A new framework for \mathcal{H}_2-optimal model reduction and its applications

Alessandro Castagnotto

in collaboration with: Heiko Peuscher (né Panzer), Boris Lohmann, Siyang Hu

related publications: “Fast \mathcal{H}_2-Optimal Model Order Reduction Exploiting the Local Nature of Krylov-Subspace Methods”, 2016 European Control Conference, Aalborg
Model order reduction (MOR)

\[
\begin{align*}
E \ \frac{dx}{dt} &= A \ x + B \ u \\
\begin{bmatrix} x \\ u \end{bmatrix} &= C \begin{bmatrix} x \\ u \end{bmatrix} + D \ u \\
\end{align*}
\]

\[
\begin{align*}
E_r \ \frac{dx_r}{dt} &= A_r \ x_r + B_r \ u \\
y_r &= C_r \ x_r + D \ u \\
x_r &\in \mathbb{R}^n, \ n \ll N
\end{align*}
\]

- high-fidelity approximation
- preservation of properties
- numerically efficient

Source(s): nasa.gov, wikimedia.org, dailymail.co.uk
Projective MOR

Approximation in the subspace $\mathcal{V} = \text{Im}(V)$

$$x = V \hat{x}_r + e, \quad V \in \mathbb{R}^{N \times n}$$

Petrov-Galerkin Projection:

$$\Pi = EV(W^\top EV)^{-1}W^\top$$

Notation

$$\Sigma = \{E, A, B, C\}$$
$$\Sigma_r = W^\top < \Sigma > V$$

[DeVillemagne/Skelton '87]
Moment matching (rational interpolation)

Moments of a transfer function

\[G(s) = C(sE - A)^{-1}B \]
\[= G(s_0 + \Delta s) = -\sum_{i=0}^{\infty} M_i(s_0) \Delta s^i \]

\(s_0 \): Interpolation frequency (shift)
\(M_i(s_0) \): i-th moment about \(s_0 \)

Rational Krylov (RK) subspaces

Choose \(V \) and \(W \) such that:

\[\mathcal{K}_q \left((A - s_0 E)^{-1} E, (A - s_0 E)^{-1} B\right) \subseteq \text{Im} (V) \]
\[\mathcal{K}_r \left((A - s_0 E)^{-\top} E^\top, (A - s_0 E)^{-\top} C^\top\right) \subseteq \text{Im} (W) \]

\[M_i(s_0) = M_{r,i}(s_0) \quad \text{for} \ i = 0, \ldots, q + r - 1 \]

\[AV - EV S_V = BR \]
\[A^\top W - E^\top W S_W^\top = C^\top L \]
\[\lambda_i(S_V) = \lambda_i(S_W) = s_0 \]
\[R \equiv [I_m, 0, \ldots, 0], \ L \equiv [I_p, 0, \ldots, 0] \]

[Grime '97, Gallivan/ '04a]
\(H_2 \)-optimal model order reduction

\[
\|G - G_r\|_{H_2} = \min_{\text{dim}(\tilde{G}_r)=n} \|G - \tilde{G}_r\|_{H_2}
\]

Iterative Rational Krylov Algorithm

\[
\Sigma := \{E, A, B, C\} \quad \Sigma_r := \{E_r, A_r, B_r, C_r\}
\]

Algorithm Iterative Rational Krylov Algorithm (IRKA)

Input: \(\Sigma, s_0, \text{tol} \)

Output: locally \(H_2 \)-optimal reduced model \(\Sigma_r, s_0^\ast \)

1. while relative change of \(s_0 < \text{tol} \) do
2. \(\Sigma_r \leftarrow \text{RK}(\Sigma, s_0) \) // Hermite reduction
3. \(s_0 \leftarrow -\lambda(\Sigma_r) \) // mirror reduced eigenvalues
4. end while
5. \(s_0^\ast \leftarrow s_0 \) // return optimal shifts

Gradient-based methods

Expressions for gradient and Hessian can be derived and used for trust-region optimization

[Meier/Luenberger ’67, Gugercin/Antoulas/Beattie ’08, Gugercin/Beattie ’12, Panzer/Jaensch/Wolf/Lohmann ’14]
Agenda

A new framework for H_2-optimal MOR and its applications

- Model order reduction by projection
- Rational interpolation and H_2-optimal reduction
- What is the cost of H_2-optimal reduction?
- A new framework to exploit the local nature of rational interpolation
- Numerical results and further applications
The cost of \mathcal{H}_2-optimal reduction

Fundamental difficulty: Complexity of sparse direct/iterative methods

Complexity of reduction...

\[C_{N,n} (\text{RK}) \approx n \cdot C_N (\text{LSE}) \]
\[C_{N,n} (\text{IRKA}) \approx n \cdot C_N (\text{LSE}) \cdot k_{IRKA} \]

Is there a way of making the optimization cost independent of α? [Golub '12]

...for a specific LSE

\[C_{N,n} (\text{RK}) \approx \alpha \]
\[C_{N,n} (\text{IRKA}) \approx \alpha \cdot k_{IRKA} \]

Cost of finding optimal solution
Model function framework – the main idea

What does this have to do with model reduction?

- Rational interpolation is intrinsically **local** in nature (cp. moment matching)
- All H_2-optimal methods can guarantee only **local** optimality at convergence

These properties are exploited in the **model function** framework!
Model functions – exploit local nature of method

\[\Sigma \]

\[\Sigma k_m \]

\[\Sigma m \]

\[\Sigma n_m \]

\[\Sigma r \]

\[\Sigma m, r \]

[Panzer '14, C./Panzer/Lohmann '16]
Model functions – exploit local nature of method

The model function framework as...

- **...a surrogate optimization approach**
 \[\Sigma_m \] is used to build a surrogate of the cost function
 \[\|G - G_r\|_{\mathcal{H}_2} \approx \|G_m - G_r\|_{\mathcal{H}_2} \]

- **...a shift optimization within a subspace**
 \[\Sigma_m = \{E_m, A_m, B_m, C_m\} \] results from the projection
 \[W_m^T < \Sigma > V_m \], where the subspaces \(\mathcal{R}(W_m) \) and \(\mathcal{R}(V_m) \) are constantly updated

Can we claim anything about the optimality of \(\Sigma_{m,r} \)?
Result 1: Let Σ_m be a Hermite interpolant of \sum at $s_0^{m,j}$, define $S^m := \{s_0^{m,j}\}_j$. Let $\Sigma_{m,r}$ be an \mathcal{H}_2-optimal approximation of Σ_m with optimal shifts $s_{0,i}^*$, let $S^* := \{s_{0,i}^*\}_i$. Then $\Sigma_{m,r}$ is an \mathcal{H}_2-optimal approximation of \sum if $S^* \subseteq S^m$.

Update of the model function Σ_m

Central to the optimality proof is the update of Σ_m.

At convergence it must hold: $S^* \subseteq S^m$

Recall:

\[
G(-\lambda_{r,i}) = G_r(-\lambda_{r,i}) \\
G'(-\lambda_{r,i}) = G'_r(-\lambda_{r,i})
\]

Proof:

Assumptions:

1. \mathcal{H}_2-optimal
\[
G_m(-\lambda_{m,r,i}) = G_{m,r}(-\lambda_{m,r,i}) \\
G'_m(-\lambda_{m,r,i}) = G'_{m,r}(-\lambda_{m,r,i})
\]

2. Update of the model function
\[
G(s_{0,i}^*) = G_m(s_{0,i}^*) = G_{m,r}(s_{0,i}^*) \\
G'(s_{0,i}^*) = G'_m(s_{0,i}^*) = G'_{m,r}(s_{0,i}^*)
\]

Note: analogously for MIMO systems

[C./Panzer/Lohmann '16]
Result 2: Let all assumptions of result 1 hold, in particular $S^* \subseteq S^m$. Let Σ_r be a Hermite interpolant of Σ at $s_{0,i}^*$. Then $\Sigma_{m,r} = \Sigma_r$.

Sketch of proof:

$$\Sigma_m = W_m^T < \Sigma > V_m$$

$$\Sigma_{m,r} = (W_m W_{m,r})^T < \Sigma > V_m V_{m,r}$$

$$\Sigma_r = W_r^T < \Sigma > V_r$$

Equivalence Krylov – Sylvester

$$\text{span} (V_r) = \bigcup_i K_{n_i} ((A - s_{0,i}^* E)^{-1} E, (A - s_{0,i}^* E)^{-1} B)$$

Computation of $V_{m,r}$

$$A_m V_{m,r} - E_m V_{m,r} S_{V}^* - B_m R^* = 0$$

$$W_m^T (A V_{m,r} - E V_{m,r} S_{V}^* - B R^*) = 0$$

$$W_m^T \left(A V_m - E V_m S_{V}^* - B R^* \right) = 0$$

$$C \left(A - s_{0,i}^* E \right)^{-1} \left(A - s_{0,i}^* E \right) \tilde{V}_{r,i} - B \right) = 0$$

$$C \left(\tilde{V}_{r,i} - \left(A - s_{0,i}^* E \right)^{-1} B \right) = 0 \quad \forall C$$

$$\tilde{V}_{r,i} = \left(A - s_{0,i}^* E \right)^{-1} B = V_{r,i}$$

Note: analogously for MIMO and non-primitive Krylov bases

[C./Panzer/Lohmann '16]
Model functions – a general framework

- Can be applied to different \mathcal{H}_2-optimal reduction methods
- Applicable to further classes of models (e.g. DAE, irrational, data driven, …)
- Particularly advantageous, the more expensive the evaluation of the FOM gets

Application to IRKA:

Algorithm Confined Iterative Rational Krylov Algorithm (CIRKA)

Input: Σ, s_0, tol

Output: locally \mathcal{H}_2-optimal reduced model Σ_r

1. Initialize Σ_m to empty
2. while relative Change of $s_0 < $ tol do
3. $\Sigma_m \leftarrow$ updateModelFct(Σ, Σ_m, s_0)
4. $[\Sigma_r, s_0^*] \leftarrow$ IRKA(Σ_m, s_0)
5. $s_0 \leftarrow s_0^*$
6. end while

Possible implementations
- Update for all s_0
- Update only new s_0
- New model function about s_0

[C./Panzer/Lohmann '16]
Agenda

A new framework for \mathcal{H}_2-optimal MOR and its applications

- Model order reduction by projection
- Rational interpolation and \mathcal{H}_2-optimal reduction
- What is the cost of \mathcal{H}_2-optimal reduction?
- A new framework to exploit the local nature of rational interpolation

- Numerical results and further applications
Complexity of CIRKA

When is CIRKA expected to be faster than IRKA?

\[C_{N,n}(\text{IRKA}) \approx k_{IRKA} \cdot n \cdot C_N(\text{LSE}) \]

\[C_{N,n}(\text{CIRKA}) \approx \sum_{i=1}^{k_m} n_{m,+}^i \cdot C_N(\text{LSE}) + \sum_{i=1}^{k_m} k_{IRKA,i} \cdot n \cdot C_{n_m^i}(\text{LSE}) \]

assuming \(C_{n_m}(\text{LSE}) \ll C_N(\text{LSE}) \)

\[\sum_{i=1}^{k_m} n_{m,+}^i \ll n \cdot k_{IRKA} \]
The cost of one LU decomposition

\[C_{n,m}^{i} \text{ (LSE)} \ll C_{N} \text{ (LSE)} \]
Numerical results

![Graph showing numerical results with speedup and magnitude plots. The graphs compare IRKA and CIRKA methods for various system components.]
Numerical results

- **Graph 1:**
 - Title: Speedup vs. t/s.
 - X-axis: Time (t/s) in logarithmic scale.
 - Y-axis: Speedup.
 - Legend: IRKA and CIRKA.

- **Graph 2:**
 - Title: Magnitude (dB) vs. Frequency (rad/s).
 - X-axis: Frequency in logarithmic scale.
 - Y-axis: Magnitude in linear scale.
 - Legend: $G(s)$ and $G_r(s)$.

- **Graph 3:**
 - Title: Frequency vs. Amplitude.
 - X-axis: Frequency.
 - Y-axis: Amplitude.
 - Legend: s_0 IRKA and s_0 CIRKA.
Further applications of the framework

Once you have a hammer…

- Error estimation
- Global H_2-optimal reduction
- Adaptive choice of reduced order

Source(s): tiger-supplies, homedepot.com, for.unipi.it
Error estimation using model function Σ_m

Rigorous error bounds are an open problem

$\varepsilon \leq \|G - G_r\|_{\mathcal{H}_p} \leq \bar{\varepsilon}$

Exploit the model function

$\|G - G_r\|_{\mathcal{H}_p} \approx \|G_m - G_r\|_{\mathcal{H}_p}$
Global \mathcal{H}_2-optimal reduction

\[N \]

\[\Sigma \]

\[\Sigma k_m \]

\[\Sigma i_m \]

\[\Sigma r \]

\[\Sigma i_{m,r} \]

\[\Sigma i_{m,r} \]

Graph showing magnitude in dB against frequency and real part against imaginary part.
Toolboxes for sparse, large-scale models in

\[\text{sys} = \text{sss}(A, B, C, D, E); \]

\[\text{sysr} = \text{tbr}(\text{sys}, n) \]
\[\text{sysr} = \text{rk}(\text{sys}, s0) \]
\[\text{sysr} = \text{irka}(\text{sys}, s0) \]
\[\text{sysr} = \text{cure}(\text{sys}) \]
\[\text{sysr} = \text{cirka}(\text{sys}, s0) \]

bode(sys), sigma(sys)
step(sys), impulse(sys)
norm(sys, 2), norm(sys, inf)
c2d, lsim, eigs, connect,…

Powered by: M-M.E.S.S. toolbox [Saak, Köhler, Benner] for Lyapunov equations
Available at www.rt.mw.tum.de/?sssmor
[C./Cruz Varona/Jeschek/Lohmann: „sss & sssMOR: Analysis and Reduction of Large-Scale Dynamic Systems in MATLAB“, 2017 at-Automatisierungstechnik]
Comprehensive documentation with examples and references

sssMOR App
graphical user interface

completely **free**
and **open source**
(contributions welcome)
Chair of Automatic Control
Department of Mechanical Engineering
Technical University of Munich

Comprehensive documentation with examples and references

sssMOR App
Graphical user interface

completely free and open source
(contributions welcome)
Comprehensive documentation with examples and references

sssMOR App
graphical user interface

completely free and open source
(contributions welcome)
A new framework for \mathcal{H}_2-optimal MOR and its applications

- Model reduction as projection
- Cost of \mathcal{H}_2-optimal methods
 - Reduction vs optimization cost
- A new framework: model functions
 - Exploit local nature of Krylov methods
 - Cost: from optimization to model function update
 - Different algorithms and classes of models
- Optimality and speedup
 - Optimality guaranteed through update
 - Speedup especially for very high order models
- Further applications
 - Error estimation
 - Global \mathcal{H}_2-optimal reduction
 - Adaptive choice of reduced order
A new framework for \mathcal{H}_2-optimal model reduction and its applications

Alessandro Castagnotto

in collaboration with: Heiko Peuscher (né Panzer), Boris Lohmann, Siyang Hu

related publications: “Fast \mathcal{H}_2-Optimal Model Order Reduction Exploiting the Local Nature of Krylov-Subspace Methods”, 2016 European Control Conference, Aalborg
References

[C. et al. ‘17] sss & sssMOR: Analysis and reduction of large-scale dynamic systems in MATLAB
[C./Panzer/Lohmann ‘16] Fast H2-optimal model order reduction exploiting the local nature of Krylov subspace methods
[De Villemagne/Skelton ‘87] Model reductions using a projection formulation
[Gallivan et al. ‘04] Sylvester equations and projection-based model reduction
[Golub ‘12] Matrix computations
[Gugercin/Antoulas/Beattie ‘08] H2-optimal model reduction for large-scale linear dynamical systems
[Meier/Luenberger ‘67] Approximation of linear constant systems