SAOC and USAC

Spatial Audio Object Coding / Unified Speech and Audio Coding

Lecture “Audio Coding”
WS 2013/14

Dr.-Ing. Andreas Franck

Fraunhofer Institute for Digital Media Technology IDMT, Germany
SAOC – Spatial Audio Object Coding

Outline

- Introduction
- From Spatial Audio Coding to SAOC
- Audio objects
- SAOC Decoding
- Applications
- Performance Evaluation
- Conclusion
SAOC - Introduction

- Perceptual audio coding for multichannel signals is widely used
 - “Spatial Audio Coding”, for instance MPEG Surround

- Existing Spatial Audio Coders are channel-based
 - Designed for a specific reproduction setup

- Spatial Audio Object Coding
 - Continuation of the “Spatial Audio Coding” paradigm
 - Transmit audio objects instead of channel signals
 - ISO/IEC 23003-2:2010 Standard
SAOC – From Spatial Audio Coding to SAOC

Spatial Audio Coding (e.g., MPEG Surround)

- Channel-oriented
- Downmix (mono or stereo)
- Transmit downmix using standard audio codec (AAC)
- Additional parameter data (parametric coding)
- Output channels for specific reproduction setup
 - 5.1, 7.1

Andreas Franck andreas.franck@idmt.fraunhofer.de
SAOC – Audio Objects

- Audio objects instead of channels
- SAOC encoder: Stereo or mono downmix plus SAOC parameters
- SAOC decoder: Use SAOC parameters to transform downmix into audio objects
- Rendering to loudspeaker configuration (Rendering matrix R)
SAOC – Audio Objects

Advantages of object-based processing

- Coding efficiency: SAOC parameters only a few kbit/s per audio object
- Coding and transmission independent of reproduction setup
- Rendering on arbitrary loudspeaker setups
 - 5.1, 7.1, 10.2, 22.2, Binaural reproduction, Wave field synthesis,…
 - Rendering controllable (real-time user interaction)
- Control over individual audio objects
 - Change gain, equalization, effects, …
SAOC Decoding Modes

Decoder Processing Mode

- Rendering integrated into decoding (efficient)
- For mono and stereo output, incl. binaural reproduction
- Rendering matrix: realtime control of rendering
- HRTF parameters for binaural
 - Open SAOC interface
 - Enables use of individual HRTFs
 - Efficient parametric representation
SAOC Decoding Modes

Transcoder Processing Mode

- For multichannel output (MPEG Surround - MPS)
- SAOC encoder works as transcoder
- Transcoding of SAOC parameters to MPS bitstream
- Adjustment of downmix panning (only for stereo downmix)
- Highly Efficient
 - Operates in transform domain
 - Avoid unnecessary (de)quantization and decoding
SAOC Bitstream

- Contains parametric description of audio objects: SAOC parameters
- Typical: 2-3 kbit/s per audio object (plus 3 kbit/s per audio scene)
- SAOC bitstream embedded in ancillary data of core audio coder
 - Enables backward compatibility
- Parameters transmitted in flexible time/frequency grid
 - Adaptation to bitrate demands and/or signal characteristics
 - Same time/frequency grid as in MPEG Surround
 - Lossless, efficient transcoding
SAOC – Enhanced Audio Objects

- Allow arbitrary attenuation or amplification of objects
 - Karaoke
 - Solo voices,…
- SAOC bitstream contains residual signal
- Reconstruction from downmix and residual
- Efficient transmission of residual signal (AAC)
SAOC - Applications

Interactive Remix / Karaoke

- Interactive remixes
- Equalization, room simulation,… (for individual objects)
 - For channel-based formats, only applicable to whole scene
- Modification of specific audio objects (instruments, voices,…)
- Karaoke, vocal solo
 - Suppress main voice or background music
 - Advantageous: Enhanced Audio Objects
- Future extensions of digital broadcasting
 - Clean-audio dialogs
 - Additional objects for interactivity
SAOC - Applications

Teleconferencing

- Today: Mainly monophonic reproduction
 - Suboptimal for multi-user scenarios

- Key benefits of SAOC
 - Adjustment of individual speaker signals
 - Spatial representation of audio scene
 - Match between visual and audio scene
 - Improved intelligibility and listening comfort
 - Transmission efficiency
 - Backward compatibility
SAOC - Applications

Rich Media / Gaming

- Applications of Rich Media
 - Interactive audio-visual interfaces
 - Games
- Platforms
 - Mobile
 - Flash- or Java-Based
 - Limited audio rendering capabilities (audio scene size)
- Key advantages
 - Low complexity (number of output channels instead of scene size)
 - Interactivity (adjust level of objects and background music)
 - Efficient transmission, backward compatibility
SAOC – Performance Evaluation

Listening Test – Remix scenario

- Part of MPEG verification tests (5 sites, 125 participants)
- MUSHRA test (ITU BS.1534-1)
- Simulate adjustments to a mix of audio objects
- Core coder: High Efficiency AAC (HE-AAC)

![Graph showing performance evaluation results with categories Excellent, Good, Fair, Poor, and Bad.](image)

HR: Hidden reference
LP: 3.5 kHz Lowpass
HE-AAC REF: Individual objects, high bitrate
HE-AAC MO: Individual objects, same bitrate
HE-AAC SAOC: standard SAOC
HE-AAC SAOC LP: low power
SAOC – Performance Evaluation

Listening Test – Teleconferencing

- Part of MPEG verification tests
- Teleconferencing application: Simulate adjustments of a participant
- Core coder: MPEG-4 Enhanced Low Delay AAC (AAC-ELD)

HR: Hidden reference
LP: 3.5 kHz Lowpass
AAC-ELD MO: Individual objects
AAC-ELD SAOC-LD: low delay
SAOC - Summary

- Highly efficient transport/storage of audio objects and flexible/interactive audio scene rendering
- Backwards compatible downmix for reproduction on legacy devices
- Flexible rendering configurations (loudspeaker setups)
- ISO/MPEG standard
- Very interesting applications, e.g.:
 - Remixing / Karaoke
 - Gaming / Rich media
 - Teleconferencing
 - Interactivity for broadcast applications
USAC – Unified Speech and Audio Coding

Outline

- Introduction
- Differences between speech and audio coding
- Codec structure
- Improvements to coding tools
- Performance Evaluation
- Applications
- Summary
USAC - Introduction

Status quo:
- General audio coding and speech coding are largely separate worlds

Problem:
- Increased demand for audio coders that handle all types of inputs
 - Broadcasting
 - Audio books, multimedia
 - Mobile devices for all types of content (often low bandwidths)

Objective (initiated by MPEG)
- Universal codec that handles all types of content at least as well as the best current speech or audio codec
USAC – Differences Between Speech and Audio Coding

Audio Coding
- “Information sink model”
 - Characteristics of human hearing
- Typically transform- or subband-based approaches
 - Divide signal in multiple bands and apply psychoacoustics
- Not well-suited for speech
 (at bit rates typically used by speech coders …)

Speech Coding
- “Information source model”
- Characteristics of vocal tract
- Typically based on prediction coding
 - Predicted filter for the vocal tract and an excitation signal
- Poor quality for music
USAC – Hybrid coding approach

- Combine state-of-the-art audio and speech coders
 - HE-AACv2
 - AMR-WB+
- Switch between coders based on content
- Signal classification
- Share common functionality
- Take care of artifacts due to switches …

Figure: Neuendorf et al.: MPEG Unified Speech and Audio Coding, J. Audio Eng. Soc., 61:12, Dec. 2013
USAC – AMR-WB+ (1)

Adaptive Multi-Rate Wideband

- State-of-the-art speech coder
- Based on ACELP (Algebraic code-excited linear prediction)
- CELP: Encode signal by
 - LPC coefficients
 - LTP coefficients: “long term prediction” (delay and gain)
 - “Innovation codebook”: excitation signal, sparse pulses
- ACELP: Algebraic representation of innovation codebook

Figure: A. Valin: Speex: A Free Coder for Free Speech, 2006
USAC – AMR-WB+ (2)

Extended Adaptive Multi-Rate Wideband

- The “+” in AMR-WB+
 - Additional transform-domain coder for music signals
 - Parametric high frequency extension
 - Parametric stereo extensions
- But: For music, still inferior to good audio coders

Figure: A. Valin: Speex: A Free Coder for Free Speech, 2006
USAC – Coder/Encoder Structure

General structure of modern audio codecs

- **Encoder**
 - Spatial coding
 - Parametric bandwidth extension
 - Core coding
- **Decoder**
 - In opposite order

Figure: Neuendorf et.al: MPEG Unified Speech and Audio Coding, J. Audio Eng. Soc., 61:12, Dec. 2013
Andreas Franck andreas.franck@idmt.fraunhofer.de
USAC – Decoder Structure

- Here: Focus on decoder
 - Only decoder is standardized
- Follows general codec structure
- Left part: audio coder (HE-AACv2)
- Right part: speech coder (AMR-WB+)
- Some tools shared (LPC decoding)
- Challenge: Switching between modes

Figure: Neuendorf et.al: MPEG Unified Speech and Audio Coding, J. Audio Eng. Soc., 61:12, Dec. 2013
Andreas Franck andreas.franck@idmt.fraunhofer.de
USAC – Transition Handling

- Encoder switches between two modes
 - Signal classifier (speech or music)
- Transition handling without audible errors or loss of coding efficiency
- HE-AAC: MDCT:
 - Transform (frequency) domain, overlapping windows, time-domain alias cancellation (TDAC)
- AMR-WB+
 - Time-domain, no overlap
- Solution: Forward Aliasing Cancellation (FAC)
 - In case of transitions, transmit the “alias cancellation” information for TDAC
USAC – Improvements to Coding Tools

- USAC is not just a combination of HE-AAC and AMR-WB+
- Multiple improvements to both parts
 - Context-adaptive arithmetic coder for transform coding
 - Additional quantization modes
 - Alternate LPC-based noise shaping
 - Additional MDCT window sizes
 - Time-Warped MDCT
 - Enhanced Spectral Bandwidth Replication
 - Unified Stereo Coding
 - ...
USAC – Time-Warped MDCT (1)

- Transform coding good for stationary tonal signals
 - Sparse spectrum, few nonzero spectral coefficients to code
 - High coding gain
- Problematic: Pitch changes within signal
 - Typical signal: Voiced speech
 - Smearing of energy over many spectral coefficients
 - Decreased coding efficiency
Solution: Time-Warped MDCT

- Reduce variations of fundamental frequency

Basic algorithm (encoder side)

- Apply a time-variant resampling prior to the MDCT
- Adjust MDCT windows to preserve TDAC
- Transmit resampling ratio as side information

Figure: Edler et al: A time-warped MDCT approach to speech transform coding, AES 126th Convention, May 2009
Andreas Franck andreas.franck@idmt.fraunhofer.de
USAC – Enhanced Spectral Band Replication (1)

State of the Art – Spectral Band Replication

- Basis: SBR of HE-AAC
 - Operates in QMF domain
 - Copy low-frequency spectrum to higher frequencies
 - Adjust HF copies based on parameters (side info)
 - Tonality
 - Envelope
 - Additional noise, sinusoids

Figure: Neuendorf et.al: MPEG Unified Speech and Audio Coding, J. Audio Eng. Soc., 61:12, Dec. 2013
Andreas Franck andreas.franck@idmt.fraunhofer.de
USAC – Enhanced Spectral Band Replication (2)

Alternative Sampling Rate Ratios

- HE-AAC SBR performs a 2:1 upsampling in QMF domain
 - Bandwidth doubled
- USAC: Additional ratios
 - 4:1 (16 QMF analysis bands)
 - Four times the core bandwidth
 - Good for very low bit rates
 - 8:3 (24 QMF analysis bands)
 - Halfway between 2:1 and 4:1
 - Best tradeoff for medium bit rates (~ 24 kbit/s)
USAC – Enhanced Spectral Band Replication (3)

Harmonic Transposition

- HE-AAC SBR: Spectral copies
 - Frequency shifts
 - Bad match for harmonics of tonal signals (integer multiples)
- USAC eSBR: Harmonic transposer
 - Map sinusoid with frequency ω to sinusoid with frequency $T\omega, T$ integer
 - Supported orders $T = 2, 3, 4$
 - Frequency shifts for higher orders

- Other improvements in eSBR (not covered here)
 - Predictive vector coding for SBR spectral envelopes
 - …
Stereo Coding in USAC – Unified Stereo Coding (1)

Discrete Stereo Coding
- Strives to preserve waveforms
- Joint coding techniques (e.g., M/S)
- Used with higher bit rates

Parametric Stereo Coding
- Mono downmix and side info (parameters)
- Typically used with low bit rates

Unified Stereo Coding
- Extends and combines discrete and parametric stereo coding
- Additional parameter: IPD (inter-channel phase difference)
- Transmit parameters and residual signal
- Use parameters to minimize residual
Stereo Coding in USAC – Unified Stereo Coding (2)

- Prediction factor α (complex-valued)
- Gain normalization c
- c and α determined from parametric stereo parameters

Figure: Neuendorf et.al: MPEG Unified Speech and Audio Coding, J. Audio Eng. Soc., 61:12, Dec. 2013
Andreas Franck andreas.franck@idmt.fraunhofer.de
USAC – Performance Evaluation

Verification Test Results

- Question: Whether USAC performs as least as good as the better of the best speech or audio coder
- Part of verification tests for approval by ISO/IEC
- 3 tests, 13 test sites, 60-25 participants
- MUSHRA methodology
- Test subjects
 - USAC
 - HE-AACv2
 - AMR-WB+
 - Virtual coder (VC): The better of HE-AACv2 and AMR-WB+
 - Determined separately for each test item and bit rate
USAC – Performance Evaluation

Listening Test – Mono, Low Bit Rates

Speech
Mixed
Music
All

bitrate [kbps]

Excellent
Good
Fair
Poor
Bad

Andreas Franck andreas.franck@idmt.fraunhofer.de
USAC – Performance Evaluation

Listening Test – Stereo, Low Bit Rates

Speech

Mixed

Music

All

bitrate [kbps]

Excellent

Good

Fair

Poor

Bad

USAC

VC

HE-AAC

AMR

Andreas Franck andreas.franck@idmt.fraunhofer.de

© Fraunhofer IDMT
USAC – Performance Evaluation

Listening Test – Stereo, High Bit Rates

Speech | Mixed | Music | All

bitrate [kbps] | 32 | 48 | 64 | 96

0 | 20 | 40 | 60 | 80 | 100

Excellent | Good | Fair | Poor | Bad

USAC | VC | HE-AAC | AMR

Andreas Franck andreas.franck@idmt.fraunhofer.de
USAC - Applications

- Multimedia streaming
 - Mobile devices
 - Scalability is key feature
 - Significant quality improvements for low bit rates
- Broadcasting applications
 - Coding efficiency saves bandwidth
- Audio books
 - Mainly speech
 - Guarantees good quality for music and effects
USAC – Unified Speech and Audio Coding

Summary

- First audio codec that successfully merges general audio and speech coding
- For music signals, improved quality especially at low to very low bit rates
- Moderately increased computational complexity
- Standardized as ISO/IEC 23003-3:2012 MPEG-D Unified Speech and Audio Coding
- Applicable as general-purpose codec at all bit rates