Abstract—Functional and formal verification are important methodologies for complex mixed-signal designs. But there exists a verification gap between the analog and digital blocks of a mixed-signal system. Our approach improves the verification process by creating mixed-signal assertions which are described by a combination of digital assertions and analog properties. The proposed method is a new assertion-based verification flow for designing mixed-signal circuits. The effectiveness of the approach is demonstrated on a Σ/Δ-converter.

Digital Assertions
- Specification
- Model
- Implementation
- Property
- Assertions
- Design under Verification (DUV)
- Monitors

Problem
- Discrete time
- Signal triggered
- Boolean values
- Continuous time
- Time intervals
- Continuous values
- Ranges with inequalities

Analog Properties
- Continuous signal monitoring
- Continuous time consideration
- Frequency analysis

Solution: combination of conditions

General definition of Mixed-Signal Assertions (MSA)

Precondition
- Analog → Digital

Postcondition
- Digital → Analog

Characteristics (general)
- Including monitor points (digital/analog block)
- Specification language: PSL (property specification language)
- Using implication → operator for combining analog and digital conditions
- Interconnection verification

Structure of MSA

Analog Precondition

\[x(t) < 0.7 \text{ & } x(t) > -0.7 \]

Digital Postcondition

\[\{ \text{next}_a[1:4] \} \]

Temporal operator with interval

Digital signal

Case study

Σ/Δ-Converter

- \(f_{\text{an}} = 160\text{Hz} \)
- \(f_s = 20\text{Hz} \)
- \(k = 1.4 \)

Mixed-Signal Assertions:

1. \(x(t) < 0 \text{ & } x(t) > 1 \)
2. \(f(t) \in [0, 1] \)
3. \(\text{analog} \rightarrow \text{digital} \)

Counterexample

"This work has been funded by BMBF and edacentrum e.V. within project (No. 01M3072C)."