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Abstract— Recent advances in the field of humanoid robotics
increase the complexity of the tasks that such robots can
perform. This makes it increasingly difficult and inconvenient to
program these tasks manually. Furthermore, humanoid robots,
in contrast to industrial robots, should in the distant future
behave within a social environment. Therefore, it must be
possible to extend the robot’s abilities in an easy and natural
way. To address these requirements, this work investigates the
topic of imitation learning of motor skills. The focus lies on
providing a humanoid robot with the ability to learn new bi-
manual tasks through the observation of object trajectories.
For this, an imitation learning framework is presented, which
allows the robot to learn the important elements of an observed
movement task by application of probabilistic encoding with
Gaussian Mixture Models. The learned information is used
to initialize an attractor-based movement generation algorithm
that optimizes the reproduced movement towards the fulfillment
of additional criteria, such as collision avoidance. Experiments
performed with the humanoid robot ASIMO show that the
proposed system is suitable for transferring information from
a human demonstrator to the robot. These results provide a
good starting point for more complex and interactive learning
tasks.

I. INTRODUCTION

One of the manifold research topics of the Honda Research

Institute Europe is the integration of biologically inspired

learning methods into a humanoid robot. The robot shall be

able to learn autonomously by interacting with its surround-

ing environment. Especially the learning of new movement

skills is an interesting topic and this work investigates the

use of an imitation learning paradigm to acquire those skills

by observing a teacher.

The topic of imitation learning is very broad with respect

to different levels of abstraction. While for example [1],

[2] propose to use imitation learning to learn trajectory

level information about a movement task, also higher-level

approaches like [3] exist that try to learn complex tasks in

form of graph structures of basic movements. Furthermore,

hierarchical approaches such as [4], [5] combine aspects of

several abstraction levels. In this work we focus on learning

trajectory information and to introduce the problems that

need to be solved, the learning of a common bi-manual task

is taken as an example. The robot has to learn to pour a
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beverage from a bottle into a glass by observing a teacher

demonstrating this task. This choice is arbitrary and the

researched methods do not depend on this specific choice

but are general. An overview of the whole imitation learning

process is depicted in figure 1 and explained in detail within

the upcoming sections.

Fig. 1. Structure of the imitation learning process

The first step necessary is to acquire the movement in-

formation from the teacher. Several methods are applicable

for this, such as kinesthetic teaching [6], recording human

postures with marker-based [7], [8] or marker-less vision

systems [9]. Within this work, the movement is acquired

using a marker-less stereo vision system, which is described

in section II. The teacher’s posture is disregarded and learn-

ing as well as movement reproduction are based on object

trajectories only.

As learning performance and generalization capabilities

are major keypoints for interactive learning of movement

tasks, it is unfavorable to learn within the full high-

dimensional configuration space of the robot. A common

approach to avoid this is the application of dimension reduc-

tion techniques, such as the principal component analysis

[10]. However, such methods often project the observed

movement information into rather abstract dimensions that

do not necessarily improve the generalization capabilities.

Hence, this work follows the concept of task spaces to model

the movement. For the pouring task example, the task space

can simply consist of the relative position of bottle and

glass and their orientations. Section III describes that this

does not only avoid the correspondence problem between the

teacher’s and robot’s kinematic structure but also enhances

generalization.
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After the pouring task was observed and modelled using

task spaces, it is learned within a representation that allows

the robot to adapt it to new situations. We believe that the

important parts of a movement task are mostly defined by

their invariance over several demonstrations and that this

variance should be directly incorporated into the robot’s

movement generation. This allows the robot to diverge from

variant and therefore less important parts of the movement in

order to fulfill additional criteria, such as collision or joint-

limit avoidance. The authors of [1], [2], [11] already showed

that probabilistic representations, such as Hidden Markov or

Gaussian Mixture Models (GMM), are well suited to encode

the mean and variance information of a movement. Section

IV therefore revisits the necessary temporal normalization

using Dynamic Time Warping and the movement represen-

tation within Gaussian Mixture Models.

Until then, the task is completely learned in a compact,

probabilistic representation. Section V describes how this

representation can be incorporated into the robot’s motion

generation. The attractor-based optimization scheme by [12]

is extended with a cost function that penalizes differences

between the generated and learned movement and that

continuously weights these differences with the variance

information of the GMM encoding. The result is that the

robot does not only repeat the movement, but also adapts

to new situations or environments. This can be compared

to other approaches such as in [13], where reinforcement

techniques are used to achieve the adaptive behavior.

Finally, in section VI we evaluate the presented imitation

learning scheme within an interactive experiment using the

humanoid robot ASIMO.

The major keypoints of this work in the context of

imitation learning with humanoid robots are:

• The variance information over several task demonstra-

tions is used as an importance measure. This informa-

tion is continuously incorporated into the movement

generation process.

• Task spaces are used to model the observed movement

task. This handles equally dimension reduction, gener-

alization and the correspondence problem.

• The task learning is based on object trajectories only

and no assumptions about the teacher’s or robot’s pos-

tures are made.

• To reproduce a learned movement, an attractor-based

movement optimization scheme is utilized that also

operates on task spaces.

II. DATA ACQUISITION

The focus of this work lies on learning object-related

movements. Due to the concept of task spaces, later de-

scribed in section III, no assumption on the teacher’s posture

needs to be made. The data acquisition can therefore rely

solely on tracking object trajectories instead of full human

postures. Hence, there are no requirements for markers and

the robot’s on-board vision system can be used to track the

objects.

For simplification, a slightly modified version of the color

tracking algorithm presented in [14] is used and it is assumed

that both objects are colored uniformly. The information that

is extracted consists of the absolute position of the objects

and their rotation angle around the gaze vector of the stereo

camera head1.

The actual learning of the movement that is introduced in

section IV depends on a pre-segmentation of the continuous

object trajectories into distinct demonstrations by using mo-

tion stillness as a segment border. If the observed objects are

held still for a defined duration, the current demonstration is

finished and the next one starts when the objects are moving

again.

III. MOVEMENT MODELLING

Before a probabilistic representation of a movement task

can be learned, the observed demonstrations of the teacher

are preprocessed. There are several points that this prepro-

cessing needs to consider. First, the correspondence problem

between teacher and robot needs to be solved. This problem

results from different kinematic structures of both. As an

example, a humanoid robot like ASIMO is smaller than

the teacher and lacks some degrees of freedom. Second,

the movement task should not be learned within the full

configuration space of the humanoid robot. This would lead

to a very high-dimensional representation of the movement

that doesn’t generalize well to novel situations. The approach

in [2] solves these problems by performing the movement

within the robot’s configuration space using kinesthetic

teaching and afterwards applying a principal component

analysis to reduce the data dimensionality.

Within this work, the concept of task spaces is used to

solve the mentioned problems, as it was already proposed

by [15]. The observed movement is projected into a task-

specific space and the correspondence problem is avoided

by solely focussing on the object trajectories without making

any assumption on the teacher’s postures during the demon-

stration. This has several advantages. The actual movement

of the robot is calculated only during the reproduction. It

can therefore take into account new situations, differing

robot kinematic structures and additional constraints, such as

collision avoidance. Furthermore, the concept of task spaces

provides a generalization capability by design.

Returning to the example of pouring from a bottle into

a glass, an appropriate task space consists of the position

of the bottle relative to the position of the glass and their

orientations. Referring to figure 2, the elements of the task

space are

xtask =
(
x

T
diff ϕ

T
b ϕ

T
g

)T
. (1)

The relative position xdiff of both objects is defined in the

world frame and not in the coordinate system of one of

the objects. Otherwise, the orientation of one object would

affect the position of the other2. The elements ϕb and ϕg are

vectors containing the angle gathered from the vision system

1The direction is defined through the object’s longest elongation.
2However, there are also tasks that would profit from this behavior.
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Fig. 2. Illustration of the different variables used for modelling the pouring

task with task spaces

and a second component that defines the angle’s plane to be

vertical as it was observed.

If the pouring movement is learned within this task space,

a first generalization is already achieved because the robot

can repeat the movement at differing absolute positions

and therefore adapt to new situations. Note further that

task spaces themselves are no restriction of the movement

capabilities of the robot. Although it is unlikely necessary,

a task space could also comprise the full joint space of the

robot.

IV. MOVEMENT LEARNING

The key aspect of imitation learning is to obtain a gen-

eralized representation of a movement task from several

demonstrations of the teacher. This representation allows

the robot to repeat the observed task, but also adapt it to

a new environment and situation. The basic idea of using

a probabilistic representation for movement tasks is that

important task elements are usually invariant over several

demonstrations. We therefore directly exploit the variant

parts of the movement to allow the robot to fulfill additional

criteria, such as collision avoidance or staying balanced,

while still reproducing the invariant features of the move-

ment. This section describes how such a representation is

learned while section V shows how the variance information

is explicitly used during the robot’s movement generation.

A. Dynamic Time Warping

After the observed demonstrations are projected into ap-

propriate task spaces, there is one further preprocessing step

necessary. To learn meaningful variance information within

the probabilistic representation, temporal normalization of

the trajectories is crucial. Note that the inter-trial variance

between multiple demonstrations is of interest here, not the

variance within a single demonstration. If a human teacher

performs the same task several times, there will always be

non-linear temporal distortions between the demonstrations.

Therefore, a temporal normalization has to be applied in

advance of learning. The authors of [6], [1], [2], [16]

propose different methods, such as the use of left-right

Hidden Markov Models or the Dynamic Time Warping

(DTW) algorithm. For our approach we have chosen the

latter one, because left-right Hidden Markov Models would

introduce an additional unwanted smoothing, depending on

their number of hidden states.

The principle of the Dynamic Time Warping algorithm

[17] is to find a temporal deformation of one signal to

minimize the distance to another signal. The first step is

therefore the definition of the distance measure. In our

case, this distance measure is the Euclidean distance of the

elements of the task space the demonstrations are projected

into. It is additionally weighted to account for the scale of

the individual task space dimensions. Using this distance

measure, a matrix V is filled with the pair-wise distance of

all data samples of one demonstration to all data samples

of another. Scalar vi,j ∈ V then refers to the weighted

Euclidean distance of element i of the first and element j

of the second demonstration. With the following dynamic

programming approach, a path starting from the bottom right

element vn,m to v1,1 is determined that minimizes the sum

of the path’s elements:

dtw(i, j) =







∞ for i = 0 ∨ j = 0 ,

vi,j for i = 1 ∧ j = 1 ,

vi,j + min






dtw(i − 1, j − 1),

dtw(i − 1, j),

dtw(i, j − 1)




 else .

(2)

Figure 3 illustrates the algorithm with two signals αA and αB

to be normalized. The color coding represents the magnitude

of vi,j and the white line is the path that was found by the

Dynamic Time Warping. With the indices of the path, the

signals can now easily be warped in the time domain in

order to minimize their distance from each other. The gray,

dashed lines are example associations for 3 timesteps.

With Dynamic Time Warping all demonstration are non-

linearly morphed to share the same length. Figure 4 shows

that meaningful inter-trial variance information can only be

extracted by preprocessing with Dynamic Time Warping.

However, one has to obey that individual timing properties

are neglected in favor of the meaningful inter-trial variances.

While this is irrelevant for the tasks considered in this

work, it probably leads to problems with highly dynamic

movements. Hitting a ball with a tennis rack is an example

for this, because the dynamic properties of the movement

directly influence the achievement of the task goal.

B. Gaussian Mixture Models

After the observation phase (see fig. 1), the data can

be learned within a probabilistic representation. We choose

Gaussian Mixture Models to learn the underlying probability

density function of the observed trajectories xi ∈ X. The di-

mensionality D of the data samples xi equals the number of

task space dimensions and an additional temporal dimension,

which is also learned by the GMM. The probability density
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function p(xi) is estimated using a mixture of K Gaussian

distributions:

p(xi) =

K∑

k=1

πkp(xi|k) (3)

where πk is the a priori probability of Gaussian component

k within the GMM (
∑K

k=1 πk = 1) and p(xi|k) is the

conditional probability density function that can be derived

from the D-dimensional normal distribution N (µk,Σk),
depending on mean vector µk and covariance matrix Σk

of Gaussian k:

p(xi|k) = N (xi;µk,Σk)

= 1√
(2π)D·|Σk|

· e− 1

2 ((xi−µ
k
)T

Σ
−1

k
(xi−µ

k
)) .

(4)

The GMM that models the probability density function of the

input is therefore fully described by πk, µk and Σk denoting

prior, mean vector and covariance matrix of all Gaussian

components k respectively. These parameters can be learned

with a standard Expectation-Maximization algorithm [18].

However, the number of Gaussian components and their

initialization has to be determined first.

1) Estimating Gaussian components: To estimate the op-

timal number of Gaussian components, literature proposes

different approaches. One for example is the use of the

Bayesian Information Criterion3 (BIC) [19] as a tradeoff

between model complexity and representation quality. A typ-

ical heuristic is to steadily increase the number of Gaussian

components, train the Gaussian Mixture Model, and calculate

the BIC value each time. The smallest value in the series of

BIC values refers then to the estimated optimal number of

components.

Because the training of a Gaussian Mixture Model is

considerably cost-intensive and the interactive aspect is key-

point within this work, we modify the common heuristic as

follows. Instead of training a full Gaussian Mixture Model

within each iteration, only a fast K-Means clustering is

applied to X. Then πk, µk and Σk of all components of

the Gaussian Mixture Model are initialized with the cluster

information. The full training of the GMM is then skipped

and the BIC value is calculated as usual using the following

equation:

BIC = −2L + P ln(N) . (5)

Scalar L denotes the log-likelihood that the GMM represents

all N data samples xi and P equals the number of free

parameters of the model. Both, L and P are calculated using

the following two equations:

L =

∑N

i=1 log
(
∑K

k=1 πkp(xi|k)
)

N
, (6)

P =

for π

︷ ︸︸ ︷

(K − 1) + K







for µ

︷︸︸︷

D +

for Σ

︷ ︸︸ ︷

1

2
D(D + 1)







. (7)

By skipping the time-intensive training of the Gaussian

Mixture Models the estimation of the optimal number of

components gets less accurate but faster. Figure 5 visualizes a

comparison between the common heuristic and our modified

version. Both are applied to test data from the experiment in

section VI and the BIC values for each number of Gaussian

components, ranging from 1 to 30, are calculated. One can

observe that the modified heuristic prefers choosing too

many rather than choosing too few components for the rep-

resentation. This is because the Expectation-Maximization

algorithm is proved to converge while increasing the log-

likelihood and secondly due to the fact that the representation

quality increases with the number of Gaussian components.

This inaccuracy increases the training time of the Gaussian

Mixture Model during the learning phase. However, this is

more than compensated by the speedup of the estimation.

Estimating the number of Gaussian components in the range

of 1 to 30 using our approach is about two orders of

magnitude faster than the common heuristic.

2) EM algorithm: After the number of Gaussian com-

ponents is estimated in the previous step, the components

are initialized with the information resulting from the K-

Means clustering of the input data X. Afterwards, the

Gaussian Mixture Model can be trained using a common

3Also referred to as Schwartz Information Criterion.
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Expectation-Maximization algorithm [18]. The goal during

the optimization is to maximize the log-likelihood that the

Gaussian Mixture Model represents the probability density

function of the given input data (see eq. 6). For this, two

steps are iterated until the change of the log-likelihood is

below a certain threshold.

The first step (expectation step) of the algorithm follows

the Bayes theorem to calculate the likelihood of each Gaus-

sian component k given the data set X:

p(k|xi) =
πkp(xi|k)

∑K

j=1 πjp(xi|j)
(8)

=
πkN (xi;µk,Σk)

∑K

j=1 πjN (xi;µj ,Σj)
,

ek =

N∑

i=1

p(k|xi) . (9)

This is calculated by using the parameters of the previous

optimization step or, in the beginning, of the initialization

with the K-Means clustering.

During the maximization step, the parameters of the GMM

are adapted to maximize the likelihood that the GMM

represents the probability density function of data X:

πk =
ek

N
, (10)

µk =

∑N

i=1 p(k|xi)xi

ek

, (11)

Σk =

∑N

i=1 p(k|xi)(xi − µk)(xi − µk)T

ek

. (12)

The algorithm converges to an estimation of the probability

density function of all observed input values. Due to the ini-

tialization with the K-Means clustering and a good estimation

for the number of components, the EM algorithm reaches a

local minimum relatively fast.

At this point, the observed movement task is learned in

a compact representation that encodes not only the mean

movement itself but also a continuous importance weighting

in form of variance information. The next section explains

how this representation is combined with the motion gener-

ation methods in order to reproduce the learned movement

task.

V. MOVEMENT OPTIMIZATION

The probabilistic movement representation described in

the previous section accounts for the robot’s effector move-

ment. However, it does not yet consider the limits asso-

ciated to joint ranges, self-collisions etc. To handle these

aspects, we incorporate a gradient-based trajectory opti-

mization scheme, which has been presented in [12]. It

operates on an attractor-based trajectory generation [20] that

describes the task space trajectories with attractor dynamics

and projects these trajectories to the joint space movement

with a kinematic whole body control system. The key idea

is to optimize a scalar cost function by finding an optimal

sequence of such task space attractor vectors that determines

the robot’s motion.

For this, we consider an integral scalar cost function over

the overall movement composed of two terms. The first term

subsumes criteria that depend on single time steps, like costs

that depend on the posture of the robot. Specifically, we use

criteria to account for collisions and proximities between

collidable objects throughout the trajectory and joint limit

proximities. The second term subsumes costs for transitions

in joint space and depends on the current and the previous

time steps. It is suited to formulate criteria like the global

length of the trajectory in joint space.

During optimization, we iteratively compute all costs and

analytical gradients of the attractor point locations with

respect to the chosen criteria and update the location of the

attractor points accordingly until convergence. The scheme

has already been applied to reaching and grasping problems,

and finds solutions within a short time, as such being suitable

for interactive scenarios.

We choose the number of attractor points according to the

number of Gaussian components of the Gaussian Mixture

Model that represents the learned movement. While this

is not explicitly necessary, it achieved good results within

the experiments and eliminates another free parameter that

would elsewise need to be chosen manually.

Further, we extend the set of criteria with a similarity

criterion. It penalizes the deviation of the robot’s task space

trajectory from the observed one. The key idea is to apply

an adaptive weighting scheme that weights the similarity

with the variance of the observation. In phases with higher

variance, we assume that the movement doesn’t need to be

tracked precisely. By assigning a low weight to the similarity

criterion, its effect will be reduced, as such giving higher

influence to the other criteria governing the movement. This

results in a movement that tracks the observed trajectory

rather precisely in phases of low variance, while it is charac-

terized by other criteria (joint limit and collision avoidance

etc.) in phases of higher variance.

A. Gaussian Mixture Regression

Other approaches apply the Gaussian Mixture Regression

to generate the movement previously acquired in the learning

process. However, the represented movement does not neces-

sarily account for the limitations (e.g., joint-limits, collisions)

of the robot. We therefore use it to initialize an optimization
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problem that respects the similarity of the generated and

learned movement as one optimization criterion.

Using this regression technique, the mean and variance

information of each dimension of the task space is calculated

for a given timestep. The mean values then refer to the

learned movement and the variance information can be inter-

preted as an importance measure for parts of the movement.

This importance weighting is later directly incorporated into

the similarity criterion of the optimization process.

Gaussian Mixture Regression is based on the theorem of

Gaussian conditioning and the linear combination of Gaus-

sian probability distributions. For the movement reproduction

the task space trajectories are needed. Therefore, the tempo-

ral dimension can be seen as an input, while the remaining

spatial dimensions are the output. Under this assumption, the

means and covariance matrices of the Gaussian components

can be split into a temporal (denoted by subscript t) and a

spatial (denoted by subscript s) part:

µk = (µt,k,µT
s,k)T , (13)

Σk =

(
σtt,k σ

T
ts,k

σst,k Σss,k

)

. (14)

Given the temporal input xt, the conditional expectation x̂s,k

and the estimated covariance matrix Σ̂s,k for each Gaussian

component k can be calculated using the equations of the

Gaussian conditioning theorem:

x̂s,k = µs,k + σst,k(σtt,k)−1 · (xt − µt,k) , (15)

Σ̂s,k = Σss,k − σst,k(σtt,k)−1 · σT
ts,k . (16)

These conditional expectations and covariance matrices are

then mixed according to the probabilities βk that input xt is

modelled by Gaussian k:

x̂s =

K∑

k=1

βkx̂s,k , (17)

Σ̂s =

K∑

k=1

β2
kΣ̂s,k (18)

with

βk =
πkp(xt|k)

∑K

i=1 πip(xt|i)
=

πkN (xt;µt,k, σtt,k)
∑K

i=1 πiN (xt;µt,i, σtt,i)
.

(19)

Evaluating these equations for consecutive values of xt

results in an estimation for the means of all task space dimen-

sions over time and their associated covariance matrices. For

simplification, we introduce two new symbols. The symbol

µ̂t stands for the value x̂s at timestep t. The elements of σ̂t

refer to the diagonal of Σ̂s at timestep t.

B. Similarity criterion

The attractor points that are defined in the task space of the

learned movement, are then initialized with the mean values

that were calculated with the Gaussian Mixture Regression.

Without optimization this leads to a movement that does not

fully match the learned one and, more importantly, that al-

lows self-collisions. Therefore, an optimization, according to

0

0

σ

w

σ
max

w
max

Fig. 6. Function that maps the variance to a weighting factor

the scheme mentioned in the beginning of this section, needs

to be performed. To achieve similarity between the learned

and the reproduced movement, this scheme is extended with

the similarity criterion:

cim = (xt − µ̂t)
T
Wt(xt − µ̂t) . (20)

For each timestep t, this cost function penalizes a deviation

of the state of the task space xt from the learned mean values

µ̂t weighted with the time-dependent diagonal matrix Wt

that is calculated using the estimated variances σ̂t:

wi,i =

{

wmax
i − wmax

i

σmax
i

· σ̂t,i for 0 ≤ σ̂t,i < σmax
i

0 for σ̂t,i ≥ σmax
i

. (21)

Variables with superscript max are constants that can be

used to shape the mapping between the variance and the

weighting factor (see fig. 6) in order to account for the

scale of the individual task space dimensions. The gradient

of the similarity criterion that is used during the trajectory

optimization is

∂cim

∂xt

= 2(xt − µ̂t)
T
Wt . (22)

With this cost function, the variance information is directly

included in the optimization process, continuously over all

dimensions of the task space and all timesteps. The robot is

allowed to diverge from variant and therefore unimportant

parts of the movement in order to minimize other cost

functions (e.g., collision costs or joint-limit costs).

VI. EXPERIMENT

The experiment presented in this section is the pouring

task example that is discussed throughout this paper. The

robot is required to imitate a pouring motion of approxi-

mately 4-5 seconds length. Figure 7 shows the experimental

setup and the enclosed video contains the whole imitation

learning scenario.

The teacher stands in front of ASIMO and demonstrates

the task five times. As mentioned in section II, the distinct

demonstrations are separated by holding the objects still

for about one second. After the task was observed by the

robot, the movement information is projected into the task

space, which consists of the relative object positions and

orientations, such as already described in section III. The

information is then temporally aligned using the Dynamic

Time Warping algorithm and learned within a Gaussian
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Fig. 8. Imitation of the pouring task without (top row) and with collision costs (center row). Note how the movement is optimized in order to avoid the
self-collision in the middle of movement while the pouring task is still being performed. The bottom row shows the real performance of ASIMO after
the movement optimization

Fig. 7. Setup for the interactive imitation learning experiment

Mixture Model. The learning takes about two seconds and

additional 10 seconds are needed for the subsequent attractor-

based movement optimization. Afterwards, the robot is able

to directly reproduce the learned movement task. The cost

terms that are included in the optimization penalize col-

lisions, proximities to joint-limits and deviations from the

learned movement.

Figure 8 shows snapshots of the robot’s performance of

the pouring task. The top row shows the resulting trajectory

if the cost term that penalizes self-collisions is left out

during the optimization process. For the center row this

term is included. One can observe that in order to avoid

self-collisions between the right arm and the upper body,

the robot’s movement diverges from the optimal imitation

trajectory. Figure 9 illustrates this in more detail for the

relative position of both hands in direction of the Z axis.

With an increasing weight of the collision costs, the robot

diverges even more from the actual learned movement.

However, this behavior is limited to the high variant part

between timestep 0.5s to 1.5s. This shows that the variance

is explicitly exploited during the movement optimization in
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order to diverge from less important rather than critical parts

of the learned movement. Further, it can be seen that the

robot performs the task in a more dynamic way than the

teacher showed it. The glass hand actively moves towards

the bottle. This is a wanted behavior that results from the

chosen task space that comprises relative positions.
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Fig. 9. The variant parts of the learned movement are tracked less
accurately if the weight of the collision criterion increases. Less variant and
therefore important parts of the learned movement task are still fulfilled
correctly

VII. CONCLUSION

We have presented a framework that allows a humanoid

robot to learn new movement tasks through imitation. Unlike

other imitation learning approaches, we employ task spaces

in order to avoid the correspondence problem, reduce the

dimensionality of the training data and to achieve a first

generalization. The movement task is defined through object

trajectories, which are observed using a marker-less stereo

vision system. Statistical information coming from multiple

task demonstrations is learned within Gaussian Mixture

Models.

For the reproduction of the movement task, a previously

introduced attractor-based movement optimization scheme is

utilized. This scheme is extended with a new cost term that

rates the similarity between the produced movement and the

learned one. This similarity criterion directly incorporates

the variance information from the learned representation.

This enables the robot to adapt to new situations and to

diverge from the learned movement in phases of high vari-

ance, while still fulfilling less variant and therefore more

important parts of the movement. Besides similarity, this

behavior therefore concurrently regards other criteria, such

as collision avoidance. We have presented an interactive

experiment with the humanoid robot ASIMO that confirms

this behavior.

The presented work provides a good starting point for

our future research in direction of imitation learning. Major

points will include the automatic determination of task

spaces, based not only on statistical information, but also on

interactive guidance and insights from parent-infant research.

Further, the interactive aspect is of great interest. The whole

imitation learning process should become a spontaneous

interaction rather than a fixed dialog.
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