Linear Matrix Inequalities in Control

Carsten Scherer and Siep Weiland

7th Elgersburg School on Mathematical Systems Theory

Class 1

Outline of Part I

Course organization

Course topics

- Facts from convex analysis.
 LMI’s: history, algorithms and software.
- The role of LMI’s in dissipativity
 Stability and nominal performance. Analysis results.
- From analysis to synthesis.
 State-feedback, estimation and output-feedback synthesis.
- From nominal to robust stability, robust performance and robust synthesis.
- IQC’s and multipliers.
 Relations to classical tests and to \(\mu \)-theory.
- Mixed control problems and parameter-varying systems and control design.
Software Issues

Install Yalmip
- Modelling language for solving convex optimization problems
- Consistent with Matlab; free (!)
- Efficient to implement algorithms
- Developed by Johan Löfberg

Install SDP solver
- Small till medium size LP and QP problems: SeDuMi or SPDT3
- High level LP and QP problems: GUROBI
- Generic package for academic use: MOSEK
- Many more commercial and non-commercial solvers . . .

Outline of Part II
- What to expect?
- Convex sets and convex functions
 - Convex sets
 - Convex functions
- Why is convexity important?
 - Examples
 - Ellipsoidal algorithm
 - Duality and convex programs
- Linear Matrix Inequalities
 - Definitions
 - LMI’s and convexity
 - LMI’s in control
- A design example

Outline
- What to expect?
- Convex sets and convex functions
 - Convex sets
 - Convex functions
- Why is convexity important?
 - Examples
 - Ellipsoidal algorithm
 - Duality and convex programs
- Linear Matrix Inequalities
 - Definitions
 - LMI’s and convexity
 - LMI’s in control
- A design example
Merging control and optimization

Classical optimal control paradigm (LQG, H_2, H_∞, L_1, MPC) is restricted:

- Performance specs in terms of complete closed loop transfer matrix.
- One measure of performance only. Often multiple specs have been imposed for controlled system.
- Cannot incorporate structured time-varying/nonlinear uncertainties.
- Can only design LTI controllers.
- Can only synthesize one controller in one architecture.

Control vs. optimization

View control input and/or feedback controller as decision variable of optimization problem. Desired specifications are imposed as constraints on controlled system.

Outline

1. What to expect?
2. Convex sets and convex functions
 - Convex sets
 - Convex functions
3. Why is convexity important?
 - Examples
 - Ellipsoidal algorithm
 - Duality and convex programs
4. Linear Matrix Inequalities
 - Definitions
 - LMI’s and convexity
 - LMI’s in control
5. A design example

Major goals for control and optimization

- Distinguish easy from difficult problems. (Convexity is key!)
- What are consequences of convexity in optimization?
- What is robust optimization?
- How to check robust stability by convex optimization?
- Which performance measures can be dealt with?
- How can controller synthesis be convexified?
- What are limits for the synthesis of robust controllers?
- How can we perform systematic gain scheduling?

Optimization problems

Casting optimization problems in mathematics requires

- \mathcal{X}: decision set
- $\mathcal{S} \subseteq \mathcal{X}$: feasible decisions
- $f : \mathcal{S} \rightarrow \mathbb{R}$: cost function

f assigns to each decision $x \in \mathcal{S}$ a cost $f(x) \in \mathbb{R}$.

Wish to select the decision $x \in \mathcal{S}$ that minimizes the cost $f(x)$.
Optimization problems

1. What is least possible cost? Compute optimal value
 \[f_{\text{opt}} := \inf_{x \in S} f(x) = \inf \{ f(x) \mid x \in S \} \geq -\infty \]

 Convention: \(S = \emptyset \) then \(f_{\text{opt}} = +\infty \)

 Convention: If \(f_{\text{opt}} = -\infty \) then problem is said to be unbounded

2. How to determine almost optimal solutions? For arbitrary \(x \in S \) with \(f_{\text{opt}} \leq f(x) \leq f_{\text{opt}} + \varepsilon \).

3. Is there an optimal solution (or minimizer)? Does there exist \(x_{\text{opt}} \in S \) with \(f_{\text{opt}} = f(x_{\text{opt}}) \).

 We write: \(f(x_{\text{opt}}) = \min_{x \in S} f(x) \)

4. Can we calculate all optimal solutions? (Non)-uniqueness
 \[\arg \min f(x) := \{ x \in S \mid f_{\text{opt}} = f(x) \} \]

Recap: infimum and minimum of functions

Infimum of a function

Any \(f : S \to \mathbb{R} \) has infimum \(L \in \mathbb{R} \cup \{-\infty\} \) denoted as \(\inf_{x \in S} f(x) \). It is defined by the properties

- \(L \leq f(x) \) for all \(x \in S \)
- \(L \) finite: for all \(\varepsilon > 0 \) exists \(x \in S \) with \(f(x) < L + \varepsilon \)
- \(L \) infinite: for all \(\varepsilon > 0 \) there exist \(x \in S \) with \(f(x) < -1/\varepsilon \)

Minimum of a function

If exists \(x_0 \in S \) with \(f(x_0) = \inf_{x \in S} f(x) \) we say that \(f \) attains its minimum on \(S \) and write \(L = \min_{x \in S} f(x) \).

If exists, the minimum is uniquely defined by the properties

- \(L \leq f(x) \) for all \(x \in S \)
- There exists some \(x_0 \in S \) with \(f(x_0) = L \)

A classical result

Theorem (Weierstrass)

If \(f : S \to \mathbb{R} \) is continuous and \(S \) is a compact subset of the normed linear space \(\mathcal{X} \), then there exists \(x_{\text{min}}, x_{\text{max}} \in S \) such that for all \(x \in S \)

\[\inf_{x \in S} f(x) = f(x_{\text{min}}) \leq f(x) \leq f(x_{\text{max}}) = \sup_{x \in S} f(x) \]

Comments:
- Answers problem 3 for “special” \(S \) and \(f \)
- No clue on how to find \(x_{\text{min}}, x_{\text{max}} \)
- No answer to uniqueness issue
- \(S \) compact if for every sequence \(x_n \in S \) a subsequence \(x_{n_m} \) exists which converges to a point \(x \in S \)
- Continuity and compactness overly restrictive!
Examples of convex sets

Convex sets

Non-convex sets

Basic properties of convex sets

Theorem
Let S and T be convex. Then
- $\alpha S := \{ x \mid x = \alpha s, s \in S \}$ is convex
- $S + T := \{ x \mid x = s + t, s \in S, t \in T \}$ is convex
- closure of S and interior of S are convex
- $S \cap T := \{ x \mid x \in S \text{ and } x \in T \}$ is convex.

Examples of convex sets

• With $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$, the hyperplane
 $$\mathcal{H} = \{ x \in \mathbb{R}^n \mid a^T x = b \}$$
and the half-space
 $$\mathcal{H}_- = \{ x \in \mathbb{R}^n \mid a^T x \leq b \}$$
are convex.

• The intersection of finitely many hyperplanes and half-spaces is a polyhedron. Any polyhedron is convex and can be described as
 $$\{ x \in \mathbb{R}^n \mid Ax \leq b, Dx = e \}$$
for suitable matrices A and D and vectors b, e.

• A compact polyhedron is a polytope.

Examples of convex sets

The convex hull

Definition
The convex hull of a set $S \subseteq \mathcal{X}$ is
$$\text{conv}(S) := \cap \{ T \mid T \text{ is convex and } S \subseteq T \}$$

• $\text{conv}(S)$ is convex for any set S
• $\text{conv}(S)$ is set of all convex combinations of points of S
• The convex hull of finitely many points $\text{conv}(x_1, \ldots, x_n)$ is a polytope. Moreover, any polytope can be represented in this way!!

Latter property allows explicit representation of polytopes. For example $\{ x \in \mathbb{R}^n \mid a \leq x \leq b \}$ consists of $2n$ inequalities and requires 2^n generators for its representation as convex hull!
Convex functions

Definition

A function $f : S \to \mathbb{R}$ is convex if

- S is convex and
- for all $x_1, x_2 \in S$, $\alpha \in (0, 1)$ there holds

 $$f(\alpha x_1 + (1 - \alpha) x_2) \leq \alpha f(x_1) + (1 - \alpha) f(x_2)$$

We have

$$f : S \to \mathbb{R} \text{ convex } \implies \{ x \in S | f(x) \leq \gamma \} \text{ convex for all } \gamma \in \mathbb{R}$$

Derives convex sets from convex functions

- Converse \iff is not true!
- f is strictly convex if $<$ instead of \leq

Examples of convex functions

- $f(x) = ax^2 + bx + c$ convex if $a > 0$
- $f(x) = |x|$
- $f(x) = \| x \|$
- $f(x) = \sin x$ on $[\pi, 2\pi]$

Non-convex functions

- $f(x) = x^3$ on \mathbb{R}
- $f(x) = -|x|$
- $f(x) = \sqrt{x}$ on \mathbb{R}_+
- $f(x) = \sin x$ on $[0, \pi]$

Recap: Hermitian and symmetric matrices

Definition

For a real or complex matrix A the inequality $A < 0$ means that A is Hermitian and negative definite.

- A is Hermitian if $A = A^*$ or $A = A^T$. If A is real this amounts to $A = A^T$ and we call A symmetric.
- All eigenvalues of Hermitian and symmetric matrices are real.
- By definition a Hermitian matrix A is negative definite if

 $$u^* Au < 0 \quad \text{for all complex vectors } u \neq 0$$

A is negative definite if and only if all its eigenvalues are negative.
- $A \preceq B$, $A \succeq B$ and $A \succ B$ defined and characterized analogously.

Convex matrix-valued functions

An interesting generalization:

- Define \mathbb{H} and \mathbb{S} to be the sets of Hermitian and Symmetric matrices, i.e., sets of square matrices A for which

 $$A = A^* \quad \text{or} \quad A = A^T$$

- Define partial ordering on \mathbb{H} and \mathbb{S}

 $$A_1 \prec A_2, \quad A_1 \preceq A_2, \quad A_1 \succeq A_2, \quad A_1 \succ A_2$$

by requiring $x^*(A_1 - A_2)x$ to be negative, non-positive, positive or non-positive for all $x \neq 0$.

Definition

A matrix-valued function $F : S \to \mathbb{H}$ is convex if S is a convex set and

$$F(\alpha x_1 + (1 - \alpha) x_2) \preceq \alpha F(x_1) + (1 - \alpha) F(x_2)$$

for any $x_1, x_2 \in S$ and $0 < \alpha < 1$.
Affine sets

Definition
A subset S of a linear vector space is **affine** if $x = \alpha x_1 + (1 - \alpha) x_2$ belongs to S for every $x_1, x_2 \in S$ and $\alpha \in \mathbb{R}$.

- Geometric idea: line through any two points belongs to set
- Every affine set is convex
- S affine if and only if there exists x_0 such that $S = \{ x | x = x_0 + m, \ m \in M \}$
 with M a linear subspace

Affine functions

Definition
A function $f : S \to T$ is **affine** if

$$f(\alpha x_1 + (1 - \alpha) x_2) = \alpha f(x_1) + (1 - \alpha) f(x_2)$$

for all $x_1, x_2 \in S$ and for all $\alpha \in \mathbb{R}$.

Theorem
If S and T are finite dimensional, then $f : S \to T$ is affine if and only if

$$f(x) = f_0 + T(x)$$

where $f_0 \in T$ and $T : S \to T$ a linear map (a matrix).

Cones and convexity

Definition
A **convex cone** is a set $K \subset \mathbb{R}^n$ with the property that

$$x_1, x_2 \in K \implies \alpha_1 x_1 + \alpha_2 x_2 \in K \quad \text{for all } \alpha_1, \alpha_2 \geq 0.$$

- Since $x_1, x_2 \in K$ implies $\alpha x_1 + (1 - \alpha) x_2 \in K$ for all $\alpha \in (0, 1)$ a convex cone is convex.
- If $S \subset \chi$ is an arbitrary set, then

$$K := \{ y \in \mathbb{R}^n \mid \langle x, y \rangle \geq 0 \text{ for all } x \in S \}$$

is a cone. Also denoted $K = S^*$ and called **dual cone** of S.

- Cones are unbounded sets.
- If K_1 and K_2 are convex cones, then so are

$$\alpha K_1, K_1 \cap K_2, K_1 + K_2$$

for any $\alpha \in \mathbb{R}$.
- The intersection of a cone with a hyperplane is a **conic section**.
Why is convexity interesting ???

Reason 1: absence of local minima

Definition

\[f : S \rightarrow \mathbb{R} \] Then \(x_0 \in S \) is a

- local minimum if \(\exists \varepsilon > 0 \) such that
 \[f(x_0) \leq f(x) \quad \text{for all } x \in S \text{ with } ||x - x_0|| \leq \varepsilon \]
- global minimum if \(f(x_0) \leq f(x) \) for all \(x \in S \)

Theorem

If \(f : S \rightarrow \mathbb{R} \) is convex then every local minimum \(x_0 \) is a global minimum of \(f \). If \(f \) is strictly convex, then the global minimum \(x_0 \) is unique.

Reason 2: uniform bounds

Theorem

Suppose \(S = \text{conv}(S_0) \) and \(f : S \rightarrow \mathbb{R} \) is convex. Then equivalent are:

- \(f(x) \leq \gamma \) for all \(x \in S \)
- \(f(x) \leq \gamma \) for all \(x \in S_0 \)

Very interesting if \(S_0 \) consists of finite number of points, i.e, \(S_0 = \{x_1, \ldots, x_n\} \). A finite test!!

Reason 3: subgradients

Definition

A vector \(g = g(x_0) \in \mathbb{R}^n \) is a subgradient of \(f \) at \(x_0 \) if

\[f(x) \geq f(x_0) + \langle g, x - x_0 \rangle \]

for all \(x \in S \)

Geometric idea: graph of affine function \(x \mapsto f(x_0) + \langle g, x - x_0 \rangle \) tangent to graph of \(f \) at \((x_0, f(x_0)) \).

Theorem

A convex function \(f : S \rightarrow \mathbb{R} \) has a subgradient at every interior point \(x_0 \) of \(S \).
Examples and properties of subgradients

- If \(f \) differentiable, then \(g = g(x_0) = \nabla f(x_0) \) is subgradient.
 So, for differentiable functions every gradient is a subgradient.

- The non-differentiable function \(f(x) = |x| \) has any real number \(g \in [-1,1] \) as its subgradient at \(x_0 = 0 \).

- \(f(x_0) \) is global minimum of \(f \) if and only if \(0 \) is subgradient of \(f \) at \(x_0 \).

- Since \(\langle g, x - x_0 \rangle > 0 = \Rightarrow f(x) > f(x_0) \),
 all points in half space \(H := \{ x \mid \langle g, x - x_0 \rangle \leq 0 \} \) can be discarded in searching for minimum of \(f \).

 Used explicitly in ellipsoidal algorithm

Ellipsoidal algorithm

Aim: Minimize convex function \(f : \mathbb{R}^n \to \mathbb{R} \)

- **Step 0** Let \(x_0 \in \mathbb{R}^n \) and \(P_0 > 0 \) such that all minimizers of \(f \) are located in the ellipsoid
 \(\mathcal{E}_0 := \{ x \in \mathbb{R}^n \mid (x - x_0)^T P_0^{-1} (x - x_0) \leq 1 \} \).

 Set \(k = 0 \).

- **Step 1** Compute a subgradient \(g_k \) of \(f \) at \(x_k \). If \(g_k = 0 \) then stop,
 otherwise proceed to Step 2.

- **Step 2** All minimizers are contained in
 \(\mathcal{H}_k := \mathcal{E}_k \cap \{ x \mid \langle g_k, x - x_k \rangle \leq 0 \} \).

- **Step 3** Compute \(x_{k+1} \in \mathbb{R}^n \) and \(P_{k+1} > 0 \) with minimal determinant \(\det P_{k+1} \) such that
 \(\mathcal{E}_{k+1} := \{ x \in \mathbb{R}^n \mid (x - x_{k+1})^T P_{k+1}^{-1} (x - x_{k+1}) \leq 1 \} \)
 contains \(\mathcal{H}_k \).

- **Step 4** Set \(k \) to \(k + 1 \) and return to Step 1.

Remarks on ellipsoidal algorithm:

- Convergence \(f(x_k) \to \inf_x f(x) \).

- Exist explicit equations for \(x_k, P_k, \mathcal{E}_k \) such that volume of \(\mathcal{E}_k \) decreases with factor \(e^{-1/2n} \) at each step.
 (See lecture notes).

- Simple, robust, reliable, easy to implement, but slow convergence.

Why is convexity interesting ???

Reason 4: Duality and convex programs

Set of feasible decisions often described by equality and inequality constraints:

\[
S = \{ x \in X \mid g_k(x) \leq 0, \ k = 1, \ldots, K, \ h_\ell(x) = 0, \ \ell = 1, \ldots, L \}
\]

Primal optimization:

\[
P_{\text{opt}} = \inf_{x \in S} f(x)
\]

- One of index sets \(K \) or \(L \) infinite: semi-infinite optimization

- Both index sets \(K \) and \(L \) finite: nonlinear program
Why is convexity interesting ??

- Examples: saturation constraints, safety margins, constitutive and balance equations all assume form \(S = \{ x \mid g(x) \leq 0, h(x) = 0 \} \).
- semi-definite program:

 \[
 \text{minimize } f(x) \text{ subject to } g(x) \leq 0, h(x) = 0
 \]

 \(f, g \) and \(h \) affine.
- quadratic program:

 \[
 \text{minimize } x^\top Q x + 2s^\top x + r \text{ subject to } g(x) \leq 0, h(x) = 0
 \]

 with \(g \) and \(h \) affine.
- quadratically constraint quadratic program:

 \[
 f(x) = x^\top Q x + 2s^\top x + r, g_j(x) = x^\top Q_j x + 2s_j^\top x + r_j, h(x) = h_0 + H x
 \]

 Carsten Scherer and Siep Weiland (Elgersburg)
 Linear Matrix Inequalities in Control
 Class 1 37 / 65

Upper and lower bounds for convex programs

Primal optimization problem

\[
P_{\text{opt}} = \inf_{x \in \mathcal{X}} f(x) \quad \text{subject to } g(x) \leq 0, h(x) = 0
\]

Can we obtain bounds on optimal value \(P_{\text{opt}} \)?

- Upper bound on optimal value

 For any \(x_0 \in S \) we have

 \[
P_{\text{opt}} \leq f(x_0)
 \]

 which defines an upper bound on \(P_{\text{opt}} \).

- Lower bound on optimal value

 Let \(x \in S \). Then for arbitrary \(y \succeq 0 \) and \(z \) we have

 \[
 L(x, y, z) := f(x) + (y, g(x)) + (z, h(x)) \leq f(x)
 \]

 and, in particular,

 \[
 \ell(y, z) := \inf_{x \in \mathcal{X}} L(x, y, z) \leq \inf_{x \in S} L(x, y, z) \leq \inf_{x \in S} f(x) = P_{\text{opt}}.
 \]

 so that

 \[
 D_{\text{opt}} := \sup_{y \succeq 0, z} \ell(y, z) = \sup_{y \succeq 0, z} \inf_{x \in \mathcal{X}} L(x, y, z) \leq P_{\text{opt}}
 \]

 defines a lower bound for \(P_{\text{opt}} \).

Carsten Scherer and Siep Weiland (Elgersburg)
Linear Matrix Inequalities in Control
Class 1 38 / 65

Duality and convex programs

Some terminology:

- Lagrange function: \(L(x, y, z) \)
- Lagrange dual cost: \(\ell(y, z) \)
- Lagrange dual optimization problem:

 \[
 D_{\text{opt}} := \sup_{y \succeq 0, z} \ell(y, z)
 \]

 Remarks:

 - \(\ell(y, z) \) computed by solving an unconstrained optimization problem. Is concave function.
 - Dual problem is concave maximization problem. Constraints are simpler than in primal problem
 - Main question: when is \(D_{\text{opt}} = P_{\text{opt}} \)?

Carsten Scherer and Siep Weiland (Elgersburg)
Linear Matrix Inequalities in Control
Class 1 40 / 65
Example of duality

- **Primal Linear Program**
 \[P_{\text{opt}} = \inf_x c^T x \]
 subject to \(x \geq 0, b - Ax = 0 \)

 Lagrange dual cost
 \[\ell(y, z) = \inf_x c^T x - y^T x + z^T (b - Ax) \]
 \[= \begin{cases}
 b^T z & \text{if } c - A^T z - y = 0 \\
 -\infty & \text{otherwise}
 \end{cases} \]

- **Dual Linear Program**
 \[D_{\text{opt}} = \sup_z b^T z \]
 subject to \(y = c - A^T z \geq 0 \)

Karush-Kuhn-Tucker and duality

Theorem (Karush-Kuhn-Tucker)
If \((g, h)\) satisfies the constraint qualification, then we have strong duality:
\[D_{\text{opt}} = P_{\text{opt}}. \]

There exist \(y_{\text{opt}} \succeq 0 \) and \(z_{\text{opt}} \), such that \(D_{\text{opt}} = \ell(y_{\text{opt}}, z_{\text{opt}}) \).
Moreover, \(x_{\text{opt}} \) is an optimal solution of the primal optimization problem and \((y_{\text{opt}}, z_{\text{opt}})\) is an optimal solution of the dual optimization problem, if and only if
1. \(g(x_{\text{opt}}) \leq 0, h(x_{\text{opt}}) = 0 \),
2. \(y_{\text{opt}} \succeq 0 \) and \(x_{\text{opt}} \) minimizes \(L(x, y_{\text{opt}}, z_{\text{opt}}) \) over all \(x \in X \) and
3. \(\langle y_{\text{opt}}, g(x_{\text{opt}}) \rangle = 0 \).

Karush-Kuhn-Tucker and duality

Definition
Suppose \(f, g \) convex and \(h \) affine. \((g, h)\) satisfy the constraint qualification if \(\exists x_0 \) in the interior of \(X \) with \(g(x_0) \preceq 0, h(x_0) = 0 \) such that \(g_j(x_0) < 0 \) for all component functions \(g_j \) that are not affine.

Example: \((g, h)\) satisfies constraint qualification if \(g \) and \(h \) are affine.

Remarks:
- Very general result, strong tool in convex optimization
- Dual problem simpler to solve, \((y_{\text{opt}}, z_{\text{opt}})\) called Kuhn-Tucker point.
- The triple \((x_{\text{opt}}, y_{\text{opt}}, z_{\text{opt}})\) exist if and only if it defines a saddle point of the Lagrangian \(L \) in that
 \[L(x_{\text{opt}}, y, z) \leq L(x_{\text{opt}}, y_{\text{opt}}, z_{\text{opt}}) \leq L(x, y_{\text{opt}}, z_{\text{opt}}) \]
 \[= P_{\text{opt}} = D_{\text{opt}} \]
 for all \(x, y \succeq 0 \) and \(z \).
Outline

1. What to expect?
2. Convex sets and convex functions
 - Convex sets
 - Convex functions
3. Why is convexity important?
 - Examples
 - Ellipsoidal algorithm
 - Duality and convex programs
4. Linear Matrix Inequalities
 - Definitions
 - LMI's and convexity
 - LMI's in control
5. A design example

Linear Matrix Inequalities

Definition

A linear matrix inequality (LMI) is an expression

\[F(x) = F_0 + x_1 F_1 + \ldots + x_n F_n < 0 \]

where

- \(x = \text{col}(x_1, \ldots, x_n) \) is a vector of real decision variables,
- \(F_i = F_i^T \) are real symmetric matrices and
- \(\prec 0 \) means negative definite, i.e.,

\[F(x) \prec 0 \iff u^T F(x) u < 0 \text{ for all } u \neq 0 \]
\[\iff \text{all eigenvalues of } F(x) \text{ are negative} \]
\[\iff \lambda_{\max}(F(x)) < 0 \]

- \(F \) is affine function of decision variables

Simple examples of LMI’s

- \(1 + x < 0 \)
- \(1 + x_1 + 2x_2 < 0 \)
- \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + x_1 \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} + x_2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} < 0. \)

All the same with \(\succ 0, \preceq 0 \) and \(\succeq 0 \).

Only very simple cases can be treated analytically.

Need to resort to numerical techniques!

Main LMI problems

1. **LMI feasibility problem**: Test whether there exists \(x_1, \ldots, x_n \) such that \(F(x) < 0 \).
2. **LMI optimization problem**: Minimize \(f(x) \) over all \(x \) for which the LMI \(F(x) < 0 \) is satisfied.

How is this solved?

\(F(x) < 0 \) is feasible iff \(\min_x \lambda_{\max}(F(x)) < 0 \) and therefore involves minimizing the function

\[x \mapsto \lambda_{\max}(F(x)) \]

- Possible because this function is convex!
- There exist efficient algorithms (Interior point, ellipsoid).
Why are LMI’s interesting?

Reason 1: LMI’s define convex constraints on x, i.e., $S := \{ x \mid F(x) \prec 0 \}$ is convex.

Indeed, $F(\alpha x_1 + (1 - \alpha)x_2) = \alpha F(x_1) + (1 - \alpha)F(x_2) \prec 0$.

Reason 2: Solution set of multiple LMI’s

\[F_1(x) \prec 0, \ldots, F_k(x) \prec 0 \]

is convex and representable as one single LMI

\[F(x) = \begin{pmatrix} F_1(x) & 0 & \cdots & 0 \\ 0 & \ddots & \cdots & 0 \\ 0 & \cdots & 0 & F_k(x) \end{pmatrix} \prec 0 \]

Allows to combine LMI’s!

Reason 3: Incorporate affine constraints such as $F(x) \prec 0$ and $Ax = b$

$F(x) \prec 0$ and $x = Ay + b$ for some y

$F(x) \prec 0$ and $x \in S$ with S an affine set.

Reason 4: Conversion nonlinear constraints to linear ones

Theorem (Schur complement)

Let F be an affine function with

\[F(x) = \begin{pmatrix} F_{11}(x) & F_{12}(x) \\ F_{21}(x) & F_{22}(x) \end{pmatrix}, \quad F_{11}(x) \text{ is square.} \]

Then

\[F(x) \prec 0 \iff \begin{cases} F_{11}(x) \prec 0 \\ F_{22}(x) - F_{21}(x) [F_{11}(x)]^{-1} F_{12}(x) \prec 0. \end{cases} \]

\[\iff \begin{cases} F_{22}(x) \prec 0 \\ F_{11}(x) - F_{12}(x) [F_{22}(x)]^{-1} F_{21}(x) \prec 0. \end{cases} \]
First examples in control

Example 1: Stability
Consider autonomous system
\[\dot{x} = Ax. \]
Verify stability through feasibility. We have:
\[\dot{x} = Ax \text{ asymptotically stable} \iff \left(-X \atop 0 \right) \left(-X \atop 0 \right) + A^\top X + XA < 0 \text{ feasible} \]
Here \(X = X^\top \) defines a Lyapunov function
\[V(x) := x^\top X x \]
for the flow \(\dot{x} = Ax \).

Example 2: Joint stabilization
Given \((A_1, B_1), \ldots, (A_k, B_k) \), find \(F \) such that \((A_1 + B_1 F), \ldots, (A_k + B_k F) \) are asymptotically stable.
Equivalent to finding \(F, X_1, \ldots, X_k \) such that for \(j = 1, \ldots, k \):
\[\left(-X_j \atop 0 \right) \left(-X_j \atop 0 \right) + X_j (A_j + B_j F) \left(-X_j \atop 0 \right) + X_j (A_j + B_j F)^\top < 0 \]
Sufficient condition: \(X = X_1 = \ldots = X_k, K = FX \), yields
\[\left(-X \atop 0 \right) \left(-X \atop 0 \right) + A_j X + X A_j^\top + B_j K + K^\top B_j^\top < 0 \text{ an LMI!!} \]
Set feedback \(F = KX^{-1} \).

Example 3: Eigenvalue problem
Given \(F : \mathbb{V} \to \mathbb{S} \) affine, minimize over all \(x \)
\[f(x) = \lambda_{\max}(F(x)). \]
Observe that, with \(\gamma > 0 \), and using Schur complement:
\[\lambda_{\max}(F(x)F(x)) < \gamma^2 \iff \frac{1}{\gamma} F(x)F(x) - \gamma I \prec 0 \iff \left(\begin{array}{cc} -\gamma I & F(x) \\ F(x)^\top & -\gamma I \end{array} \right) < 0 \]
We can define
\[y := \begin{pmatrix} x \\ \gamma \end{pmatrix}; \quad G(y) := \begin{pmatrix} -\gamma I & F(x) \\ F(x)^\top & -\gamma I \end{pmatrix}; \quad g(y) := \gamma \]
then \(G \) is affine in \(y \) and \(\min_x f(x) = \min_{y, \gamma > 0} g(y) \). This is a LP!
Truss topology design

Problem features:
- Connect nodes by N bars of length $\ell = \text{col}(\ell_1, \ldots, \ell_N)$ (fixed) and cross sections $s = \text{col}(s_1, \ldots, s_N)$ (to be designed).
- Impose bounds on cross sections $a_k \leq s_k \leq b_k$ and total volume $\ell^T s \leq v$ (and hence an upperbound on total weight of the truss).
- Let $a = \text{col}(a_1, \ldots, a_N)$ and $b = \text{col}(b_1, \ldots, b_N)$.
- Distinguish fixed and free nodes.
- Apply external forces $f = \text{col}(f_1, \ldots, f_M)$ to some free nodes. These result in a node displacements $d = \text{col}(d_1, \ldots, d_M)$.

Mechanical model defines relation $A(s)d = f$ where $A(s) \succ 0$ is the stiffness matrix which depends linearly on s.

Goal:

Maximize stiffness or, equivalently, minimize elastic energy $f^T d$

Truss topology design

Problem

Find $s \in \mathbb{R}^N$ which minimizes elastic energy $f^T d$ subject to the constraints

\[A(s) \succ 0, \quad A(s)d = f, \quad a \leq s \leq b, \quad \ell^T s \leq v \]

Data:
- Total volume $v > 0$, node forces f, bounds a, b, lengths ℓ and symmetric matrices A_1, \ldots, A_N that define the linear stiffness matrix $A(s) = s_1 A_1 + \ldots + s_N A_N$.

Decision variables:
- Cross sections s and displacements d (both vectors).

Cost function:
- Stored elastic energy $d \mapsto f^T d$.

Constraints:
- Semi-definite constraint: $A(s) \succ 0$
- Non-linear equality constraint: $A(s)d = f$
- Linear inequality constraints: $a \leq s \leq b$ and $\ell^T s \leq v$.

Trusses

- Trusses consist of straight members (‘bars’) connected at joints.
- One distinguishes free and fixed joints.
- Connections at the joints can rotate.
- The loads (or the weights) are assumed to be applied at the free joints.
- This implies that all internal forces are directed along the members, (so no bending forces occur).
- Construction reacts based on principle of statics: the sum of the forces in any direction, or the moments of the forces about any joint, are zero.
- This results in a displacement of the joints and a new tension distribution in the truss.

Many applications (roofs, cranes, bridges, space structures, . . .) !!

Design your own bridge
From truss topology design to LMI’s

• First eliminate affine equality constraint \(A(s)d = f \):

 \[
 \begin{align*}
 \text{minimize} & \quad f^T (A(s))^{-1} f \\
 \text{subject to} & \quad A(s) > 0, \quad \ell^T s \leq v, \quad a \leq s \leq b
 \end{align*}
 \]

• Push objective to constraints with auxiliary variable \(\gamma \):

 \[
 \begin{align*}
 \text{minimize} & \quad \gamma \\
 \text{subject to} & \quad \gamma > f^T (A(s))^{-1} f, \quad A(s) > 0, \quad \ell^T s \leq v, \quad a \leq s \leq b
 \end{align*}
 \]

• Apply Schur lemma to linearize

 \[
 \begin{align*}
 \text{minimize} & \quad \gamma \quad f^T (A(s))^{-1} f, \quad A(s) > 0, \quad \ell^T s \leq v, \quad a \leq s \leq b
 \end{align*}
 \]

Note that the latter is an LMI optimization problem as all constraints on \(s \) are formulated as LMI’s!!

Yalmip coding for LMI optimization problem

Equivalent LMI optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \gamma \\
\text{subject to} & \quad \left(\begin{array}{c}
\gamma \\
\ell^T A(s)
\end{array} \right) > 0, \quad \ell^T s \leq v, \quad a \leq s \leq b
\end{align*}
\]

The following YALMIP code solves this problem:

```matlab
gamma=sdpvar(1,1); x=sdpvar(N,1,'full');
lmi=set([gamma f'; f A*diag(x)*A']);
lmi=lmi+set(l'*x<=v);
lmi=lmi+set(a<=x<=b);
options=sdpsettings('solver','csdp');
solvesdp(lmi,gamma,options);
s=double(x);
```

Result: optimal truss

Useful software:

General purpose MATLAB interface Yalmip

• Free code developed by J. Löfberg accessible here

 Get Yalmip now

 Run yalmipdemo.m for a comprehensive introduction.
 Run yalmiptest.m to test settings.

• Yalmip uses the usual Matlab syntax to define optimization problems.
 Basic commands sdpvar, set, sdpsettings and solvesdp.
 Truely easy to use!!!

• Yalmip needs to be connected to solver for semi-definite programming.
 There exist many solvers:

 SeDuMi PENOPT OOQP
 DSDP CSDP MOSEK

• Alternative Matlab’s LMI toolbox for dedicated control applications.
Joseph-Louis Lagrange (1736) Aleksandr Mikhailovich Lyapunov (1857)

to next class