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P2P-Live-Streaming - What & Why?

Goal

Realtime distribution of continously generated multimedia-stream to
varying and potentially large set of viewers.

Key Idea

Incorporate viewers’ resources for distribution to overcome problems
of classical Client-Server approach:

restricted bandwidth resources at server

high hardware costs

inefficient traffic patterns (all paths lead to server)
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Packet distribution in trees

Packets:

enter the system at source node s

distributed to direct neighbors

replicated and re-distributed to
other nodes

. . .

Packet distribution over Spanning Trees!
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Service quality of peers in low levels of the tree depends on
cooperation and health of all nodes in its path to the source.
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Problems of P2P-Live-Streaming systems

But peers...

constantly join and leave the system

have small resources

are vulnerable to attacks and have high failure probability

A key idea

Using multiple distribution trees with varying inner nodes decreases
dependency on single nodes.
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Model of push-based P2P-Streaming systems (1)

Basic model

Stream is divided into k substreams called stripes

Participants V = {s, v1, . . . , vn} are nodes of a graph G

Stripe i is distributed using a directed spanning tree Ti over V

Streaming Topology T = {T1, . . . ,Tk} is set of these k
distribution trees
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Model of push-based P2P-Streaming systems (2)

More definitions...

Assumption: source has a maximum degree of C · k , for C ∈ N+

Nodes receiving packets directly from s are called heads of T
The successors succi (v) of a node v ∈ V in Ti ∈ T are all nodes
of the maximal subtree of Ti that is rooted in v
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C = 3

Heads H = {2, 3, 5, 7, 10}
succ1(2) = {1, 2, 3, 4}
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What do we aim for?

Goal
1 Identify the class of all streaming topologies that are optimally

stable against node failures due to malicious DoS attacks.

2 Provide rules for their efficient construction.

3 Design and implement distributed topology management
mechanisms realizing stable topologies in P2P-streaming systems.
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Attackers, damage and stability (1)

Abstract attacker

A map from T and x ∈ N to a set X ⊆ V \ {s} of x failing peers.

Why exclude source s?

Source attack would always be optimal.

Would disregard influence of distribution topology
→ seemingly equal stability of P2P and client-server approach

Damage function aT (X )

The damage function aT : 2V → R quantifies the damage incured on
T by the failure of nodes.
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Attackers, damage and stability (2)
In this work, we chose on the packet loss damage function, summing
up the number of successors of nodes in X over all stripes.

aT (X ) =
k∑

i=1

∣∣∣∣∣ ⋃
v∈X

succi (v)
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aT1(X ) = 4 aT2(X ) = 7 aT3(X ) = 5

aT (X ) = 16
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The complete class of optimally stable streaming
topologies (1).

The complete class of optimally stable streaming topologies is
characterized by the damage incured by an optimal attacker.

For l = (i div C ) and h = (i mod C ), define

δC ,k
i =

{⌈
n
C

⌉
+ (k − 2l − 1) if h ≤ (n mod C )⌊

n
C

⌋
+ (k − 2l − 1) otherwise
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δC ,k
2C+1

δC ,k
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Ck
n mod C C
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The complete class of optimally stable streaming
topologies (2).

For l = (i div C ) and h = (i mod C ), define

δC ,k
i =

{⌈
n
C

⌉
+ (k − 2l − 1) if h ≤ (n mod C )⌊

n
C

⌋
+ (k − 2l − 1) otherwise

Optimally stable topologies [1]

A topology T with parameters C , k , n is optimally stable if and only if
aT (O(T ,m)) =

∑m
i=1 δ

C ,k
i for 1 ≤ m ≤ C · k.

[1] Brinkmeier et. al., ”Optimally DoS Resistant P2P Topologies for Live Multimedia

Streaming”, IEEE Transactions on Parallel and Distributed Computing, 2009
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The bad news.

Decision problem

Decide whether any given streaming topology T is optimally stable.

We have shown that this problem is co-NP-complete.
Hence, without P=NP, it is not solvable in polynomial time.

All is not lost

We can identify a large and easy-to-check subclass of optimally stable
topologies!
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Necessary properties of stable topologies (1)

Stable topologies must follow a number of necessary rules.

Not-Too-Many-Successors Rule

Every peer has at most δC ,k
1 =

⌈
n
C

⌉
+ (k − 1) successors.
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Necessary properties of stable topologies (2)

Head Rules
1 In each stripe each head adjacent to the source has exactly one

head from each other stripe as a successor.

2 If u, v ∈ V are heads and u ∈ succ(v), then
|succ(u)| = |succ(v)|.

s

1

2 3

4

5

7

6

s

2

1 3

5

4 6

7

s

3

1 2

6

4 5

7

Stripe 1 Stripe 2 Stripe 3

Stability Guarantees for Live-Streaming Topologies

S. Grau
ITI, TU Ilmenau, Germany Page 14 / 21



Necessary properties of stable topologies (3)

Head topology of T
The head topology H(T ) of a topology T is a streaming topology
over node set VH(T ) = {v ∈ V | v is head in T } ∪ {s} and in tree Ti ,
an edge (u, v) exists if v ∈ succi (u) in T .

Heads-Are-Optimally-Stable Rule

For topology T to be stable, H(T ) has to be optimally stable.

Untrivial requirement.

Large class of stable head topologies has been identified since
paper submission.
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A large and easily checkable subclass of optimally
stable topologies

Shown requirements are not sufficient to guarantee optimal topology
stability.

But: complexity of decision problem traced back to existence of
non-heads with head-like successor number.

Forbid them!

Strictly-Not-Too-Many-Successors Rule

Every head has at most δC ,k
1 =

⌈
n
C

⌉
+ (k − 1) successors and every

non-head has at most δC ,k
Ck =

⌊
n
C

⌋
− k − 1 successors.
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A large and easily checkable subclass of optimally
stable topologies (2)

Theorem

A streaming topology T satisfying

Head Rules 1

Head Rules 2

Heads-Are-Optimally-Stable Rule

Strictly-Not-Too-Many-Successors Rule

is optimally stable.

Easy to construct.

Membership checkable in polynomial time.
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Stable topologies in ’the wild’.

Practical topology construction would demand for distributed
construction mechanisms.

Current rule set still seems to require central coordination of heads.
Options:

Special treatment → nodes learn about their head status

Approximation by additional rules

Current Implementation

Cost functions based on

stripe-specific successor numbers of children

nodes prefer forwarding single stripe: one-stripe-only rule

Simulations [2]: topology properties near optimum
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Conclusion & Outlook

Conclusion

Optimally stable topologies exist.

General optimally stable topologies are hard to identify.

Simple rule set defines a large, easy-to-check subclass.

Outlook

Distributed construction still challenging problem.

Assuming Multiple Description Coding or Forward Error
Correction, more complex damage measures regarding indivual
service loss of nodes can be introduced.

Hardness of attacker problems already studied in [3]
Optimal topologies are topic of ongoing research.
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Thank you for your attention!
Do you have questions?
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