) with algebraic multiplicity 2 each. Consequently both systems are **stable**.

Question: How do the matrices (Systems) behave under perturbations, i.e., what happens to the eigenvalues of

\[\mathcal{H}_1 + \Delta \mathcal{H}_1, \quad \mathcal{H}_2 + \Delta \mathcal{H}_2?\]
Result 1: Eigenvalue distribution of 1000 perturbations, when $\Delta \mathcal{H}_i$ was a random matrix of norm $\frac{1}{4}$.

The perturbed systems are not stable.
Result 2: Eigenvalue distribution of 1000 perturbations, when $\Delta \mathcal{H}_i$ was a random Hamiltonian matrix of norm $\frac{1}{4}$.

The second perturbed system remains stable, the first one typically not.
Why?

For the understanding, we need ...
Indefinite Linear Algebra

- name **Indefinite Linear Algebra** invented by Gohberg, Lancaster, Rodman in 2005;

- \(\pm H^* = H \in \mathbb{F}^{n \times n} \) invertible defines an **inner product** on \(\mathbb{F}^n \):

 \[
 [x, y]_H := y^* H x \quad \text{for all } x, y \in \mathbb{F}^n;
 \]

 Here, \(* \) either denotes the transpose \(T \) or the conjugate transpose \(* \);

<table>
<thead>
<tr>
<th>(H = H^*)</th>
<th>Hermitian sesquilinear form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H = -H^*)</td>
<td>skew-Hermitian sesquilinear form</td>
</tr>
<tr>
<td>(H = H^T)</td>
<td>symmetric bilinear form</td>
</tr>
<tr>
<td>(H = -H^T)</td>
<td>skew-symmetric bilinear form</td>
</tr>
</tbody>
</table>

- the inner product **may be indefinite** (needs not be positive definite).
The adjoint: For $X \in \mathbb{F}^{n \times n}$ let X^* be the matrix satisfying

$$[v, Xw]_H = [X^*v, w]_H \quad \text{for all } v, w \in \mathbb{F}^n.$$

We have $X^* = H^{-1}X^T H$ resp. $X^* = H^{-1}X^* H$.

Matrices with symmetries in indefinite inner products:

<table>
<thead>
<tr>
<th>A H-selfadjoint</th>
<th>adjoint</th>
<th>$y^T H x$</th>
<th>$y^* H x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A^* = A$</td>
<td>$A^T H = HA$</td>
<td>$A^* H = HA$</td>
<td></td>
</tr>
<tr>
<td>S H-skew-adjoint</td>
<td>$S^* = -S$</td>
<td>$S^T H = -HS$</td>
<td>$S^* H = -HS$</td>
</tr>
<tr>
<td>U H-unitary</td>
<td>$U^* = U^{-1}$</td>
<td>$U^T H U = H$</td>
<td>$U^* H U = H$</td>
</tr>
</tbody>
</table>
• A matrix $\mathcal{H} \in \mathbb{F}^{2n \times 2n}$ is Hamiltonian if and only if
\[\mathcal{H}^T J = -J \mathcal{H}, \quad \text{where } J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}. \]

• Hamiltonian matrices are skew-adjoint with respect to the skew-symmetric bilinear form induced by J.

<table>
<thead>
<tr>
<th>J-selfadjoint</th>
<th>$N^T J = JN$</th>
<th>skew-Hamiltonian</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-skew-adjoint</td>
<td>$H^T J = -JH$</td>
<td>Hamiltonian</td>
</tr>
<tr>
<td>J-unitary</td>
<td>$S^T JS = J$</td>
<td>symplectic</td>
</tr>
</tbody>
</table>

• **Symplectic matrices** occur in **discrete optimal control problems**.
“Hermitian matrix pencil \(\hat{=} \) \(H \)-selfadjoint matrix”:

Observation 1: \(A \in \mathbb{C}^{n \times n} \) is \(H \)-selfadjoint

\[\iff A^* H = H A \]

\[\iff (HA)^* = HA \]

Observation 2: If \(H \) is invertible:

\[Ax = \lambda x \]

\[\iff HAx = \lambda Hx \]

Conversely: If \(\lambda H - G \) is a Hermitian pencil (d.h. \(H = H^* \) and \(G = G^* \)) and if \(H \) is invertible, then \(A := H^{-1} G \) is \(H \)-selfadjoint:

\[A^* H = GH^{-1}H = G = HH^{-1}G = HA. \]
Why bother?

“Forget structure and use general methods”
Why bother?

“Forget structure and use general methods”

No! We prefer structure-preserving methods, because ...
Why bother?

“Forget structure and use general methods”

No! We prefer structure-preserving methods, because ...

• structure-preserving algorithms are often faster
“Forget structure and use general methods”

No! We prefer structure-preserving methods, because ...

• structure-preserving algorithms are often faster
• structure-preserving algorithms respect spectral symmetries
Why bother?

“Forget structure and use general methods”

No! We prefer structure-preserving methods, because ...

- structure-preserving algorithms are often faster
- structure-preserving algorithms respect spectral symmetries
- structure-preserving algorithms produce physically meaningful results
Why bother?

“Forget structure and use general methods”

No! We prefer structure-preserving methods, because ...

- structure-preserving algorithms are often faster
- structure-preserving algorithms respect spectral symmetries
- structure-preserving algorithms produce physically meaningful results
- perturbation theory is different if structure is preserved
Why bother?

“Forget structure and use general methods”

No! We prefer structure-preserving methods, because ...

- structure-preserving algorithms are often faster
- structure-preserving algorithms respect spectral symmetries
- structure-preserving algorithms produce physically meaningful results
- **perturbation theory is different if structure is preserved**
 - because some eigenvalues occur in pairs
Why bother?

“Forget structure and use general methods”

No! We prefer structure-preserving methods, because ...

- structure-preserving algorithms are often faster
- structure-preserving algorithms respect spectral symmetries
- structure-preserving algorithms produce physically meaningful results
- perturbation theory is different if structure is preserved
 - because some eigenvalues occur in pairs
 - because there is sign characteristic
“Forget structure and use general methods”

No! We prefer structure-preserving methods, because ...

- structure-preserving algorithms are often faster
- structure-preserving algorithms respect spectral symmetries
- structure-preserving algorithms produce physically meaningful results
- perturbation theory is different if structure is preserved
 - because some eigenvalues occur in pairs
 - because there is sign characteristic

What is sign characteristic?
Definite Linear Algebra: Any Hermitian matrix is unitarily diagonalizable and all its eigenvalues are real.

Indefinite Linear Algebra: Selfadjoint matrices with respect to indefinite inner products may have complex eigenvalues and need not be diagonalizable.

Example:

\[H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad A_1 = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \quad A_2 = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \]

\(A_1 \) and \(A_2 \) are \(H \)-selfadjoint, i.e., \(A_i^* H = HA_i \).
Transformations that preserve structure:

- for bilinear forms: \((H, A) \mapsto (P^T HP, P^{-1} AP), \quad P \text{ invertible};\)
- for sesquilinear forms: \((H, A) \mapsto (P^* HP, P^{-1} AP), \quad P \text{ invertible};\)

\[A \] is \(\begin{cases}
H\text{-selfadjoint} \\
H\text{-skew-adjoint} \\
H\text{-unitary}
\end{cases}\) \(\iff\) \(P^{-1} AP\) is \(\begin{cases}
P^* HP\text{-selfadjoint} \\
P^* HP\text{-skew-adjoint} \\
P^* HP\text{-unitary}
\end{cases}\)

Here \(P^* = P^T\) or \(P^* = P^*\), respectively.
Theorem (Gohberg, Lancaster, Rodman, 1983, Thompson, 1976)
Let $A \in \mathbb{C}^{n \times n}$ be H-selfadjoint. Then there exists $P \in \mathbb{C}^{n \times n}$ invertible such that

$$P^{-1}AP = A_1 \oplus \cdots \oplus A_k, \quad P^*HP = H_1 \oplus \cdots \oplus H_k,$$

where either

1) $A_i = J_{n_i}(\lambda)$, and $H_i = \varepsilon R_{n_i}$, where $\lambda \in \mathbb{R}$ and $\varepsilon = \pm 1$; or

2) $A_i = \begin{bmatrix} J_{n_i}(\mu) & 0 \\ 0 & J_{n_i}(\overline{\mu}) \end{bmatrix}$, $H_i = \begin{bmatrix} 0 & R_{n_i} \\ R_{n_i} & 0 \end{bmatrix}$, where $\mu \not\in \mathbb{R}$.

Here $J_m(\lambda) = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots \\ 0 & \cdots & \cdots & \lambda \end{bmatrix} \in \mathbb{C}^{m \times m}$ and $R_m = \begin{bmatrix} 0 & 1 \\ \vdots & \ddots \\ 1 \end{bmatrix} \in \mathbb{C}^{m \times m}$.
Canonical forms

There are similar results for H-skewadjoint and H-unitary matrices and for real or complex bilinear forms.

Spectral symmetries:

<table>
<thead>
<tr>
<th></th>
<th>$y^T H x$</th>
<th>$y^* H x$</th>
<th>$y^T H x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>field</td>
<td>$F = \mathbb{C}$</td>
<td>$F = \mathbb{C}$</td>
<td>$F = \mathbb{R}$</td>
</tr>
<tr>
<td>H-selfadjoints</td>
<td>λ</td>
<td>$\lambda, \bar{\lambda}$</td>
<td>$\lambda, \bar{\lambda}$</td>
</tr>
<tr>
<td>H-skew-adjoints</td>
<td>$\lambda, -\lambda$</td>
<td>$\lambda, -\bar{\lambda}$</td>
<td>$\lambda, -\lambda, \bar{\lambda}, -\bar{\lambda}$</td>
</tr>
<tr>
<td>H-unitaries</td>
<td>λ, λ^{-1}</td>
<td>$\lambda, \bar{\lambda}^{-1}$</td>
<td>$\lambda, \lambda^{-1}, \bar{\lambda}, \bar{\lambda}^{-1}$</td>
</tr>
</tbody>
</table>
Sign characteristic: There are additional invariants for real eigenvalues of H-selfadjoint matrices: signs $\varepsilon = \pm 1$.

Example:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad H_\varepsilon = \begin{bmatrix} \varepsilon & 0 \\ 0 & -1 \end{bmatrix}, \quad \varepsilon = \pm 1;$$

- There is no transformation $P^{-1}AP = A$, $P^*H_+P = H_-1$, because of Sylvester's Law of Inertia;

- each Jordan block associated with a real eigenvalue of A has a corresponding sign $\varepsilon \in \{+1, -1\}$;

- the collection of all the signs is called the **sign characteristic** of A;
The sign characteristic

Interpretation of the sign characteristic for simple eigenvalues:

- let \((\lambda, v)\) be an eigenpair of the selfadjoint matrix \(A\), where \(\lambda \in \mathbb{R}\):
 - let \(\varepsilon\) be the sign corresponding to \(\lambda\);
 - the inner product \([v, v]_H\) is positive if \(\varepsilon = +1\);
 - the inner product \([v, v]_H\) is negative if \(\varepsilon = -1\).

Analogously:

- purely imaginary eigenvalues of \(H\)-skew-adjoint matrices have signs;
- unimodular eigenvalues of \(H\)-unitary matrices have signs.
What happens under structured perturbations?

Example: symplectic matrices $S \in \mathbb{R}^{2n \times 2n};$

- consider a slightly perturbed matrix \tilde{S} that is still symplectic;

- the behavior of the unimodular eigenvalues under perturbation depends on the sign characteristic;

- if two unimodular eigenvalues meet, the behavior is different if the corresponding signs are opposite or equal.
What happens under structured perturbations?

- let S have two close **unimodular eigenvalues** with **opposite signs**;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;
What happens under structured perturbations?

- let S have two close **unimodular eigenvalues** with **opposite signs**;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;
What happens under structured perturbations?

- let S have two close **unimodular eigenvalues** with **opposite signs**;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;
• let S have two close **unimodular eigenvalues** with **opposite signs**;

• if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;
What happens under structured perturbations?

- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;
What happens under structured perturbations?

- let S have two close \textbf{unimodular eigenvalues} with \textbf{opposite signs};
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;
What happens under structured perturbations?

- let S have two close unimodular eigenvalues with opposite signs;
- if S is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;
What happens under structured perturbations?

- let \(S \) have two close unimodular eigenvalues with opposite signs;
- if \(S \) is perturbed and the two eigenvalues meet, they generically form a Jordan block; then they may split off as a pair of nonunimodular reciprocal eigenvalues;
What happens under structured perturbations?

- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they cannot form a Jordan block, and they must remain on the unit circle;
What happens under structured perturbations?

- let S have two close _unimodular eigenvalues_ with equal signs;
- if S is perturbed and the two eigenvalues meet, they _cannot_ form a Jordan block, and they _must_ remain on the unit circle;
What happens under structured perturbations?

- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they cannot form a Jordan block, and they must remain on the unit circle;
What happens under structured perturbations?

- let S have two close \textbf{unimodular eigenvalues} with \textbf{equal signs};
- if S is perturbed and the two eigenvalues meet, they \textit{cannot} form a Jordan block, and they \textit{must} remain on the unit circle;
What happens under structured perturbations?

- let S have two close unimodular eigenvalues with equal signs;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;
What happens under structured perturbations?

- let S have two close **unimodular eigenvalues** with **equal signs**;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;
What happens under structured perturbations?

- let S have two close **unimodular eigenvalues** with **equal signs**;
- if S is perturbed and the two eigenvalues meet, they **cannot** form a Jordan block, and they **must** remain on the unit circle;
What happens under structured perturbations?

- let S have two close **unimodular eigenvalues** with **equal signs**;
- if S is perturbed and the two eigenvalues meet, they *cannot* form a Jordan block, and they *must* remain on the unit circle;
Interesting observation revisited

Experiment: Consider two Hamiltonian systems:

\[
\dot{x} = \mathcal{H}_1 x = \begin{bmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{bmatrix} x,
\quad
\dot{y} = \mathcal{H}_2 y = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{bmatrix} y.
\]

Observation 1: Both matrices have the semisimple eigenvalues $+i$ and $-i$ with algebraic multiplicity 2 each. Consequently both systems are **stable**.

Observation 2: One can check:

- the sign characteristic of the eigenvalue i of \mathcal{H}_1 consists of mixed signs $+1$ and -1 (same story for $-i$);

- the sign characteristic of the eigenvalue i of \mathcal{H}_2 consists of identical signs $+1$ and $+1$ (similar story for $-i$: signs -1 and -1).
Interesting observation revisited

Result 2: Eigenvalue distribution of 1000 perturbations, when $\Delta \mathcal{H}_i$ was a random Hamiltonian matrix of norm $\frac{1}{4}$.

Left: mixed sign characteristic; Right: “definite” sign characteristic
Generalization to matrix pencils

<table>
<thead>
<tr>
<th>matrix case:</th>
<th>H-selfadjoint</th>
<th>H-skew-adjoint</th>
<th>H-unitary</th>
</tr>
</thead>
<tbody>
<tr>
<td>pencil case:</td>
<td>Hermitian</td>
<td>*-even</td>
<td>*-palindromic</td>
</tr>
<tr>
<td>pencil:</td>
<td>$\lambda G - H$</td>
<td>$\lambda K - H$</td>
<td>$\lambda A - A^*$</td>
</tr>
<tr>
<td>structure:</td>
<td>$G = G^$, $H = H^$</td>
<td>$K = -K^$, $H = H^$</td>
<td>$A \in \mathbb{C}^{n \times n}$</td>
</tr>
<tr>
<td>spectral symmetry:</td>
<td>$\lambda, \bar{\lambda}$</td>
<td>$\lambda, -\bar{\lambda}$</td>
<td>$\lambda, \bar{\lambda}^{-1}$</td>
</tr>
<tr>
<td>“critical curve”:</td>
<td>real line</td>
<td>imaginary line</td>
<td>unit circle</td>
</tr>
</tbody>
</table>

Sign characteristic:
eigenvalues on the “critical curve” will have signs $\varepsilon = \pm 1$.

Generalization to matrix polynomials possible.
Finally: The Task
• Consider a linear time-invariant control system

\[\dot{x} = Ax + Bu, \quad x(0) = 0, \]
\[y = Cx + Du, \]

• Assume \(\sigma(A) \subseteq \mathbb{C}^- \) and \(D \) is invertible.

• The system is called passive if the Hamiltonian matrix

\[H = \begin{bmatrix} F & G \\ H & -F^T \end{bmatrix} := \begin{bmatrix} A - BR^{-1}C & -BR^{-1}B^T \\ -C^T R^{-1}C & -(A - BR^{-1}C)^T \end{bmatrix} \]

has no pure imaginary eigenvalues, where \(R = D + D^T \).

• Often, an approximation \(\tilde{H} \) of \(H \) is computed and often in this approximation process the passivity is lost.

• **Aim**: modify \(\tilde{H} \) by a Hamiltonian small norm and small rank perturbation to a nearby Hamiltonian matrix having no pure imaginary eigenvalues.

• **Solved by Alam, Bora, Karow, Mehrmann, Moro 2010.**
The generalized problem

Task: find the smallest perturbation that moves eigenvalues on the critical curve of a structured matrix pencils off the critical curve.
The generalized problem

Task: find the smallest perturbation that moves eigenvalues on the critical curve of a structured matrix pencils off the critical curve.

- start with Hermitian pencils, i.e., move eigenvalues from the real line into the complex plane
The generalized problem

Task: find the smallest perturbation that moves eigenvalues on the critical curve of a structured matrix pencils off the critical curve.

- start with Hermitian pencils, i.e., move eigenvalues from the real line into the complex plane
- first step: find the smallest structured perturbation that makes \(\lambda \in \mathbb{C} \) an eigenvalue of a given Hermitian pencil \(A_1 + zA_2 \)
The generalized problem

Task: find the smallest perturbation that moves eigenvalues on the critical curve of a structured matrix pencils off the critical curve.

- start with Hermitian pencils, i.e., move eigenvalues from the real line into the complex plane
- first step: find the smallest structured perturbation that makes $\lambda \in \mathbb{C}$ an eigenvalue of a given Hermitian pencil $A_1 + zA_2$

Problem: Let $A_1, A_2 \in \mathbb{C}^{n \times n}$ be Hermitian and let $\lambda \in \mathbb{C}$. Calculate

$$\eta_S(A_1, A_2, \lambda) = \inf_{\Delta_1, \Delta_2 \in S} \left\{ \sqrt{\|\Delta_1\|^2 + \|\Delta_2\|^2} \mid \det ((A_1 - \Delta_1) + \lambda(A_2 - \Delta_2)) = 0 \right\}$$

and construct the corresponding Δ_1 and Δ_2 that attain the infimum.
Problem: Let $A_1, A_2 \in \mathbb{C}^{n \times n}$ be Hermitian and let $\lambda \in \mathbb{C}$. Calculate

$$\eta_S(A_1, A_2, \lambda) = \inf_{\Delta_1, \Delta_2 \in S} \left\{ \sqrt{\|\Delta_1\|^2 + \|\Delta_2\|^2} \mid \det ((A_1 - \Delta_1) + \lambda(A_2 - \Delta_2)) = 0 \right\}$$

and construct the corresponding Δ_1 and Δ_2 that attain the infimum.

We call $\eta_S(A_1, A_2, \lambda)$ the **structured backward error** of the Hermitian pencil $A_1 + zA_2$ with respect to λ and S.
The generalized problem

Case 1: \(S = \mathbb{C}^{n \times n} \) and \(\lambda \in \mathbb{C} \): easy!

\[
\eta(A_1, A_2, \lambda) = \frac{\sigma_{\min}(A_1 + \lambda A_2)}{\sqrt{1 + \lambda^2}},
\]

because

\[
\Delta_1(x) = \frac{1}{x^* x \sqrt{1 + \lambda^2}} (A_1 + \lambda A_2) x x^*, \quad \Delta_2(x) = \frac{\lambda}{x^* x \sqrt{1 + \lambda^2}} (A_1 + \lambda A_2) x x^*
\]

is the smallest perturbation that makes the pair \((\lambda, x)\) an eigenpair of the pencil and

\[
\eta(A_1, A_2, \lambda) = \min_{x \neq 0} \sqrt{\|\Delta_1(x)\|^2 + \|\Delta_2(x)\|^2}.
\]
The generalized problem

Case 1: $S = \mathbb{C}^{n \times n}$ and $\lambda \in \mathbb{C}$: easy!

$$\eta(A_1, A_2, \lambda) = \frac{\sigma_{\min}(A_1 + \lambda A_2)}{\sqrt{1 + \lambda^2}},$$

because

$$\Delta_1(x) = \frac{1}{x^*x\sqrt{1 + \lambda^2}}(A_1 + \lambda A_2)xx^*, \quad \Delta_2(x) = \frac{\lambda}{x^*x\sqrt{1 + \lambda^2}}(A_1 + \lambda A_2)xx^*$$

is the smallest perturbation that makes the pair (λ, x) an eigenpair of the pencil and

$$\eta(A_1, A_2, \lambda) = \min_{x \neq 0} \sqrt{\|\Delta_1(x)\|^2 + \|\Delta_2(x)\|^2}.$$

Case 2: $S = \text{Herm}(n)$ and $\lambda \in \mathbb{R}$: easy!

$$\eta(A_1, A_2, \lambda) = \frac{\sigma_{\min}(A_1 + \lambda A_2)}{\sqrt{1 + \lambda^2}},$$

because for $\lambda \in \mathbb{R}$ the above perturbations are Hermitian.
The generalized problem

Case 3: $S = \text{Herm}(n)$ and $\lambda \in \mathbb{C} \setminus \mathbb{R}$: difficult!

- Adhikari, Alam 2009: complicated formulas for the structured backward error of eigenpairs (λ, x) for Hermitian pencils, when $\lambda \notin \mathbb{R}$
- $\eta(A_1, A_2, \lambda)$ could be obtained by minimizing these formulas over all $x \in \mathbb{C}^n \setminus \{0\}$.
- This minimization problem is not feasible.

Consequence: We need a different strategy!
Reformulating the problem

\[
\begin{align*}
\det \left((A_1 - \Delta_1) + \lambda(A_2 - \Delta_2) \right) &= 0 \\
\iff (A_1 + \lambda A_2)x &= (\Delta_1 + \lambda \Delta_2)x \quad \text{for some } x \neq 0 \\
\iff x &= (A_1 + \lambda A_2)^{-1}(\Delta_1 + \lambda \Delta_2)x \\
\iff v_1 &= \Delta_1 M(v_1 + \lambda v_2) \quad \text{and} \quad v_2 = \Delta_2 M(v_1 + \lambda v_2)
\end{align*}
\]

abbreviating \(M := (A_1 + \lambda A_2)^{-1}, v_1 = \Delta_1 x, \) and \(v_2 = \Delta_2 x. \)

Consequence:

\[
\begin{align*}
\det \left((A_1 - \Delta_1) + \lambda(A_2 - \Delta_2) \right) &= 0 \\
\iff \text{there exist } v_1, v_2 \text{ satisfying } v_1 + \lambda v_2 \neq 0 \text{ and} \\
v_1 &= \Delta_1 M(v_1 + \lambda v_2) \quad \text{and} \quad v_2 = \Delta_2 M(v_1 + \lambda v_2)
\end{align*}
\]
Reformulating the problem

two structured mapping problems: for \(x = M(v_1 + \lambda v_2) \) and \(y = v_k \) find \(H = \Delta_k \in \text{Herm}(n) \) such that \(y = Hx \) for \(k = 1, 2 \).

Theorem (see Mackey, Mackey, Tisseur, 2008). Let \(x, y \in \mathbb{C}^n, x \neq 0 \). Then there exists a Hermitian matrix \(H \in \text{Herm}(n) \) such that \(Hx = y \) if and only if \(\text{Im} \left(x^*y \right) = 0 \). If the latter condition is satisfied then

\[
\min \left\{ \|H\| \mid H \in \text{Herm}(n), \ Hx = y \right\} = \frac{\|y\|}{\|x\|}
\]

and the minimum is attained for

\[
H_0 = \frac{\|y\|}{\|x\|} \left[\frac{y}{\|y\|} \ rac{x}{\|x\|} \right] \left[\frac{x^*y}{\|x\|\|y\|} \ 1 \right]^{-1} \left[\frac{y}{\|y\|} \ rac{x}{\|x\|} \right]^*.
\]

if \(x \) and \(y \) are linearly independent and for \(H_0 = \frac{yx^*}{x^*x} \) otherwise.
Reformulating the problem

We need \(v_1^*M(v_1 + \lambda v_2) \) and \(v_2^*M(v_1 + \lambda v_2) \) to be real.

This is equivalent to requiring that

\[
v^* H_1 v = 0 \quad \text{and} \quad v^* H_2 v = 0,
\]

where

\[
v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \quad H_1 = i \begin{bmatrix} M - M^* & \lambda M \\ \bar{\lambda}M^* & 0 \end{bmatrix}, \quad H_2 = i \begin{bmatrix} 0 & -M^* \\ M & \lambda M - \bar{\lambda}M^* \end{bmatrix}.
\]

Moreover, the minimal norm \(\| \Delta_1 \|^2 + \| \Delta_2 \|^2 \) for a pair \((\Delta_1, \Delta_2)\) satisfying \(v_1 = \Delta_1 M(v_1 + \lambda v_2) \) and \(v_2 = \Delta_2 M(v_1 + \lambda v_2) \) is given by

\[
\| \Delta_1 \|^2 + \| \Delta_2 \|^2 = \frac{v^*v}{v^*H_0v}, \quad \text{where} \quad H_0 = \begin{bmatrix} M^*M & \lambda M^*M \\ \bar{\lambda}M^*M & |\lambda|^2M^*M \end{bmatrix}.
\]
Reformulating the problem

Consequence:

\[
\eta(A_1, A_2, \lambda)^2 = \inf \left\{ \frac{v^*v}{v^*H_0v} \mid v \in \mathbb{C}^{2n}, v^*H_0v \neq 0, v^*H_1v = 0, v^*H_2v = 0 \right\}
\]

\[
= \sup \left\{ \frac{v^*H_0v}{v^*v} \mid v \in \mathbb{C}^{2n} \setminus \{0\}, v^*H_1v = 0, v^*H_2v = 0 \right\}^{-1}
\]

Idea: Compute the maximal eigenvalue \(\lambda_{\text{max}} \) of the matrix

\[
H_0 + t_1H_1 + t_2H_2
\]

and minimize this over \(t_1, t_2 \in \mathbb{R} \).
The main results

Theorem: Bora, Karow, M., Sharma, 2012. Let $H_0, H_1, H_2 \in \mathbb{C}^{n \times n}$ be Hermitian. Assume that H_0 is nonzero and positive semidefinite, and that any linear combination $\alpha_1 H_1 + \alpha_2 H_2$, $(\alpha_1, \alpha_2) \in \mathbb{R}^2 \setminus \{0\}$ is indefinite. (Here, “indefinite” is used in the sense “strictly not semi-definite”.) Then the following statements hold.

1. The function $L(t_1, t_2) := \lambda_{\text{max}}(H_0 + t_1 H_1 + t_2 H_2)$ has a minimum $\lambda^\ast_{\text{max}}$.

2. If the minimum $\lambda^\ast_{\text{max}}$ of $L(t_1, t_2)$ is attained at $(t_1^\ast, t_2^\ast) \in \mathbb{R}^2$, then there exists an associated eigenvector $w \in \mathbb{C}^n \setminus \{0\}$ of $H_0 + t_1^\ast H_1 + t_2^\ast H_2$ with

 $$w^* H_1 w = 0 = w^* H_2 w.$$

3. We have

 $$\lambda^\ast_{\text{max}} = \sup \left\{ \frac{w^* H_0 w}{w^* w} \mid w \neq 0, w^* H_1 w = 0, w^* H_2 w = 0 \right\} .$$

 In particular, the supremum is a maximum and attained for the eigenvector w from (2).
The main results

Theorem: Bora, Karow, M., Sharma, 2012. Let $A_1, A_2 \in \mathbb{C}^{n \times n}$ be Hermitian, $\lambda \in \mathbb{C} \setminus \mathbb{R}$, and Suppose $\det(A_1 + \lambda A_2) \neq 0$, and let $M = (A_1 + \lambda A_2)^{-1}$. Then

$$\eta(A_1, A_2, \lambda) = \left(\min_{t_1, t_2 \in \mathbb{R}} \lambda_{\max}(H_0 + t_1 H_1 + t_2 H_2) \right)^{-1/2},$$

where

$$H_0 = \begin{bmatrix} M^* M & \lambda M^* M \\ \bar{\lambda} M^* M & |\lambda|^2 M^* M \end{bmatrix}, \quad H_1 = i \begin{bmatrix} M - M^* & \lambda M \\ -\bar{\lambda} M^* & 0 \end{bmatrix},$$

$$H_2 = i \begin{bmatrix} 0 & -M^* \\ M & \lambda M - \bar{\lambda} M^* \end{bmatrix}.$$

Consequence: Distance problem solved, the corresponding perturbation can be constructed from the eigenvector w from the previous result.
Experiments:
Nr. 1 unstructured, structured
Nr. 2 unstructured, structured
Nr. 3 unstructured, structured
Nr. 4 unstructured, structured
Nr. 5 structured
Conclusions

- the effects of structured perturbations of Hermitian pencils (and other structured matrices and pencils) may be significantly different compared to unstructured perturbations

- **sign characteristic** is a crucial fact in the theory of structured perturbations;

- formulas for the structured backward error for Hermitian pencils are available;

- extension to matrix polynomials possible (involves minimization over more than two parameters).
Conclusions

• the effects of structured perturbations of Hermitian pencils (and other structured matrices and pencils) may be significantly different compared to unstructured perturbations

• **sign characteristic** is a crucial fact in the theory of structured perturbations;

• formulas for the structured backward error for Hermitian pencils are available;

• extension to matrix polynomials possible (involves minimization over more than two parameters).

Thank you for your attention!