Almost random graphs with simple hash functions

Martin Dietzfelbinger
Technische Universität Ilmenau

(Joint work with Philipp Woelfel, Universität Dortmund)

[Appeared: STOC’03]

Oberwolfach, Aug 11, 2003
Hashing

\[h : U \rightarrow [m] \]

\(U \) : Universe of all keys

\([m] = \{0, \ldots, m - 1\} : \) the range, indices in table \(T \)

Interested in behaviour of \(h \) on \(S \subseteq U, n = |S| \).
Hashing with two functions

\[h_1, h_2 : U \to [m] \]

\[[m] = \{0, \ldots, m-1\} : \text{the range, indices in tables } T_1, T_2 \]

Interested in behaviour of \(h_1, h_2 \) on \(S \subseteq U \).
The graph

Assume h_1, h_2 are “random”
→ “random” bipartite graph
$G(S, h_1, h_2)$

edge set:
$E = \{(h_1(x), h_2(x)) \mid x \in S\}$

Randomness properties of $G(S, h_1, h_2)$
Why bother?

Applications (later):

- Cuckoo hashing
- Generating fully random hash functions
- Shared memory simulation
- ...
Overview

- Universal Hashing
- Structure of function pairs
- Bad substructures of graph, Minimizing
- Probability of bad substructures
- Randomness properties
- Application 1: Cuckoo hashing
- Application 2: Fully random hash functions (whp)
- Conclusion
Universal Hashing [Carter/Wegman 79]

Random experiment:

Choose \(h \) at random from a set ("class") \(\mathcal{H} \subseteq \{ h \mid h : U \rightarrow [m] \} \)

Definition: \(\mathcal{H} \) is \(d \)-universal if

for each fixed sequence \(x_1, \ldots, x_d \) of distinct keys in \(U \)

\((h(x_1), \ldots, h(x_d)) \) is fully random.

Realization, e.g.:

\(\mathcal{H} \) "=" all polynomials of degree \(< d \) over field \(U \), projected into \([m]\)

Space: \(\Theta(d) \)

Evaluation time: \(\Theta(d) \)
What if we choose h_1, h_2 from known d-universal classes?

- Simple polynomials:

 constant evaluation time $\Rightarrow d$ constant : nothing known about randomness properties of $G(S, h_1, h_2)$.

- n^ε-universal hash classes of [Siegel 89]

 (Space $\Theta(n^\zeta)$, $1 > \zeta > \varepsilon$; evaluation time $O(1)$):
 many properties of truly random graphs hold.
 (Used in many theoretical applications; evaluation time unpracticable.)

Our aim: Get good randomness properties in $G(S, h_1, h_2)$ at the (evaluation) cost of low degree polynomials.
Structure of functions

Known [DM90]:

\(g : U \rightarrow [r] \) chosen from a \(d \)-universal class,
\(f : U \rightarrow [m] \) chosen from a \(d \)-universal class,

displacements \(z_0, \ldots, z_{r-1} \) chosen randomly in \([m]\)

\[
 h(x) = (f(x) + z_{g(x)}) \mod m
\]

Constant evaluation time!

\((h(x))_{x \in S} \) has certain randomness properties.
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>i</th>
<th>m−1</th>
<th>zj</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>r−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Displacements

\(f \) and \(g \) map the set \(S \) to the set \(U \).
displacements

\[
\begin{array}{cccc|c}
0 & 1 & i & m-1 \\
0 & & & \cdot & 4 \\
1 & & & \cdot & 2 \\
r-1 & & & \cdot & 3 \\
\end{array}
\]

\[
\begin{array}{cccc|c}
0 & 1 & i & m-1 \\
0 & & & \cdot & 4 \\
1 & & & \cdot & 2 \\
r-1 & & & \cdot & 3 \\
\end{array}
\]
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>i</th>
<th>m−1</th>
<th>zj</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Displacements

f

g

S

U
displacements

\[f \]

\[g \]

\[S \]

\[U \]

\[r - 1 \]

\[0 \]

\[1 \]

\[0 \]

\[1 \]

\[i \]

\[m - 1 \]

\[z_j \]

\[4 \]

\[2 \]

\[8 \]

\[3 \]

\[4 \]

\[3 \]

\[2 \]

\[5 \]
Structure of functions (cont’d)

\[g : U \rightarrow [r] \text{ chosen from a } d\text{-wise independent class,} \]
\[f_1, f_2 : U \rightarrow [m] \text{ chosen from a } d\text{-wise independent class,} \]
\[z^{(1)}_0, \ldots, z^{(1)}_{r-1} \text{ and } z^{(2)}_0, \ldots, z^{(2)}_{r-1} \text{ chosen randomly in } [m] \]

\[h_1(x) = \left(f_1(x) + z^{(1)}_{g(x)} \right) \mod m \]
\[h_2(x) = \left(f_2(x) + z^{(2)}_{g(x)} \right) \mod m \]

Double DM-construction, but use the same \(g \)-function

Constant evaluation time!
Like degree-\((d - 1)\)-polynomials.
displacements

$$\begin{array}{c|c|c|c|c|c|c}
0 & 1 & i & m-1 & z_j^{(1)} & z_j^{(2)} \\
\hline
0 & & & & & 4 & 1 \\
1 & & & & & 2 & 5 \\
r-1 & & & & & 6 & 0 \\
& & & & & 5 & 6 \\
& & & & & 0 & 8 \\
& & & & & 5 & 2 \\
& & & & & 1 & 2 \\
& & & & & 2 & 0 \\
\end{array}$$
Basic observation:

Let \(g \) be given.

Define \(B_j = \{ x \in S \mid g(x) = j \} \).

Then the \(2r \) random vectors

\[
(h_1(x))_{x \in B_j}, (h_2(x))_{x \in B_j}, 0 \leq j < r,
\]

are independent.

Reason: Random displacements \(z^{(1)}_j, z^{(2)}_j \).

Dependencies may exist only among keys inside the same \(g \)-row.
Bad substructures

Hope: Inside its connected components graph $G(S, h_1, h_2)$ should behave fully randomly.

Obstructing: $|T| = 16$ keys (edges); $|g(T)| = 11$ used g-values

Connected component in which there are dependencies since the keys of some edges belong to the same g-value.
Measure how far $G(S, h_1, h_2)$ is away from being nice:

Definition: $G = G(S, H_1, h_2)$ is ℓ-bad if G has a connected component induced by the key set T such that

$$|g(T)| \leq |T| - \ell.$$

(In example: $G(S, h_1, h_2)$ is 5-bad, 4-, 3-, 2-, 1-bad.)
How often do we see ℓ-bad graphs?

If $G(S, h_1, h_2)$ were fully random, there would be no big problem:
Use estimates for the probability that T forms a connected component in a random graph.

Multiply by the probability that there are colliding g-values.

Does not work, because $G(T, h_1, h_2)$ is not random.
Minimizing obstructing substructures

Assume $G(S, h_1, h_2)$ has a connected component induced by $T \subseteq S$ that makes it ℓ-bad.

Peel!

Take out edges (keys) so as to retain a connected, ℓ-bad subgraph.
Aim: Reduce, stay 4-bad.

Remove leaf with key that is not g-colliding.
Aim: Reduce, stay 4-bad.

Remove cycle edge with key that is not \(g\)-colliding.
Aim: Reduce, stay 4-bad.

Remove cycle edge with key that is not g-colliding.
Aim: Reduce, ℓ-bad, $\ell = 4$.

Remove leaf edge with g-colliding key, if $|g(T)| < |T| - \ell$.
Aim: Reduce, stay ℓ-bad, $\ell = 4$.

Remove leaf with key that is not g-colliding.
Aim: Reduce, stay ℓ-bad, $\ell = 4$.

Remove leaf with key that is not g-colliding.
Aim: Reduce, stay ℓ-bad, $\ell = 4$.

Remove leaf with key that is not g-colliding.
Aim: Reduce, stay ℓ-bad, $\ell = 4$.

No more possible moves: minimal ℓ-bad structure.
General: repeat throwing away:

- non-g-colliding leaf and cycle edges

- g-colliding leaf and cycle edges, as long as $|g(T)| < |T| - \ell$.

Resulting connected minimal structure has at most 2ℓ leaf and cycle edges, and at most 2ℓ g-colliding keys

\Rightarrow can count these structures
Now:

\[
\Pr(G(S, h_1, h_2) \text{ has } \ell\text{-bad component}) \\
\leq \Pr(\exists T : G(T, h_1, h_2) \text{ is connected, } \ell\text{-bad, minimal}) \\
\leq \sum_{T \subseteq S} \Pr(G(T, h_1, h_2) \text{ is connected, } \ell\text{-bad, minimal})
\]

Nice:
if \(f_1, f_2 \) are \(2\ell \)-wise independent, then within minimal \(\ell \)-bad substructures the dependence produced by keys in the same \(g \)-row is made up for by independence via \(f_1, f_2 \) \\
\Rightarrow \text{the hash values are fully independent} \\
\Rightarrow \text{we may use known estimates from random graph theory.}
Theorem 1

If f_1, f_2, g are 2ℓ-universal, and $m \geq (1 + \varepsilon)n$, then

$$\Pr(B) = \Pr(G \text{ is } \ell\text{-bad}) = O(n/r^\ell).$$

Example: Use $\ell = 2$, hence 4-universal classes, and $r = n^{3/4}$.
Randomness properties I

For $T \subseteq S$ let $R^*(T) = \text{the event that } |g(T)| \geq |T| - \ell$.

Theorem 2

If f_1, f_2, g are 2ℓ-universal, and $m \geq (1 + \varepsilon)n$, then for all $T \subseteq S$ we have:

- $R^*(T)$ happens $\Rightarrow h_1, h_2$ are perfectly random on T.
- $R^*(T)$ does not happen and $G(T, h_1, h_2)$ is within a connected component of $G(S, h_1, h_2)$
 $\Rightarrow G(S, h_1, h_2)$ is ℓ-bad

Intuition:
Apart from a small bad part (probability $O(n/r^\ell)$) everything inside connected components of G is fully random.
Definition: The cyclomatic number of a connected graph $G = (V, E)$ with N vertices and M edges is $M - N + 1$, i.e. the number of edges that are not contained in a (any) spanning tree of G.

Example: 13 nodes, 16 edges, cyclomatic number 4
Randomness properties II

Theorem 3
If f_1, f_2, g are 2ℓ-universal, and $m \geq (1 + \varepsilon)n$, then

$$\Pr(G(S, h_1, h_2) \text{ has c. c. with cyclomatic number } \geq q) = O(n/r^\ell) + O(n^{1-q}).$$

(For random graphs with the same edge density:
$$\ldots = O(n^{1-q}).$$)
Cuckoo hashing [Pagh/Rodler 2001]

Implementation of dynamic dictionary:
Two tables T_1, T_2 of size m each

$x \in S$ may be stored in $T_1[h_1(x)]$ or $T_2[h_2(x)]$.

\Rightarrow Constant access time in the worst case.
“Cuckoo hashing”
because of interesting insertion procedure.

Key x that wants to be placed in the table may kick out another key y
that sits in $T_1[h_1(x)]$ or $T_2[h_2(x)]$.
Aim: Insert x. Try $T_1[h_1(x)]$. Occupied!
Kick out 2 from T_1. Now 2 “nestless”. $T_2[h_2(2)]$ occupied!
Kick out 6 from T_2. Now 6 “nestless”. $T_1[h_1(6)]$ occupied!
Kick out 4 from T_1. Now 4 “nestless”. $T_2[h_2(4)]$ occupied!
Kick out 5 from T_2. Now 5 “nestless”. $T_1[h_1(5)]$ empty!
Place 5 in $T_1[h_1(5)]$.

done!
Original analysis [PR01]:

If $S \subseteq U$ is the set of keys in the table, $|S| = n$, and

- $m \geq (1 + \varepsilon)n$ and
- h_1, h_2 are from a $c \log n$-universal class, $c > 0$ constant, sufficiently large,

then

- with probability $1 - O\left(\frac{1}{n}\right)$ all S may be stored as required
 (obstructing: connected component with cyclomatic number ≥ 2)
- a single insertion attempt succeeds with probability $1 - O\left(\frac{1}{n^2}\right)$
 within $O(\log n)$ kick-out moves; the expected number of kick-out moves is constant.

If something goes wrong: start anew with new hash functions.
Drawback:

Need strong randomness assumptions about h_1, h_2:

$c \log n$-universality.

($c > 0$ constant.)

Achievable with polynomials of degree $c \log n$ or with Siegel’s class.
Solution:

Use \(h_1, h_2 \) as described above.

Under the assumption that \(G(S, h_1, h_2) \) is not \(\ell \)-bad,

the analysis of [PR01] goes through.

Essential: With probability \(O(n/r^\ell) + O(1/n) \), all connected components of \(G(S, h_1, h_2) \) have cyclomatic number at most 1 (at most one extra edge in addition to a spanning tree).

E.g., can use degree-3-polynomials for \(g, f_1, f_2 \) and \(2r = 2n^{3/4} \) random displacements \(z_j^{(1/2)} \).
Simulating uniform hashing

[Östlin/Pagh 2003]: One can initialize a data structure D that involves in essence $O(n)$ random numbers in $[t]$ so that D allows computing a hash function $h : U \rightarrow [t]$, with the following property:

- D is built obliviously of the keys it will be applied to
- for each $S \subseteq U$, $|S| = n$, the probability of a “bad event” B_S in D when applied to S is $O(1/n^k)$
- under the condition that B_S does not occur,

$$h(x), x \in S,$$

is perfectly random.

Very interesting consequences for data structures (eliminating idealizing assumptions for the analysis of many hashing procedures), balanced allocation,
Drawback:

Construction requires $c \log n$-universal hash classes.

Achievable with polynomials of degree $c \log n$ or with Siegel’s class.

Pay with high evaluation time.
Alternative:

Let

\[(h(x) = a_{h_1(x)} + \phi_{h_2(x)}(x)) \mod t,\]

where

- \(h_1\) and \(h_2\) are functions chosen as described above, range \([m]\) with \(m \geq (1 + \varepsilon)n\),
- \(a_0, \ldots, a_{m-1}\) chosen at random from \([t]\),
- \(\phi_0, \ldots, \phi_{m-1}\) are chosen at random from a \(2q\)-universal class of functions from \(U\) to \([t]\).
The labeled graph

Bipartite graph $G(S, h_1, h_2)$

with node labels:
a_j and ϕ_j.

$h(x) = (a_{h_1(x)} + \phi_{h_2(x)}(x)) \mod t$
Theorem 4
Then, for each $S \subseteq U$, $|S| = n$, apart from a bad event B_S that has probability $O(n/r^\ell) + O(n^{1-q})$,

$$h(x), x \in S$$

is fully random on S.

Essence of proof:

For $h(x)$ to be fully random on S
it is sufficient
that no connected component of $G(S, h_1, h_2)$ has cyclomatic number
$> q$.
Conclusion, Open Problems

- Graphs that behave randomly within connected components, with hash functions that are very fast to evaluate.
- Cuckoo hashing and simulation of uniform hashing with fast functions.
- What about denser graphs \((m < n)\)?
- Hypergraphs (3 or more functions)
- Analyze graphs obtained from simple \(d\)-universal hash functions.