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Abstract. We propose a new approach for reinforcement learning in
problems with continuous actions. Actions are sampled by means of a
diffusion tree, which generates samples in the continuous action space
and organizes them in a hierarchical tree structure. In this tree, each
subtree holds a subset of the action samples and thus holds knowledge
about a subregion of the action space. Additionally, we store the expected
long-term return of the samples of a subtree in the subtree’s root. Thus,
the diffusion tree integrates both, a sampling technique and a means
for representing acquired knowledge in a hierarchical fashion. Sampling
of new action samples is done by recursively walking down the tree.
Thus, information about subregions stored in the roots of all subtrees
of a branching point can be used to direct the search and to generate
new samples in promising regions. This facilitates control of the sample
distribution, which allows for informed sampling based on the acquired
knowledge, e.g. the expected return of a region in the action space. In
simulation experiments, we show how this can be used conceptually for
exploring the state-action space efficiently.

Keywords: reinforcement learning, continuous action space, action
sampling, diffusion tree, hierarchical representation.

1 Introduction

Reinforcement learning in continuous domains is an area of active research. Con-
ventional algorithms are only proven to work well in environments where action
space and state space are both discrete [1]. To extend those algorithms to con-
tinuous domains a common approach is to discretize the state space and the
action space and apply discrete algorithms [2]. This, however, usually reduces
the performance of the approaches [3]. One major issue when applying rein-
forcement learning to continuous domains is the lack of techniques to represent
and update knowledge over continuous domains efficiently. Several successful ap-
proaches have been proposed that represent knowledge by means of parametric
function approximators [3] or sample-based density estimation.
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In this work, we present a novel approach to reinforcement learning in con-
tinuous action spaces, based on action sampling. In action-sampling-based ap-
proaches, the agent stores knowledge by means of a set of discrete samples,
which are generated successively by a certain technique, one per learning step,
and executed and evaluated thereafter by the agent. To store knowledge effi-
ciently, those samples have to be concentrated on regions with high interest.
Therefore, the sampling-technique has to use the knowledge acquired so far, to
make the sampling process as informed as possible. In our approach, actions are
sampled by means of a diffusion tree, which organizes samples from a continuous
space and knowledge about the underlying domain in a hierarchical structure.
Higher levels in the hierarchy represent knowledge about bigger regions in the
action space. Evaluation of knowledge is done by recursively walking the tree
from its root to its leaves. In a balanced tree, evaluation therefore is efficient.
While walking down the tree, the stored knowledge is used to control the sample
distribution. In this paper, we only outline the theoretical concept and validate
it in a proof-of-concept manner. Further research has to be done to proof the
full validity of the approach for real-world applications.

This paper is organized as follows. Section 2 briefly introduces the state of
the art in sampling-based approaches to reinforcement learning. As a basis of
our approach the Dirichlet Diffusion Tree is introduced in section 3. Our pro-
posed algorithm is described in section 4. Section 5 shows results of two simple
experiments conducted to conceptually validate our approach. Conclusions and
an outlook to future work are stated in section 6.

2 State of the Art

Much research has been done in the field of reinforcement learning in continuous
domains. In this section, we will outline a few techniques, strongly related to
our proposed approach. Our algorithm belongs to the group of sampling-based
approaches. Algorithms of that group typically represent knowledge by means
of samples drawn from the underlying domain.

In [4] an approach is presented that extends the traditional dynamic program-
ming to continuous action domains. However, the state space remains discrete.
Values for states are stored in a table, one value per state. The policy is also
represented as a table, where for every state an action is stored. Multilinear in-
terpolation is used to compute values in the continuous state domain. In every
iteration of the presented algorithm, a sweep through the whole state space is
done where for every state a new action and a new value is computed. Therefore,
an action is being sampled uniformly for every state. If the action is better than
the previously stored one w.r.t. the expected return, the old action is discarded
and the new one is stored instead. Unfortunately, this approach is not suited
for real-time exploration and learning, due to the computational cost for the
sweeps. Also sampling actions uniformly does not incorporate any knowledge
about promising actions for a state seen so far and, thus, is inefficient for fast
exploration. In [5,6] the idea of sampling actions is extended to a so-called tree-
based sampling approach. For a state, a set of action samples is drawn. For every
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action the resulting successor state is simulated. In that simulated state again a
set of action samples is drawn and again the next state is evaluated. That way
a look-ahead tree is built. Based on that tree the expected long-term return of
an action in the current state can be estimated. For this approach a generative
process model is required, which narrows the applicability in practice. In [7] a
sampling-based actor-critic approach is presented which operates on a discrete
state space. For every state a set of action samples is maintained. With every
action sample an importance weight is associated. Together, all samples for a
state approximate a probability density function (PDF) over the continuous ac-
tion space for that state. New action samples are drawn from that distribution
by means of importance sampling. The weight of a sample is set proportional
to the expected return of that action. Therefore, the approximated PDF has
high values where actions are promising w.r.t. the expected return and thus are
sampled and executed more often.

3 Mathematical Foundations

In this section, the necessary mathematical foundations will be introduced. We
start with a brief definition of our notation for reinforcement learning and then
introduce the formalism of the Dirichlet Diffusion Tree, which serves as a basis
for our approach.

Reinforcement Learning: Our proposed approach is based on the idea of Q-
Learning [1], a well known approach to reinforcement learning. The reader is
assumed to be fairly familiar with this topic. We refer to [8] for a good and
comprehensive introduction. In the following our notation of Q-Learning will be
defined. The state of the agent will be denoted by s ∈ S, actions will be assumed
to be equal for all states and will be noted by a ∈ A. The reward function is
given by by r = r(s, a) : S × A → R. Estimated action-values are defined by
Q̂(s, a) = r(s, a) + γ V̂ (s′). Where V̂ is the estimated state value and γ is the
discounting factor.

Dirichlet Diffusion Tree: Our approach is based on the idea of the Dirichlet
Diffusion Tree (DDT) introduced in [9], in particular on the construction of such
a tree, which will be outlined in the following (see Fig. 3. In a DDT samples
are generated sequentially, each one by a stochastic diffusion process of duration
t = D. The time evolution of a sample i is represented by a random variable
Xi(t) with t ∈ [0, D]. The start location of the first sample is set to X1(0) = 0.
The location of the sample an infinitesimal time step dt later is determined by
X1(t + dt) = X1(t) + N(t), where N(t) is multivariate Gaussian with zero mean
and covariance σ2Idt. The values N(t) for distinct values of t are i.i.d., thus the
time evolution of X1(t) is a Gaussian process. Lets call the so generated path X1

(see Fig. 1(a)). For the second sample the start point of the new diffusion process,
the path X2, is set to the start point of the first one, hence X2(0) = X1(0). The
second sample then shares the path of the first sample up to a randomly sampled



Exploring Continuous Action Spaces with Diffusion Trees 193

at

0

1

2

3

4

5

6

X1(0)

X1(7)

(a) First path X1.

at

0

1

2

3

4

5

6

X2(0) = X1(0)

X2(3) = X1(3)

X2(7)

(b) Second path X2.

at

0

1

2

3

4

5

6

X3(0) = X1(0)

X3(3) = X1(3)

X3(5) = X2(5)

X3(7)

(c) Third path X3.

Fig. 1. Evolution of a Dirichlet Diffusion Tree for three successively sampled paths
with a length of D = 7. The first path (left) is sampled by accumulation of gaussian
increments. The second path (middle) diverges from the first at time t = 3. The third
path (right) shares the first part with the first path then goes along the second path
and diverges at time t = 5.

divergence time Td, where it diverges from the first path and goes its own way,
which is again determined by a Gaussian process (see Fig. 1(b)). Thus for t ≤ Td

the paths are the same and for t > Td they are different. Td is a random variable
and is determined by a divergence function a(t). The probability of diverging
in the next infinitesimal interval dt is given by p(Td ∈ [t, t + dt])dt = a(t)dt,
where a(t) is an arbitrary monotonically increasing divergence function (see [9]
for details). As a result the probability of divergence increases monotonically
in time during the diffusion process. Lets assume X2 diverged from X2 at time
Td = t0 = 3.

Now the third path X3 is being sampled. Lets assume, the point of divergence
of the third path is t1 > t0, i.e. X3 diverges later the X2 did and X1(t) =
X2(t) = X3(t) for t ∈ [0, t0],. Thus, when the process reaches t0 = 3 a decision
has to be made whether it should follow X1 or X2 until it diverges at t = t1 = 5
(see Fig. 1(c)). This decision is done by randomly choosing from one of the
branching paths with probability proportional to the number of previous times
the respective path was chosen. Thus paths that have often been chosen before,
are more likely to be chosen again. The concept of preferring what has been
chosen before is called reinforcement of past events by [9] and is one of the main
reasons which motivates the use of the DDT in our work. [9] further introduces
an additional way to implement this concept by reducing the probability of
divergence from a path Xi proportional to the number of times the path has
been travelled before. Thus it is less likely to diverge from a path that has been
used by many samples before.

After generating N paths X1, . . . , XN , the values X1(D), . . . , XN(D) repre-
sent the set of samples generated if the DDT is viewed as a black-box sampling
technique. We call those values final samples, as they are the final outcome of
each diffusion process.
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4 Our Algorithm

The algorithm proposed here borrows heavily from the idea of the diffusion
tree and thus is called DT-Learning, where DT stands for diffusion tree. Like
most other sampling-based approaches it operates on a discrete state space S =
{si}i=1,...,Ns . To represent values and actions, we maintain a diffusion tree for
every state, where the domain of the samples is the action space of the agent. The
following paragraph introduces the structural elements that make up a diffusion
tree as used in our approach.

Structural Elements of Our Diffusion Tree: Unlike the continuous notion of
the diffusion tree as presented in [9], the paths of our diffsion tree are dis-
crete in time and consist of a sequence of concrete samples of the diffusion
process, which we further call nodes. Further, we extend the notion of the dif-
fusion tree by a structural element called segment, which comprises the set of
nodes from one divergence point to another (see Fig. 2).
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Fig. 2. Abstraction of a diffusion tree
(left) to a tree of segments (right).
Nodes in the diffusion tree make up a
segment (ellipses). The segments them-
selves form a tree (right). Segment 1 is
the root segment, segments 3,4, and 5
are leaf segments. The rectangular leaf
nodes (left) are the final action sam-
ples, placed continuously in the action
space.

Let c be a segment and let c[i] be the i-th
node of c. That way, the segments them-
selves comprise a tree structure, where a
segment has one parent segment and ar-
bitrarily many child segments. One par-
ticular segment has no parent segment
and is called the root segment. Segments
without child segments are called leaf seg-
ments. The last node of a leaf segment is
also a leaf node of the entire tree. In or-
der to ease notation we will use a func-
tional notation for attributes of an entity
(a tree, a segment, or a node) in the fol-
lowing. Let rt(s) be the root segment of
the tree of state s. Let pa(c) be the par-
ent segment of a segment c and let ch(c)
be the set of child segments of segment c.
In case c is a leaf segment, ch(c) = ∅. Let
further leaf(c) denote the last node of a
segment c. If c is a leaf segment, leaf(c)
is also leaf node of the tree. A leaf node
of the tree represents a final sample from
the underlying domain. All intermediate
nodes of all segments in the tree are just
a byproduct of the sampling and have no particular use. Put differently, if we
interpret the diffusion tree as a black-box sampling mechanism which just gener-
ates samples in the action space, we would only see the final samples represented
by the leaf nodes. The remaining tree structure would be hidden in the box.
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Hierarchical Representation of Knowledge: Besides the structural relations, sev-
eral elements carry further information as attributes. The attribute counter(c)
counts the number of paths that share the segment c, i.e. the number of paths
that went c before they diverged and went their own way. The attribute val(c)
carries the q-value of a segment. The q-value of a segment is our way of rep-
resenting the estimated long-term return of a state or state-action pair and is
defined recursively as follows. The value of a leaf segment c of the tree in state s
is val(c) = Q̂(s, a), where a = leaf(c) is the final action sample of the segment.
The quantity Q̂(s, a) is the estimated long term return, when executing action
a in state s and is obtained in the real-time run when the agent enters the re-
sulting successor state s′ and is given by Q̂(s, a) = r(s, a) + γV̂ (s′). The value
of a non-leaf segment c is defined by the maximum value over all it’s children.
By applying this rule recursively bottom-up the value of root segment of state
s becomes the maximum value of all action samples generated by the diffusion
tree in that state and thus val(rt(s)) = V̂ (s) is the expected long term return
for state s when acting greedy, i.e. always executing the action that maximizes
expected long-term return.

Controlled Exploration by Informed Sampling: In order to direct our search for
good action samples we need to control our action sampling process. We do
this by controlling the divergence time and by controlling the choice of path
to go at a divergence point. For the first one, we use the approach from the
original DDT, which is decreasing the probability of divergence from a segment
c with increasing counter counter(c). This way we implement the principle of
reinforcement of past events. For the latter one, we will describe our approach
in the following.

The information available at a branching point leaf(c) is the set of children c′

of the segment c and all information those children are attributed with, in partic-
ular each one’s val(c′), which represents the expected action-value of the region
covered by the subtree of c′. Based on that information, we can make a decision
about which path to choose in numerous ways, each with different effects on the
resulting sample distribution. The original heuristics of [9] is to randomly choose
a child with probability proportional to the child’s counter. This heuristic re-
sults in an accumulation of samples in regions where already many samples are,
because counters of segments leading to those regions are high. However, to fa-
cilitate efficient exploration we wish to accumulate samples in regions with high
expected long-term return instead. A straight forward approach to implement
this idea is to deterministically choose the child with the maximum value. This
will ultimately lead to accumulation of samples in regions with high expected
long-term return. However, this statement is only valid, if the tree has ’seen’
values in all promising regions of the underlying domain, i.e. it has some sam-
ples evenly distributed over the underlying domain. If we choose this heuristic
right from the start of the learning process, the tree will concentrate its samples
to local optima it encounters in the first few sampling steps. A common way to
circumvent this issue in conventional approaches is to choose actions randomly at
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the beginning of the learning process which accounts for the uncertainty of knowl-
edge about the utility of the actions and to increase the trust on the knowledge
obtained by decreasing the random proportion in decision making over time. To
implement this idea we use Boltzmann Selection, where the probability of choos-
ing a child is given by pc = exp (val(c)/τ) /

∑
c′∈ch(pa(c)) exp (val(c′)/τ). Thus,

at the beginning of the learning process we set τ to a high value to account for
the uncertainty of knowledge. Choices will be made purely randomly and final
samples will be evenly spread over the action space. Over time we decrease τ , and
thus the choice will be increasingly deterministic to account for the increasing
certainty of the acquired knowledge about high expected return.

Algorithmic Description: Algorithm 1 shows the pseudocode of our approach.
Knowledge is acquired by incrementally building diffusion trees in the states.
Every time the agent visits a state, it generates a new path (line 2) in the
diffusion tree and thereby samples an action a to be executed. In the beginning

Algorithm 1. DT LEARNING(s).
1: repeat
2: c← SAMPLE PATH(s)
3: a← leaf(c)
4: execute a, observe result state s′ and reward r
5: PROPAGATE UP (c, r, val(rt(s′)))
6: s← s′

7: until s is goal state

procedure SAMPLE PATH(s)

8: if rt(s) = 0 then
9: rt(s)← sample new segment starting at t=0 and a=0

10: return rt(s)
11: else
12: c← rt(s)
13: loop
14: d← sample divergence time ∈ [start(c),D] // with start(·) ≡ start time
15: if d ≤ end(c) then // with end(·) ≡ end time
16: c′ ← sample new segment starting at t=d and a=c[d]
17: pa(c′)← (c) and ch(c)← ch(c) ∪ {c′}
18: return c′

19: else if d > end(c) then
20: c← choose child c′ ∈ ch(c) by Boltzmann Selection

procedure PROPAGATE UP (c, r, v)

21: val(c)← r + γ · v
22: repeat
23: c← pa(c);
24: e← r + γ v − val(c)
25: if e > 0 then
26: val(c)← val(c) + α e // with α ≡ learning rate
27: until c has no parent



Exploring Continuous Action Spaces with Diffusion Trees 197

of a run the diffusion trees in all states are empty, i.e. they have no path. On
the first visit of a state s the agent generates the first path, which will be the
first segment c of the tree in s and thus rt(s) = c (line 9). The leaf node of c
represents the final action sample a and thus leaf(rt(s)) = a (line 3). The agent
will now execute a leading into state s′, observe the reward r(s, a) (line 4) and
update the value of the three in s (line 5) by first setting the value of c according
to value update equation (line 21) and then recursively updating the value of
the parents (line 22). When entering a state with a tree that has at least one
segment, we walk down the tree by sampling a divergence time (line 14) and
choosing between children (line 20) until divergence (line 15). Figure 3 shows a
run of an agent in a world with two states and two actions.
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Fig. 3. Successive sampling of paths. The upper part of each figure shows the state
transition graph of a simple abstract world with two discrete states and two discrete
actions, where the current state is painted with a thick line width. Below the states
A and B the diffusion trees of those states are shown. The interval lines below the
trees illustrate the mapping from continuous action samples to the two discrete actions
utilized in the selected exemplary application.

5 Experiments

In order to validate our approach we conducted two experiments in simulation.
The experiments serve to validate the value of informed sampling against un-
informed sampling. Therefore we compare two algorithms, DT-Learning (DTL)
and a simple random scheme we call Random Sampling Q-Learning (RSQL). In
RSQL, with probability ν an action-sample is drawn uniformly in every state
and kept in case its resulting estimated return is greater than the return of the
best action-sample kept so far for that state. With probability 1 − ν the best
action obtained so far is executed. The parameter ν is set to a value near one
at the beginning and is decreased over time to account for the uncertainty of
knowledge in the beginning. Thus, RSQL is the simplest sampling scheme possi-
ble as it is as uninformative as possible while still fulfilling all necessities of the
Q-learning framework.

The task in the first experiment is to find the shortest path from a start
location to a goal location in a grid world. The states space consists of the two-
dimensional locations in the grid. The actions a′ in a gridworld consist of the five
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Fig. 4. Performance of the algorithms DT-Learning (DTL), RSQ-Learning (RSQL),
and Q-Learning (QL) on the two test tasks to reach a goal cell (left) and to stabilize
a pendulum (right)

choices to go up, down, west, east and to stay, i.e. a′ ∈ {0, . . . , 4}. To apply the
action-continuous approaches, their continuous outputs a ∈ [0, 5] are mapped
to those five actions by a′ = �a�. The agent receives a positive reward when it
enters the goal cell and a negative one, when it bumps into a wall. We chose
this discrete world, because it is simple and facilitates easy analysis of the key
properties of our algorithm. We evaluated the average number of steps until the
agent reaches the goal point during a number of successive learning episodes,
where the agent keeps its knowledge over the different episodes. Figure 4 (left)
shows the results, averaged over 10 trials each. We applied Q-learning (QL) in
its original action-discrete fashion, to serve as a base line for comparison. As
can be seen the convergence of both sampling-based algorithms is worse than
Q-learning. This is because Q-Learning, working with the five discrete actions,
is naturally the best fit for this task. The convergence of DTL is better than the
one of RSQL, due to DTL sampling more actions in regions with high expected
return, whereas RSQL acts ignorant about the knowledge obtained earlier and
thus generates samples that lead into walls with relatively high probability.

In a second experiment we tested our algorithm on the task to stabilize a
pendulum in an upright position. To ease the task, the starting position for every
episode is the upright position. During an episode the number of steps is counted
until pendulum crosses the horizontal position. The two-dimensional state space,
consisting of angle φ ∈ [0, 2π] and angular velocity ω ∈ [−10 rad

s , 10 rad
s ], was

discretized into 41 equally sized intervals per dimension. The action space was
the angular acceleration A = [−10 Nm, 10 Nm]. Figure 4 (right) shows the
results of the two algorithms RSQL and DTL. As can be seen DT-Learning
converges slightly faster. Again, this is due to the more efficient exploration
resulting from controlled sampling of actions in regions with higher expected
return. We omitted Q-Learning here, because the necessary discretization of the
action space would render the results incomparable.
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6 Conclusion

In this work we presented an approach for reinforcement learning with continu-
ous actions. We were able to show the benefits of informed sampling of actions by
efficiently using hierarchically structured knowledge about values of the actions
space. The computational cost of sampling an action is of logarithmic order in
the number of action samples, as is typical for tree-based approaches. In com-
parison to a very simple, uninformed sampling scheme our approach showed
better convergence rates. However, some open issues remain. Due to the dis-
cretization of the state space, there is a discontinuity in the value of a particular
action between two states. This could be handled by an interpolation between
two trees. Another issue concerns the aging of information in unused parts of
the trees. Because memory requirements for our approach are relatively high, a
technique must be found to prune subtrees based on the utility of their contained
information. These issues will be subject to further research.
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