Algorithmic Aspects of Communication Networks

Chapter 3
General Optimization Methods for Network Design

Basic Facts About LP

- LP (Linear Program) in general form

 indices

 \[j = 1, 2, \ldots, n \quad \text{variables} \]
 \[i = 1, 2, \ldots, m \quad \text{constraints} \]

 constants

 \[a_{ij} \quad \text{coefficient for variable } j \text{ in constraint } i \]
 \[b_i \quad \text{right-hand side of constraint } i \]
 \[c_j \quad \text{cost coefficient of variable } j \]

 objective

 minimize \(z = \sum_j c_j x_j \)

 constraints

 \[\sum_j a_{ij} x_j \leq b_i, \quad i = 1, 2, \ldots, m \]
Basic Facts About LP

- LP (Linear Program) in general form

Let
\[x = (x_1, x_2, \ldots, x_n); \]
\[c = (c_1, c_2, \ldots, c_n); \]
\[A = [a_{ij}], i = 1, 2, \ldots, m, j = 1, 2, \ldots, n; \]
and
\[b = (b_1, b_2, \ldots, b_m). \]

Then the LP in general form can be written as

minimize \[z = c x \]
subject to \[Ax \leq b \]

- LP (Linear Program) in standard form

minimize \[z = c x \]
subject to \[Ax = b \]
\[x \geq 0 \]

where \[b \geq 0 \] and \(A \) has rank \(m \leq n \)

- Remark

Any LP in general form can be transformed in an LP in standard form and vice versa.
Basic Facts About LP

- **Example**

 \[
 \begin{align*}
 \text{minimize} & \quad z = -x - 3y \\
 \text{subject to} & \quad -x + y \leq 1 \\
 & \quad x + y \leq 2 \\
 & \quad x,y \geq 0
 \end{align*}
 \]

- **In general form**

 \[
 \begin{align*}
 \text{minimize} & \quad z = (-1, -3) (x,y)^T \\
 \text{subject to} & \quad -x + y \leq 1 \\
 & \quad x + y \leq 2 \\
 & \quad -x \leq 0 \\
 & \quad -y \leq 0
 \end{align*}
 \]

- **Example, cont'd**

 \[
 \begin{align*}
 \text{minimize} & \quad z = -x - 3y \\
 \text{subject to} & \quad -x + y \leq 1 \\
 & \quad x + y \leq 2 \\
 & \quad x,y \geq 0
 \end{align*}
 \]

- **In standard form**

 \[
 \begin{align*}
 \text{minimize} & \quad z = (-1, -3) (x,y)^T \\
 \text{subject to} & \quad -x + y + v = 1, \\
 & \quad x + y + w = 2, \\
 & \quad x \geq 0, y \geq 0, v \geq 0, w \geq 0
 \end{align*}
 \]

 The ‘artificial’ variables \(v, w\) are called **slack variables**.
Basic Facts About LP

- Structure of feasible set
 - We consider an LP in standard form

 minimize \(z = c^T x \)
 subject to \(Ax = b \), \(x \geq 0 \)

 where \(b \geq 0 \) and \(A \) has rank \(m \leq n \)

 - Its feasible set \(M \) is

 \[M = \{ x : x \geq 0 \} \cap \{ x : Ax = b \} \]

 We put \(C = \{ x : x \geq 0 \} \), and so \(M = C \cap \{ x : Ax = b \} \).
Basic Facts About LP

- **Structure of feasible set, cont’d**

 - The set $\{ \mathbf{x} : A\mathbf{x} = \mathbf{b} \}$ is an affine subspace, i.e. the set of all solutions of an inhomogeneous system of linear equations. The set $\{ \mathbf{x} : \mathbf{x} \geq \mathbf{0} \}$ is a polyhedral set, i.e. the intersection of finitely many closed half-spaces. Consequently, M is a polyhedral set. Both sets are convex and closed and consequently, M is convex and closed.

 - A point \mathbf{x} in M is an **extreme point** of M if it cannot be expressed as a convex linear combination of other points in M. The extreme points of a polyhedral set are called its **vertices**.
Basic Facts About LP

- **Structure of feasible set, cont’d**

 - Let \(a_1, a_2, \ldots, a_n \) be the column vectors of the matrix \(A \). A solution \(x = (x_1, x_2, \ldots, x_n) \) of \(Ax = b \) is a **basic solution** if the set \(\{a_k : x_k \neq 0\} \) is linearly independent.

- **Theorem 1**: Let \(A \) is a matrix with \(m \) rows and \(n \) columns such that \(A \) has rank \(m \). Then, a point \(x \) in \(M \) is a vertex of \(M \) if and only if it is a basic solution of \(Ax = b \).

Proof of Thm. 1

- \(x \) is not a vertex of \(M \)

 \[\Rightarrow \exists \ u,v \in M : \exists c \in (0,1): x = cu + (1-c)v \text{ and } u - v \neq 0 \]
 \[\Rightarrow \quad Au = Av = b \]
 \[\Rightarrow \quad A(u - v) = 0 \]
 \[\Rightarrow \quad \{a_k : u_k - v_k \neq 0\} \text{ is not linearly independent} \]

 Since \(u,v \geq 0 \), \(u_k - v_k \neq 0 \) and \(c \in (0,1) \) implies \(c u_k + (1 - c) v_k = x_k \neq 0 \).

 Hence, \(\{a_k : u_k - v_k \neq 0\} \subseteq \{a_k : x_k \neq 0\} \).

 Consequently, if \(x \) is not a vertex of \(M \), then \(\{a_k : x_k \neq 0\} \) is not linearly independent, i.e. \(x \) is not a basic solution of \(Ax = b \).
Basic Facts About LP

- \(\mathbf{x} \) is not a basic solution of \(\mathbf{A} \mathbf{x} = \mathbf{b} \)

 \[\Rightarrow \{ \mathbf{a}_k : x_k \neq 0 \} \text{ is not linearly independent} \]
 \[\Rightarrow \exists \ \mathbf{v} \in \mathbb{R}^n : \mathbf{A} \mathbf{v} = \mathbf{0} \text{ and } v_k \neq 0 \implies x_k \neq 0 \]

 If \(\varepsilon \) is sufficiently small, then
 \[\mathbf{x}^+ \varepsilon \mathbf{v} \geq \mathbf{0} \text{ and } \mathbf{x}^- \varepsilon \mathbf{v} \geq \mathbf{0}. \]
 Clearly, \(\mathbf{A} (\mathbf{x}^+ \varepsilon \mathbf{v}) = \mathbf{A} (\mathbf{x}^- \varepsilon \mathbf{v}) = \mathbf{b} \) and
 \[\mathbf{x} = \frac{1}{2} (\mathbf{x}^+ \varepsilon \mathbf{v}) + \frac{1}{2} (\mathbf{x}^- \varepsilon \mathbf{v}). \]

 Consequently, \(\mathbf{x} \) is not a vertex of \(M \).

Q.E.D.

Structure of feasible set, cont’d

An immediate consequence of Thm. 1 is the following Corollary 2.

- **Corollary 2:** \(M \) has at most \(n! / ((n-m)! \cdot m!) \) vertices.

Furthermore, one can prove that \(M \) has at least one vertex.

- **Theorem 3:** \(M \) has at least one vertex.
Basic Facts About LP

- **Example:**

 \[
 \begin{align*}
 x + y + z & \leq 4 \\
 x & \leq 2 \\
 z & \leq 3 \\
 3y + z & \leq 6 \\
 x, y, z & \geq 0 \\

 x &= 2 \\
 x + y + z &= 4 \\
 3y + z &= 6 \\
 z &= 3
 \end{align*}
 \]

- **Theorem 4:** A bounded polyhedral set is the convex hull of its vertices.

- **Theorem 5:** Let \(M \) be a nonempty closed bounded polyhedral set (= a polyhedron) and \(c \) an \(n \)-dimensional vector. Then the LP (*)

 \[
 \begin{align*}
 \text{minimize} \quad z &= c \cdot x \\
 \text{subject to} \quad x &\in M
 \end{align*}
 \]

 has an optimal solution which is a vertex of \(M \).
Basic Facts About LP

- **Proof of Thm. 5:**
 - Since M is a bounded closed set and the objective function $z = c \cdot x$ is continuous, there is an optimal solution $x \in M$.
 - Suppose that x is not a vertex of M. Then x is a convex linear combination of vertices x_1, \ldots, x_r

 $x = \sum_j y_j x_j$

 with $y_1 > 0, \ldots, y_r > 0$ and $\sum_j y_j = 1$.

- **Proof of Thm. 5, cont’d**
 - Consequently, $cx = \sum_j y_j c x_j$.
 - Since x is an optimal solution, $c x_j \geq c \cdot x$ for all $j = 1, \ldots, r$.
 - It follows $cx = c x_j$ for all $j = 1, \ldots, r$, i.e. all vertices x_1, \ldots, x_r are also optimal solutions.

Q.E.D.
Basic Facts About LP

A similar but more elaborate argument can be used to prove the following Theorem 6.

- **Theorem 6:** If M is unbounded, then (*) has either no optimal solution at all, or it has an optimal solution which is a vertex of M.

The Simplex Algorithm

The Simplex Algorithm

We consider the following

- **LP (Linear Program) in standard form**

 minimize $z = c \ x$

 subject to $Ax = b$

 $x \geq 0$

 where $b \geq 0$ and A has rank $m \leq n$

- Let M be the **feasible set** i.e.

 $M = \{x : x \geq 0\} \cap \{x : Ax = b\}$
The Simplex Algorithm

The Simplex Algorithm consists of two parts, called Phase 1 and Phase 2.

- The input of Phase 2 is a feasible basic solution.
- Phase 2 stops when an optimal feasible basic solution has been found, or it has been detected that the objective function is unbounded from below on M.
- Phase 1 is needed only if no feasible basic solution is known.
- Phase 1 stops when a feasible basic solution has been found, or it has been detected that M is empty.
- Phase 1 consists in applying Phase 2 to a modified LOP.

The Simplex Algorithm: Phase 2

- Let x be a feasible basic solution with $P = \{ k : x_k \neq 0 \}$ and $S(x) = \{ a_k : x_k \neq 0 \}$.

- Let $B(x)$ be a basis of columns of A containing $S(x)$ and $Z = \{ k : a_k \in B(x) \}$ and $L = \{ 1, \ldots, n \} - Z$.

- If $P \neq Z$, x is called degenerate. Otherwise, x is non-degenerate.
The Simplex Algorithm

- For each \(j \) let
 \[
 a_j = \sum_{k \in \mathbb{Z}} t_{kj} a_k
 \]

- Because \(B(\mathbf{x}) \) is a basis all \(t_{kj} \) are uniquely determined by \(j \).

- If \(k \in \mathbb{Z} \), then \(t_{k,k} = 1 \) and \(t_{j,k} = 0 \) for \(j \neq k \).

- For \(j \in \mathbb{Z} \) let:
 \[
 u_j = \sum_{k \in \mathbb{Z}} t_{kj} c_k \quad \text{and} \quad d_j = u_j - c_j.
 \]

- Let \(\mathbf{y} \) an arbitrary feasible solution. Then
 \[
 \sum_{k \in \mathbb{Z}} x_k a_k = b = \sum_{j=1 \ldots n} y_j a_j = \sum_{j=1 \ldots n} y_j \left(\sum_{k \in \mathbb{Z}} t_{kj} a_k \right) = \sum_{k \in \mathbb{Z}} \left(\sum_{j=1 \ldots n} y_j t_{kj} \right) a_k.
 \]

- Since \(B(\mathbf{x}) \) is a basis it follows that
 \[
 x_k = \sum_{j=1 \ldots n} y_j t_{kj} = y_k + \sum_{j \in \mathbb{Z}} y_j t_{kj}, \quad k \in \mathbb{Z}.
 \]

- Consequently,
 \[
 y_k = x_k - \sum_{j \in \mathbb{Z}} y_j t_{kj}, \quad k \in \mathbb{Z}.
 \]
The Simplex Algorithm

- This implies

\[
\mathbf{c}y = \sum_{k \in Z} c_k y_k + \sum_{j \in L} c_j y_j = \sum_{k \in Z} c_k (x_k - \sum_{j \in L} y_j t_{k,j}) + \sum_{j \in L} c_j y_j = \sum_{k \in Z} c_k x_k - \sum_{j \in L} (\sum_{k \in Z} t_{k,j} c_k - c_j) y_j = \sum_{k \in Z} c_k x_k - \sum_{j \in L} d_j y_j = c\mathbf{x} - \sum_{j \in L} d_j y_j .
\]

- Case 1: For all \(j \in L : 0 \geq d_j \). Then \(c\mathbf{y} \geq c\mathbf{x} \) for all feasible solutions \(\mathbf{y} \), i.e. \(\mathbf{x} \) is optimal, and the algorithm stops.

- Case 2: There is an \(j \in L : 0 < d_j \), and for all \(k \in Z : 0 \geq t_{k,j} \).

Then \(\mathbf{y} \) with

- \(y_k = x_k - \varepsilon t_{k,j} \) for \(k \in Z \)
- \(y_j = \varepsilon \)
- \(y_i = 0 \) for \(i \in L \) with \(i \neq j \)

is a feasible solution and \(c\mathbf{y} = c\mathbf{x} - d_j \varepsilon \). Since \(0 < d_j \), \(c\mathbf{y} \to -\infty \) for \(\varepsilon \to \infty \), i.e. the objective function is unbounded from below on \(M \). The algorithm stops.
Case 3: There is an \(s \in L : 0 < d_s \), and a \(k \in \mathbb{Z} : t_{k,s} > 0 \).
- Let \(\varepsilon = \min\{ x_k / t_{k,s} : k \in \mathbb{Z} \text{ and } t_{k,s} > 0 \} \). Note that \(\varepsilon \geq 0 \).

Suppose that \(\varepsilon = x_r / t_{r,s} \).

Let \(y \) with:
\[
 y_k = x_k - \varepsilon t_{k,j} \quad \text{for } k \in \mathbb{Z} \\
 y_s = \varepsilon \\
 y_j = 0 \quad \text{for } j \in L \text{ with } j \neq s
\]

\(y \) is a feasible basic solution and \(cy = cx - d_s \varepsilon \).

If \(\varepsilon > 0 \), then \(cy > cx \), i.e. the value of the objective function has decreased. The algorithm starts over with \(x = y \).

If \(\varepsilon = 0 \), then \(cy = cx \), i.e. the value of the objective function has not changed. The algorithm starts over with \(x = y \). (Special care is needed to avoid "cycling").
The Simplex Algorithm: Phase 1

- **Case A:** If the original LOP is in standard form, and there is no feasible basic solution known, an auxiliary LOP can be used to find one.

- The auxiliary LOP

 minimize \(z = y \)

 subject to \(y + Ax = b, \]
 \(x \geq 0, y \geq 0 \)

 where (as for the original LOP) \(b \geq 0 \) and \(A \) has rank \(m \leq n \)

The Simplex Algorithm

- Clearly, \(x=0 \) and \(y=b \) is a feasible basic solution of the auxiliary LOP.
- The Simplex Algorithm, Phase 2 is applied to obtain an optimal basic solution \((x',y') \) of the auxiliary LOP.
- If \(y'=0 \), then \(x' \) is a feasible basic solution of the original LOP.
- If \(y' \neq 0 \), then the original LOP has no feasible basic solution.
Case B: The original LOP is given the form

\[
\begin{align*}
\text{minimize} & \quad z = c x \\
\text{subject to} & \quad Ax \leq b \\
& \quad x \geq 0 \\
\text{where} & \quad b \geq 0 \quad \text{and} \quad A \text{ has rank } m \leq n
\end{align*}
\]

We introduce slack variables \(y = (y_1, \ldots, y_m) \) and obtain

\[
\begin{align*}
\text{minimize} & \quad z = c x \\
\text{subject to} & \quad y + Ax = b \\
& \quad x \geq 0, \ y \geq 0
\end{align*}
\]

The new LOP is equivalent to the original one, and \(x=0, y=b \) is a feasible basic solution of the new LOP.

The Complexity of the Simplex Algorithm

- There are examples where the Simplex Algorithm starting with a specified feasible basic solution will pass through all vertices, and the number of vertices is exponential in the number \(n \) of variables.
- Yet, in practice the Simplex Algorithm is a very efficient approach. In many relevant cases, its running time is proportional to \(m+n \).
- There are polynomial time algorithms for LOPs. (Khachian, Karmarkar)
- There are polynomial time variations of the Simplex Algorithm for special cases, e.g. single-commodity network flow problems.
Branch and Bound – the basic algorithm

- The idea of branch and bound methods
 - Consider a (hard to solve) optimization problem
 \[
 \text{minimize } f(x) \quad \text{subject to } x \in M
 \]
 (1)
 - Associate a relaxed optimization problem
 \[
 \text{minimize } g(x) \quad \text{subject to } x \in R
 \]
 (2)
 such that
 - \(R \supseteq M \),
 - if \(x \in R \), then \(g(x) = f(x) \), and
 - (2) can be solved efficiently.

- Recall:
 An optimal solution for (1) is an element \(x' \) of \(M \) such that \(f(x) \geq f(x') \) for all \(x \) in \(M \) (likewise for (2)).

- Claim 1:
 (a) If \(y' \) is an optimal solution for (2), then \(f(x) \geq f(y') \) for all \(x \) in \(M \).
 (b) If \(y' \) is an optimal solution for (2) and \(y' \in M \), then \(y' \) is an optimal solution for (1) too.

- Claim 2:
 Let \(M = M_1 \cup M_2 \) be a partition of \(M \), and let \(x'_k \) be an optimal solution for the OP
 \[
 \text{minimize } f(x) \quad \text{subject to } x \in M_k
 \]
 (1\(_k\)) \((k=1,2)\). Then \(\text{argmin}_x \{ f(x'_1), f(x'_2) \} \) is an optimal solution for (1).
Branch and Bound – the basic algorithm

- Let R' be a nonempty subset of R, and consider the optimization problem

\[\text{minimize } g(y) \quad \text{subject to } y \in R' \quad (R'). \]

- If (R') has a solution, then $\text{SOLVE}(R')$ returns a pair $(y', g(y'))$ consisting of an optimal solution y' of (R') and the corresponding value $g(y')$, otherwise $\text{SOLVE}(R')$ returns (n, n).

- If $\text{SOLVE}(R')$ yields an optimal solution $y' \in M$, then $\text{BRANCH}(R', y')$ returns two disjoint subsets R'_1, R'_2 of R' such that

\[M \cap R' = (M \cap R'_1) \cup (M \cap R'_2). \]

The idea of the algorithm

- **Initialization**: $L \leftarrow \{R\}; \quad \text{best} \leftarrow \infty$;
- **While** $L \neq \emptyset$ **do**

 begin

 - choose $B \in L$;
 - $(y', g(y')) \leftarrow \text{SOLVE}(B)$;
 - **if** $y' \in M$ and $g(y') < \text{best}$ **then**
 begin
 - $\text{best} \leftarrow g(y')$;
 - $y_{\text{best}} \leftarrow y'$;
 - remove B from L;
 end;
 - **if** $g(y') \geq \text{best}$ **then** remove B from L; % bounding
 else
 begin
 - $(B_1, B_2) \leftarrow \text{BRANCH}(B, y')$;
 - $L \leftarrow L \cup \{B_1, B_2\}$;
 end;
 end
Branch and Bound – the basic algorithm

A more concrete recursive realization of Branch and Bound

- Initialization $A \leftarrow M$, $B \leftarrow R$, $best \leftarrow \infty$

- procedure $BB(A, B, f, g)$

 begin

 $(y', g(y')) \leftarrow SOLVE(B)$

 if $y' \in A$ then

 if $g(y') < best$ then

 begin

 best $\leftarrow g(y')$; return $(y', g(y'))$

 else

 if $g(y') \geq best$ then return % bounding %

 else

 begin

 $(B_1, B_2) \leftarrow BRANCH(B, y')$

 $BB(A, B_1, f, g)$;

 $BB(A, B_2, f, g)$;

 end;

 end

Remarks:

- Branch and Bound yields an (exact) optimal solution provided there is a constant K (depending on the input) such that all subproblems obtained after at most K repetitions of BRANCH either have no optimal solution or their optimal solutions are in M.

- Branch and Bound is not (necessarily) efficient.
Branch and Bound for MIP

- Consider the MIP (1)

\[
\text{minimize} \quad f(x) = c \cdot x \\
\text{subject to} \quad A x = b, \quad x \geq 0, \text{ and } x_j \text{ is integer for all } k \in I \\
\text{where} \quad x = (x_1, \ldots, x_n), \quad b \geq 0, \quad A \text{ has rank } m \leq n, \text{ and } I \subseteq \{1, \ldots, n\}
\]

- Choose as relaxed problem the LOP (2) (called LP-relaxation)

\[
\text{minimize} \quad f(x) = c \cdot x \\
\text{subject to} \quad A x = b, \quad x \geq 0 \\
\text{where} \quad x = (x_1, \ldots, x_n), \quad b \geq 0, \text{ and } A \text{ has rank } m \leq n
\]

- SOLVE can be any method to solve LOPs (e.g. the simplex algorithm).

- If \((y^*, g(y^*))\) is an optimal solution where \(y^*_k\) is not an integer, then
 BRANCH\((B, y^*)\) ‘adds’ new inequalities to \(B\), i.e.

\[
\text{BRANCH}(B, y^*) = (B_1, B_2) \text{ where} \\
B_1 = \{ y \in B \mid y_k \leq [y^*_k] \}, \\
B_2 = \{ y \in B \mid y_k \geq \{y^*_k\} \}.
\]

(Notation: \([y^*_k]\) is the smallest integer not smaller than \(y^*_k\) and \(\{y^*_k\}\) is the greatest integer not greater than \(y^*_k\).)
Cutting planes for MIP

☐ Consider the MIP (1)

\[
\begin{align*}
\text{minimize} & \quad f(x) = c \cdot x \\
\text{subject to} & \quad x \in M = \{x \mid Ax = b, x \geq 0, \text{ and } x_j \text{ is integer for all } k \in I\} \\
\text{where} & \quad x = (x_1, \ldots, x_n) \text{ and } I \subseteq \{1, \ldots, n\},
\end{align*}
\]

and its LP-relaxation (2)

\[
\begin{align*}
\text{minimize} & \quad f(x) = c \cdot x \\
\text{subject to} & \quad x \in R = \{x \mid Ax = b, x \geq 0\}.
\end{align*}
\]

☐ A valid cut for (1) is an equality \(d \cdot x \geq q \) such that

\[
\begin{align*}
\{x \mid Ax = b, x \geq 0, d \cdot x \geq q\} & \neq R \\
\{x \mid Ax = b, x \geq 0, \text{ and } x_j \text{ is integer for all } k \in I, d \cdot x \geq q\} & = M.
\end{align*}
\]

☐ Outline of a cutting plane algorithm

\[
\begin{align*}
\text{begin} \\
B & \leftarrow R; \\
(y', g(y')) & \leftarrow \text{SOLVE}(B); \\
\text{while } y' \notin M & \text{ do} \\
\text{begin} \\
\text{compute a valid cut } d \cdot x \geq q \text{ for } (B); \\
B & \leftarrow \{x \in B \mid d \cdot x \geq q\}; \\
(y', g(y')) & \leftarrow \text{SOLVE}(B); \\
\text{end}; \\
\text{end}
\end{align*}
\]
Cutting planes for MIP

- There are two kinds of cuts:
 - problem specific ones (e.g. for the knapsack problem), and
 - general purpose ones (Gomory cuts).

- Gomory cuts
 - Let \(x = (x_1, \ldots, x_n) \) be a basic solution of the LP-relaxation such that \(x_i \) is not an integer.
 - Then \(x_i \) is a basic variable and from the simplex tableau we know that
 \[
 x_i + \sum a_{ij} x_j = b_i \tag{a}
 \]
 - Equation (a) implies
 \[
 x_i + \sum [a_{ij}] x_j - [b_i] = b_i - [b_i] - \sum (a_{ij} - [a_{ij}]) x_j \tag{b}
 \]

- For any point \(x \in M \) the right hand side of (b) is less than 1, and the left hand side is an integer.
- Consequently,
 \[
 b_i - [b_i] - \sum (a_{ij} - [a_{ij}]) x_j \leq 0 \tag{c}
 \]
 for any point \(x \in M \).

- Furthermore, for the original basic solution \(x = (x_1, \ldots, x_n) \) is
 \[
 b_i - [b_i] - \sum (a_{ij} - [a_{ij}]) x_j = b_i - [b_i]
 \]
 (because all non basic variables =0) not an integer, and therefore
 \[
 b_i - [b_i] - \sum (a_{ij} - [a_{ij}]) x_j = b_i - [b_i] > 0,
 \]
 i.e. (c) excludes \(x \).

- Hence (c) is a valid cut. The inequality (c) is called a Gomory cut.