What is Access Control?

- **Definition:**

 Access control comprises those mechanisms that enforce mediation on subject requests for access to objects as defined in some specified security policy.

- An important conceptual model in this context is the reference monitor.
Security Policy (with respect to access control)

- In order to make access control decisions, the reference monitor needs to know the security policy of the system

- **Definition:**
 The security policy of a system defines the conditions under which subject accesses to objects are mediated by the system reference monitor functionality

- **Remarks:**
 - The above definition is usually given in the context of computer and operating systems security
 - The reference monitor is just a conceptual entity, it does not necessarily need to have a physical or logical counterpart in a given system
 - The term security policy is often also used in a wider sense to describe a specification of all security aspects of a system including threats, risks, security objectives, countermeasures, etc.

Classical Computer Subjects, Objects & Types of Access

- **Definition:**
 A subject is an active entity that can initiate a request for resources and utilize these resources to complete some task

- **Definition:**
 An object is a passive repository that is used to store information

- The above two definitions come from classical computer science:
 - Subjects are processes, and files, directories, etc. are objects
 - However, it is not always obvious to identify subjects and objects in the context of communications:
 - Imagine an entity sending a message to another entity: is the receiving entity to be viewed as an object?
 - Furthermore, we need to have some understanding of what is an access and what types of access do exist:
 - Classical computer science examples for access types: read, write, execute
 - Object oriented view: any method of an object defines one type of access
Security Labels (1)

- **Definition:**
 A *security level* is defined as a hierarchical attribute with entities of a system in order to denote their degree of sensitivity
 - Examples:
 - Military: unclassified < confidential < secret < top secret
 - Commercial: public < sensitive < proprietary < restricted

- **Definition:**
 A *security category* is defined as a nonhierarchical grouping of entities to help denote their degree of sensitivity
 - Example (commercial): department A, department B, administration, etc.

- **Definition:**
 A *security label* is defined as an attribute that is associated with system entities to denote their hierarchical sensitivity level and security categories
 - In terms of mathematical sets: Labels = Levels × Powerset(Categories)

Security Labels (2)

- Security labels that denote the security sensitivity of:
 - Subjects are called *clearances*
 - Objects are called *classifications*

- An important concept to the specification of security polices are *binary relations* on the set of labels:
 - A binary relation on a set S is a subset of the cross-product $S \times S$
 - Example:
 - *Dominates*: $\text{Labels} \times \text{Labels}$
 \[
 \text{Dominates} = \{(b_1, b_2) \mid b_1, b_2 \in \text{Labels} \land \level(b_1) \geq \level(b_2) \land \categories(b_2) \subseteq \categories(b_1)\}
 \]
 - If $(b_1, b_2) \in \text{Dominates}$, we also write b_1 dominates b_2
Security Policy Specification

- Formal expressions for security policy rules:
 - Consider the following mappings:
 - allow: Subjects \(\times \) Accesses \(\times \) Objects \(\rightarrow \) boolean
 - own: Subjects \(\times \) Objects \(\rightarrow \) boolean
 - admin: Subjects \(\rightarrow \) boolean
 - dominates: Labels \(\times \) Labels \(\rightarrow \) boolean
 - The above mappings can be used to specify well-known security policies:
 - ownership: \(\forall s \in \) Subjects, \(o \in \) Objects, \(a \in \) Accesses: allow\((s, o, a) \iff own(s, o) \)
 - own_admin: \(\forall s \in \) Subjects, \(o \in \) Objects, \(a \in \) Accesses: allow\((s, o, a) \iff own(s, o) \lor admin(s) \)
 - dom: \(\forall s \in \) Subjects, \(o \in \) Objects, \(a \in \) Accesses: allow\((s, o, a) \iff dominates(label(s), label(o)) \)
 - The dom-policy requires a system to store and process security labels for each entity, but allows for more complex access control schemes than the ownership and own_admin policies

Types of Access Control Mechanisms

- An access control mechanism is an actual realization of the reference monitor concept
- There are two main types of access control mechanisms:
 - Discretionary access control comprises those procedures and mechanisms that enforce the specified mediation at the discretion of individual users
 - Example: the Unix operating system allows users to give or withdraw the read/write/execute access rights for files they own
 - Mandatory access control comprises those procedures and mechanisms that enforce the specified mediation at the discretion of a centralized system administration facility
- Both types may be combined, with the mandatory access control decisions most of the times overriding discretionary ones
 - Example:
 - Use of discretionary access control on personal computers combined with mandatory access control for communications (firewalls)
Access Matrices

- A useful concept in the description of access control mechanisms is the access matrix:
 - In an access matrix for two sets of subjects and objects every row corresponds to one subject and every column to one object.
 - Each cell of the matrix defines the access rights of the corresponding subject to the corresponding object.

Common Access Control Schemes

- **Access Control Lists (ACL):**
 - ACLs are the basis for an access control scheme, where for each object a list of valid subjects is stored which might have access to this object (possibly together with the type of access that is allowed).
 - ACLs are usually used with discretionary access control, as there are too many ACLs for being maintained by a central administration facility.

- **Capabilities:**
 - Capabilities are somehow the opposite concept to ACLs as with capabilities each subject owns a list of access rights to objects.
 - The advantage (and danger) of capabilities is, that a subject can give some of it’s capabilities to other subjects.

- **Label-based access control:**
 - If security labels are stored and processed with the entities of a system, they can be used to perform label-based access control.
 - This scheme is usually used as a mandatory access control mechanism.

Data integrity of access control data structures is critical!