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Abstract—Developing methods for people tracking on mobile
robots is of great interest to engineers and scientists alike. Plenty
of research is focused on pedestrian tracking in public areas.
Yet, fewer work exists on practical people tracking in home
environments with non-static cameras. This paper presents a real-
time people tracking system for mobile robots that filters asyn-
chronous, multi-modal detections using a Kalman filter for each
person. It allows for upright and sitting pose people tracking in
home environments. We evaluate the performance of the tracking
system using different detection modalities and compared it to
state-of-the-art people detection methods. Evaluation was done
on a newly collected indoor data set which we made publicly
available for comparison and benchmarking.

Index Terms—People tracking; real-time; mobile robotics;
home environment

I. INTRODUCTION

A long-term research goal is the development of mobile
robots assisting users in domestic environments. Helping el-
derly people to live independently for as long as possible
by supporting them in their daily routine and increasing their
quality of life is one of the major challenges in modern health
care. Mobile robots can add additional benefits to the solution
of this challenge by providing services that cannot be done
by human care-givers – either due to time or cost restrictions.
To provide these user-centered services, the robot needs to be
aware of the user’s position in the apartment. While a lot of
current research projects focus on the detection and tracking of
pedestrians, fewer works put an emphasis on people tracking
in home environments. Yet, home environments introduce new
challenges like various poses of the user, partial occlusions,
and limited computational resources of the mobile platform
that are worth exploring [1]. In addition, most data sets used
in former works cover pedestrians in outdoor scenarios or only
contain images of static indoor cameras. Only a few public
indoor data sets exist that are captured by a mobile robot and
provide multi-modal sensor cues, like images and range data
[2]. While the data set of [2] is very large and contains various
sensor modalities, it does not provide a global robot position
with uncertainties and labeled person IDs which are both useful
to evaluate tracking algorithms for mobile robots (Sec. III-B).

Therefore, in this paper, we present an indoor data set
recorded on our mobile robot platform containing data of
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multiple sensors – rectified fisheye images, depth data (Kinect
sensor), and 2D range data (laser range finder) – and additional
data of the mobile robot. Furthermore, as a main contribution
of this paper, we present a people tracking system that fuses
detections of multiple asynchronously working detection mod-
ules while respecting the uncertainties of the different sensor
cues and the pose of the robot. We evaluate the usefulness of
different detection methods on the data sets by comparing the
tracking capabilities of the system using different combinations
of input cues. A practical solution of the tracking system,
running in real-time on the robot’s hardware, does not include
all modules and applies a trade-off between detection rate
and computational performance while keeping enough CPU
time for other required modules of the robot, e.g. user-dialog,
localization, and path planning (the robot and its architecture
are described in [1]). As performance is not totally satisfying in
all scenarios, we show which state-of-the-art detection methods
would improve the tracking on the robot the most.

The remainder of this paper is organized as follows: Sec-
tion II summarizes related work in the research area. Section III
presents our tracking system. Section IV describes the data sets
used for evaluation and the results of our experiments. Sec. V
summarizes our contribution and gives an outlook on future
work.

II. RELATED WORK

People detection and tracking are well-established research
areas, and impressive results have been accomplished recently.
A plenty amount of visual detection methods originated in the
field of pedestrian detection, each with their own benefits and
disadvantages (a survey is given in [3]). Recent approaches
like [4], [5] achieve good results at frame-rate by applying
a soft-cascade, tuning features, sampling the image pyramid
and using ground plane constraints. Yet, pedestrian detection
only covers a part of the problem of finding people in their
homes, e.g. related to the variety of poses encountered and
occlusions. On the other hand, [6], [7] are designed for
detection quality and achieve impressive results given partial
occlusion and varying poses. Unfortunately, they are from real-
time capability since they require several seconds of processing
time per image. In the field of mobile service robotics, people
are also often detected by their faces [8], color [9], and gradient
features [10]. Additionally, most mobile robots are equipped
with laser range finders which allow the detection of human



legs [11]. [12] extends the concept of [11] to arrays of laser
range finders to increase detection performance and handle
occlusions.

Plenty of research has been done to develop methods for
people tracking on mobile robots in real-world applications.
Most of these approaches focus on pedestrian tracking [13]–
[15]. Furthermore, evaluation is often done on pre-captured
data, and real-time performance retreats into the background
while the main focus concentrates on detection quality. On the
other hand, real-time approaches usually apply very fast detec-
tors [4], [5], a tracking-by-detection scheme [16] and special
hardware, like stereo-cameras and dedicated GPUs, which are
unfortunately not available on our mobile robot platform [1].
Real-time indoor approaches use thermal cameras [10] or focus
on single poses and person recognition [9]. Unfortunately,
they work on closed data sets, which makes comparison hard.
Furthermore, many approaches do not consider the processing
time for other required modules like localization, mapping,
path planning, and user-dialog. The tracking system presented
in this paper runs on a single CPU while keeping enough
processing time for these modules.

III. PEOPLE TRACKING

A robust people tracking system on a mobile robot has
to detect and track people in different situations that occur
in domestic environments, e.g. partial occlusions and varying
poses. In this section, we describe the detection modules and
the alignment of their detections, followed by a description of
the tracking system.

A. Person Detection

1) HOG Detection: To detect people by their body shape,
we apply a full body and an upper body detector based on
Histograms of Oriented Gradients (HOG) [17], [18]. We use
a scale factor between two layers of the HOG feature image
pyramid of 1.1 for performance reasons. All other parameters
are set to the ones described in the original implementation
[17]. A ground plane constraint for sitting and standing people
is used to reduce false positives. This also increases the pro-
cessing performance by a factor of 2 compared to processing
the full image.

2) Face Detection: The face detection system utilizes the
well-known AdaBoost detector of Viola & Jones [8]. The
method is configured to detect faces up to a minimum size
of 30x30 pixels with a scale change between two pyramid
levels of 1.1. We apply the detector only on the upper half of
the image to reduce processing time and false positives.

3) Motion Detection: Each time the robot does not move,
signaled by the robot’s odometry, we apply a simple motion
difference detection. The difference image between two frames
is thresholded, and a connected components algorithm gives
bounding boxes of moving regions in the image.

4) Leg detection: The leg detection module uses range data
delivered by the robot’s laser range finder (LRF) and applies a
boosted set of classifiers to distinguish legs from other objects
in the environment [11]. By searching for paired legs, the

system produces hypotheses of the user’s position. However,
objects similar to legs, like tables and chairs, often lead to
false positive detections. In this work we use discrete AdaBoost
with one-dimensional, brute-force-trained weak classifiers. Yet,
recent experiments showed that performance could be heavily
increased when using gentle AdaBoost with decision trees with
2-3 stumps as weak classifiers.

5) Fastest Pedestrian Detector in the West (FPDW): To
show how our system would improve with a state-of-the-art
pedestrian detection method, we applied the Matlab imple-
mentation method of [4] offline on the images of the captured
data sets, transformed the bounding boxes into Gaussians, and
integrated them into the people tracker.

6) Part HOG: We reimplemented the method of [6] in
a multi-core C++ version which increases the perfomance
compared to the Matlab version by a factor of 2. Nevertheless,
the method still requires 3 seconds to process a 640x480
image when using a VOC 2009 model [19] and could only
be evaluated offline.

Our real-time set-up of the people tracker uses well estab-
lished methods, i.e. HOG, motion, face, and leg detection 1)-4),
whose detection quality is mediocre compared to cutting-edge
methods of Sec. II. Yet, the people tracker is also evaluated
offline on our data sets applying promising new detection
paradigms, i.e. FPDW and PartHOG 5),6), which are not yet
usable on our robot, but could be integrated in the future.

B. Alignment and Transformation of Detections

Each detection module detects people by different body
parts, e.g. the face, legs, or head-shoulder contour. We trans-
form the detections to Gaussians in a world coordinate frame
and align them to a common reference point, i.e. the head of a
person. Bounding boxes of people given by the vision modules
are first transformed into Gaussian distributions in the camera
coordinate frame using the intrinsic parameters of the camera.
The distance to the robot’s camera is estimated by using the
width of the detected part in the real world. The resulting
Gaussians are then transformed into world coordinates (world
frame) by using the extrinsic parameters of the camera and
the robot’s pose. The leg detection module generates people’s
positions x, y in the laser scanner’s coordinate frame. These
are transformed into Gaussians in the world coordinate frame
using the height of the laser scan for the z coordinate. The
sensor model describes the certainty of each detector and is
incorporated into the covariance of the corresponding Gaussian
distribution. We use a low variance for leg detections and a
high variance in the view-direction of the robot’s camera for
visual detection modules, since the distance to the robot is
estimated by the width of bounding boxes that represent body
parts of slightly different real world widths.

Compared to image based trackers, tracking in a world
frame includes the motion of the robot and facilitates tracking
by allowing a linear motion model. Yet, the transformation of
detections from the local sensor frames into the world frame
needs to respect the uncertainty of the robot’s pose. Therefore,
the covariances of the Gaussians in the local sensor frames
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Fig. 1. The graphic shows the covariance of the concatenated transformation
y (green) of the two uncertain transformations w (orange) and a (blue). Hence,
the uncertainty of the robot’s pose and the detections is propagated to the
uncertainty of the detections in the world frame.

must be increased by the uncertainty of the robot’s pose in
the world frame. This is visualized in Fig. 1: transformation
w denotes the robot’s pose in the world frame with an
uncertainty represented by the orange Gaussian. A detection
with high variance in distance estimation (camera is looking in
x-direction of the robot frame) is defined by a transformation
a that describes its position and uncertainty (blue Gaussian) in
the robot frame. The covariance of the detection in the world
frame (green Gaussian) must respect both covariances and is
calculated by covariance error propagation [20]:

Cy = JaCaJa
T + JwCwJw

T , (1)

where Cy denotes the covariance of the concatenated trans-
formation y = g(w,a) = w · a, and Ca, Cw denote the
covariance of a and w, respectively. The Jacobians are given
by Ja = ∂y/∂a and Jw = ∂y/∂w. For clarity Fig. 1 visual-
izes the 2D case, while we normally use 3D transformations.
Finally, the error-propagated Gaussians are aligned to the head
position of people. The mean of each Gaussian is moved along
the vertical axis to the expected head position. Furthermore,
the vertical axis of the covariance is increased according to
the uncertainty of the head position to the detected body part,
e.g. high additional variance for leg detections accounting
for different heights and poses of people, but none for face
detections. Future work could learn the certainty of the sensor
models and the parameters of the alignment from training data.

C. People Tracking

Our probabilistic people tracking system fuses Gaussians
of multiple asynchronous detection modules. Figure 2 gives
an overview of the people tracker and its processing steps
described below.

1) Data Association: All Gaussian detections within the
last 100 milliseconds are sorted by their detection time and
processed sequentially. First, the prediction step is applied to
all hypotheses in the tracker using a Kalman filtering algorithm
(Sec. III-C4). Second, the current detection is assigned to
the closest hypothesis in the tracker using the Mahalanobis
distance:

d = (µh − µd)
T (Ch +Cd)

−1(µh − µd) , (2)

where µh, Ch, µd, Cd are the mean and covariance of the
hypothesis and detection positions, respectively. The detection
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Fig. 2. Overview of the processing steps of the people tracker.

is assigned to the hypothesis with the smallest distance d and
the update step of the filter algorithm is applied. If the distances
to each hypotheses exceed an empirically determined threshold
dmax = 1.5, the detection is considered as a new track, and a
new hypothesis with a new filter algorithm is inserted at the
detection’s mean position µd with covariance Cd.

Besides the uncertainty given by the covariances of the
Gaussians, we introduce an additional confidence which cap-
tures the precision of each detector. A leg detection is more
precise in position estimation than a HOG detection, but
the probability of being a person might be lower because
many objects produce false positives. When a detection is
successfully assigned to a hypothesis the confidence of the
hypothesis is increased by:

ch := ch + (1− ch)cd , (3)

where ch is the confidence of the hypothesis and cd is the
confidence of the detection. ch and cd are limited to [0, 1]. cd
has a big influence on ch if ch is small and a small influence
if it is close to 1. By limiting the maximum confidence each
sensor cue can add to the overall confidence, we can validate
hypotheses by requiring multiple cues to observe it. Hence,
detections from a single cue might create new tracks, but
they are not outputted until a detection from another sensor
is assigned to the track.

2) Covariance Intersection: Occasionally, a sensor input
produces multiple detections of the same person in a time step
that would be fused by the data association of the tracker.
Examples are bounding boxes of a visual detector without
non-maximum suppression or overlapping motion detections.
Assuming that those detections originated from the same
source, independence of the measurements does not hold. In
that case, a Bayesian filtering algorithm, e.g. a Kalman filter,
would underestimate the covariance of the detection by fusing
all detections on the nearest hypothesis.

Since correlation between the measurements is usually
unknown, we apply covariance intersection [21] to fuse those
detections to a single Gaussian:

C−1
3 = (1− ω)C−1

1 + ωC−1
2 , (4)



where ω is a weighting parameter that defines the influence of
the covariances C1 and C2 on the resulting covariance C3. It
is set to:

ω =
|C1|

|C1|+|C2|
, (5)

which balances the influence of both covariances [21]. The
mean of the fused detection is calculated by:

µ3 = C3

[
(1− ω)C−1

1 µ1 + ωC−1
2 µ2

]
, (6)

respecting the covariances of the considered detections.
3) Out-of-Sequence-Measurement (OOSM): OOSMs occur

because of the different processing time of the asynchronous
detection modules. Consider a laser leg detector with frequent
observations, while a HOG detector needs more time for
processing one image. If processing of the observations is
triggered while the HOG module still processes its image,
the state of the hypotheses is set by recent laser detections.
Now, the timestamp of the HOG detection (determined by the
processed image) is older than the current state in the tracker.
To handle these OOSMs, the motion model of the tracker
is skipped and the observations are predicted to the current
timestamp using the predict method of their assigned filtering
algorithm (Sec. III-C4). The observations are then normally
used to update the hypotheses in the tracker. A detailed analysis
of the OOSM handling will be subject of future work.

4) Filtering: Generally, we designed the people tracker as
a framework and allow for any filtering algorithm that can
use Gaussian distributions as input and reflect its state as a
Gaussian. For example in [22] the tracker is used with a 12-
dimensional state to track people’s position, orientation, and
velocity. In this work however, we apply a 6D Kalman filter
that tracks the position and velocity of each hypothesis in the
system as we already did in a former work [23]. The state
space of a hypothesis is given by:

x = (x, y, z, ẋ, ẏ, ż)
T
, (7)

where x, y, z denote the 3D position and ẋ, ẏ, ż the 3-
dimensional velocity. Each hypothesis undergoes a nor-
mally distributed constant acceleration over the time interval
[xk−1,xk]. Additionally, the confidence ch of each hypothesis
is lowered by a fixed time dependent value in the prediction
step of the filter.

5) Hypotheses Management: The system comprises several
mechanisms to manage and limit the number of hypotheses.
First, the tracker merges hypotheses with similar positions
and velocities. Second, it prunes weak hypotheses with high
positional covariance and low confidence, i.e. those that are not
observed anymore. Third, detections and hypotheses in walls
or obstacles can be pruned by using knowledge of the operation
area, e.g. from an occupancy map (Fig. 2).

IV. EXPERIMENTS

We captured eight different data sets on our mobile platform
[1]. The data sets are given in form of MIRA tapes [24] and
contain rectified RGB images of the fish-eye front camera, LRF
data, 3d range data of the Kinect sensor (Tab. I), intrinsic and

TABLE I
STATISTICS OF THE SENSORS

Sensor data Format Frequency
RGB images (rect. fish-eye) 800x600 px 15 Hz
Kinect Depth 640x480 px 10 Hz
LRF Range vector 12 Hz
Robot pose 2D PoseCov 15 Hz

TABLE II
STATISTICS OF THE DATA SETS

Data set Length Frames Info
Hallway 46 s 629 1-4 people walking
Follow 110 s 1679 following 1 person
Chair+Couch 82 s 1089 1 person sitting down
Sitting 1-4 218 s 2916 1-2 people sitting

extrinsic parameters of the cameras, coordinates of the different
sensor frames, an occupancy map, odometry, and the robot’s
pose. Note that our tracking system does not make use of the
Kinect data so far. The data sets increase in difficulty (Tab. II
and Fig. 3). All people in the data set are manually labeled
with bounding boxes in the RGB image, IDs, and occlusion
information using the VATIC label tool [25]. The full data sets,
pure jpg images, and label information are publicly available1.

We evaluated our real-time tracking system on the afore-
mentioned data sets and compared it to offline trackers using
state-of-the-art detection modules. The 3D Gaussian hypothe-
ses of the trackers are transformed back into bounding boxes
in the image. The height of each bounding box is calculated
using the height of the corresponding Gaussian (top position)
and assuming that people touch the ground (bottom position).
The width of the transformed bounding box is determined
empirically to half the size of the height. The bounding boxes
and their IDs are compared to the labeled bounding boxes
using the Multiple Object Tracking Performance (MOT) metric
[26] which evaluates the precision, accuracy, and ID switches
of the trackers. The intersection over union metric is used as
a distance measure with a somewhat less restrictive threshold
of 0.25 compared to the standard value of 0.5. The reason
for this is, that we do not explicitly estimate people’s poses
but transform 3D Gaussians to bounding boxes in the image
assuming a fixed height/width ratio. Hence, in case of sitting
postures and almost quadratic labeled boxes, the overlap of the
tracker’s bounding box significantly reduces.

For each data set, we present the precision, recall and MOT
metrics. The following tables show the mean misses (Miss),
the average false positives (FP), the mean mismatch error
(MME), recall (RC), precision (PR), the multi object tracking
precision (MOTP), and accuracy (MOTA) [26]. The first 3
values denote a ratio of accumulated misses, false positives,
and mismatches over the total number of ground truth objects
in the data sets, respectively. The MOTP denotes the average
error in the estimated position for all matched hypothesis-label
pairs. The distance of a match is calculated using intersection-
union metric. Hence, the MOTP is bounded to the interval
[0, 1] with 0 being perfect and 1 being worst (no overlap of

1http://www.tu-ilmenau.de/neurob/team/dipl-inf-michael-volkhardt/



(a) Hallway (b) Follow (c) Chair+Couch (d) Sitting 1-4

Fig. 3. Exemplary labeled pictures of the different data sets. (a) Standing
robot with multiple moving people, (b) robot following a person with another
person passing by, (c) standing robot with person sitting down and standing
up, (d) searching robot, person sitting and occasionally standing up.

TABLE III
RESULTS OF REAL-TIME AND LASER ONLY TRACKER

Data set Miss FP MME RC PR MOTP MOTA
Hallway 0.30 0.28 0.0109 0.76 0.73 0.50 0.40
- Laser 0.40 0.24 0.0100 0.66 0.73 0.51 0.35
Follow 0.26 0.28 0.0122 0.77 0.73 0.51 0.45
- Laser 0.24 0.39 0.0071 0.79 0.67 0.52 0.35
C.+C. 0.43 0.55 0.0066 0.59 0.51 0.54 0.02
- Laser 0.49 0.19 0.0102 0.52 0.74 0.53 0.32
Sit. 1-4 0.51 0.48 0.0044 0.49 0.52 0.61 0.01
- Laser 0.55 0.87 0.0094 0.45 0.44 0.63 -0.43

bounding boxes). Finally, the accuracy and consistency of the
tracker is given by the MOTA value:

MOTA = 1−
∑

k(Missk + FPk +MMEk)∑
kGk

, (8)

where Missk, FPk, and MMEk are the misses, false pos-
itives, and mismatches for time step k, respectively, and Gk

denotes the number of all labels for time k. Here, a value
of 1 means perfect tracking with no missed objects, no false
positives and no identity switches. Note that the lower value
of the MOTA is unbounded and can easily become negative -
especially if there are false positives in the tracks.

The results of our real-time tracker, using face, HOG, upper-
body HOG, motion, and leg detections against a purely leg
detection based tracker are given in Tab. III. Results of an
offline FPDW tracker and a combined FPDW+leg detections
based tracker are given in Tab. IV, while the results of the
offline partHOG tracker and partHOG+leg detections based
tracker are given in Tab. V. Furthermore, we give precision
and recall values of the pure detectors in Tab. VI.

The real-time tracker shows good performance when people

TABLE IV
RESULTS OF FPDW AND FPDW+LASER TRACKER

Data set Miss FP MME RC PR MOTP MOTA
Hallway 0.51 0.34 0.0075 0.50 0.59 0.55 0.14
+ Laser 0.28 0.40 0.0174 0.77 0.66 0.56 0.29
Follow 0.40 0.22 0.0032 0.60 0.73 0.51 0.37
+ Laser 0.19 0.31 0.0032 0.82 0.72 0.53 0.48
C.+C. 0.835 0.44 0.0065 0.17 0.27 0.64 -0.28
+ Laser 0.66 0.45 0.0093 0.35 0.43 0.57 -0.11
Sit. 1-4 0.94 0.40 0.0033 0.06 0.10 0.72 -0.34
+ Laser 0.67 0.37 0.0058 0.33 0.54 0.55 -0.04

TABLE V
RESULTS OF PARTHOG AND PARTHOG+LASER TRACKER

Data set Miss FP MME RC PR MOTP MOTA
Hallway 0.42 0.16 0.0100 0.60 0.79 0.49 0.41
+ Laser 0.30 0.31 0.0125 0.74 0.70 0.49 0.37
Follow 0.28 0.16 0.0045 0.73 0.82 0.48 0.56
+ Laser 0.11 0.35 0.0045 0.95 0.73 0.49 0.54
C.+C. 0.46 0.44 0.0047 0.55 0.56 0.56 0.10
+ Laser 0.36 0.51 0.0093 0.65 0.56 0.56 0.14
Sit. 1-4 0.52 0.36 0.0032 0.49 0.54 0.60 0.12
+ Laser 0.39 0.39 0.0033 0.61 0.62 0.57 0.22

TABLE VI
RECALL AND PRECISION OF DETECTORS (OFFLINE ON EACH FRAME)

(a) FPDW
Data set RC PR
Hallway 0.76 0.97
Follow 0.53 0.98
Chair+Couch 0.21 0.81
Sitting 1-4 0.13 0.37

(b) PartHOG
Data set RC PR
Hallway 0.58 0.50
Follow 0.62 0.86
Chair+Couch 0.58 0.75
Sitting 1-4 0.53 0.65

stand or walk, but performance quickly degenerates when
people sit (Tab. III). Yet, it is superior to a purely leg-detection
based tracker, except for the Chair+Couch data set where it
produced a higher FP caused by consistent false positive HOG
detection on a floor lamp. Overall the combination of multi-
modal modules increases the tracking performance resulting in
higher RC and PR values. The data sets where people sit reveal
the limits of our tracking system. The system often misses
people sitting calmly when there are no face or upper body
detections (high miss rate for sitting scenarios). The sitting
data sets also include more false positives mostly caused by
the legs of cupboards and tables, and objects similar to persons,
like a floor lamp, plants and a lamp on a cupboard.

The offline FPDW based tracker shows relative good per-
formance for up-right pose people (Tab. IV). When people sit
performance heavily decreases, which is due to the fact that the
FPDW was trained for pedestrian detection. Yet, in all cases
the performance can be increased when using an additional
leg detector which helps to fill the gaps of missing detections.
Because our tracker also includes motion, face, and upper-
body detectors, its performance is superior to the FPDW and
FPDW+laser based tracker - especially when people sit. On the
other hand, if integrated, the FPDW method would definitely
improve our tracker when people are in an up-right pose. Best
results are achieved when using the offline partHOG based
tracker (Tab. V). The high recall and precision values of the
detector result in the highest MOTA values in almost all data
sets. Higher recall is achieved when combining the tracker with
a leg detector. On the other hand, precision and the MOTA go
down, because of many false positives of the leg detector.

The pure FPDW detector (Tab. VI(a)) often achieves better
results than the FPDW based tracker. Reasons are that the
tracker keeps hypotheses too long, data association distance
and the motion model are a little too restricted for this set-up,
and finally the projection of the 3D Gaussians to bounding
boxes is error prone, especially in distance estimation. These



TABLE VII
PROCESSING TIME OF MODULES

Module Avg. processing time [ms]
800x600 px 640x480 px

Face detector 172.4 99.7
Upper-body / HOG detector 408.8/423.0 242.3/225.4
Motion / Leg detector 3.1/1.0 1.6/1.0
FPDW (offline) 535.4 359.0
PartHOG (offline) 4975.7 2864.7
People Tracker 0.2 0.2

reasons need further investigations in future work. On the
other hand, the combination of FPDW+laser and our real-time
tracker achieve higher performances than the single FPDW
detector, especially when people sit. The partHOG detector
(Tab. VI(b)) achieved similar performance as the partHOG
tracker, because the detector processed every frame in an
offline evaluation.

We used the same parameters of all methods in all presented
scenarios. We scaled down the original image resolution to
640x480 to increase computational performance. A perfor-
mance evaluation of the detection modules of the people
tracker is given in Tab. VII. From there it becomes obvious that
the face and HOG modules do not process every frame but are
set to run every 500 ms. The complete tracking system runs
in real-time and is configured to consume 60% of the robot’s
on-board CPU (Intel i7-620M quad core processor) leaving
enough space for the other required modules of the robot [1].

V. CONCLUSION

We presented a real-time, multi-modal people tracking sys-
tem for mobile companion robots, that tracks walking people
and is able to track people in sitting poses, if there are enough
detector inputs. The system is evaluated on different data
sets with increasing difficulty. Furthermore, we compared the
performance to offline state-of-the-art people detectors, like
FPDW and partHOG, and trackers based on these detectors.
Our real-time version of the people tracker achieves better
results than a tracker based on the FPDW detector and the
pure detector, particularly when people sit. Best results are
achieved when using the partHOG detector, which, unfortu-
nately, is far from being real-time capable at the moment.
Yet, the only moderate performances of all tested trackers
show that more research is necessary to track people in home
environments - especially for non-upright poses. To develop
autonomous companion robots that support the elderly, we
need to enhance current person detection algorithms. The face
and upper body detection are not robust enough to detect
people in sitting postures or given occlusion. Using the FPDW
detector in the combined tracker could help to raise up-
right posture performance. Real-time implementations of part-
based detection concepts, like partHOG or poselets [7] that
handle occlusion and multiple postures, would greatly improve
tracking performance. Therefore, a major challenge lies in the
development of real-time capable methods for detecting people
in different poses, like sitting and lying given occlusion. The
recently available Kinect sensor and its 3D depth data could

help to achieve this goal.
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