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Fig. 15. (a) Input image as seen by the robot’s front camera. The region that is used for feature selection is marked by the blue rectangle. (b) The information gain for each
pixel of the upper left image, where red color indicates high values and blue corresponds to low values. (c) Input image taken some frames later. The reconstructed features
are shown as dots, where the height is coded by different colors (green: <0.10 m, yellow-red: 0.10 m–1.15 m). (d) Information gain for each pixel of the lower left image.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ba

Fig. 16. Image regions that were used for feature selection during the last 10 frames are shown as transparent rectangles. Areas where more attention was paid to are more
opaque. Images were taken while (a) driving around a right-hand bend and (b) driving along a narrow corridor.
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Fig. 17. Occupancy maps that were created from voxel maps. (a) Map created using the proposed attention-driven feature selection approach. (b) Map created by selecting
the features uniformly in each image.

different conditions. We were able to show, that some obstacles
which are not visible to active distance measuring sensors, like
laser range finders, can be safely detected by our vision based
approach and that a combination of visual obstacle detection with
a laser range finder can increase the detection rate of obstacles
considerably. Currently, we are carrying out long-term tests to
evaluate how much the number of collisions can be decreased
during the daily usage of the robots.

Moreover, we are developing amethod to estimate the position
of moving objects. Using additional constraints the position of
moving objects that reach to the ground can be recovered.Wehope

to publish the first results of that algorithm soon. In the approach
presented in this paper, features alongmoving objects are rejected
during feature tracking and filtered after the reconstruction due to
their high variance in the position estimates.
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