SAOC and USAC

Spatial Audio Object Coding / Unified Speech and Audio Coding

Lecture "Audio Coding" WS 2014/15

Prof. Dr.-Ing. Gerald Schuller

Gerald.schuller@tu-ilmenau.de

1

© Fraunhofer IDMT

SAOC - Spatial Audio Object Coding

Outline

- Introduction
- From Spatial Audio Coding to SAOC
- Audio objects
- SAOC Decoding
- Applications
- Performance Evaluation
- Conclusion

TECHNISCHE UNIVERSITÄT

SAOC - Introduction

- Perceptual audio coding for multichannel signals is widely used
 - "Spatial Audio Coding", for instance MPEG Surround
 - Existing Spatial Audio Coders are channel-based
 - Designed for a specific reproduction setup
 - Spatial Audio Object Coding
 - Continuation of the "Spatial Audio Coding" paradigm
 - Transmit audio objects instead of channel signals
 - ISO/IEC 23003-2:2010 Standard

SAOC - From Spatial Audio Coding to SAOC

Spatial Audio Coding (e.g., MPEG Surround)

- Channel-oriented
- Downmix (mono or stereo)
- Transmit downmix using standard audio codec (AAC)
- Additional parameter data (parametric coding)
- Output channels for specific x1 reproduction setup
 - **5**.1, 7.1

[1] Herre et.al 2012: "MPEG Spatial Audio Object Coding, J. Audio Eng. Soc. 60:9, 2012

SAOC - Audio Objects

- Audio objects instead of channels
- SAOC encoder: Stereo or mono downmix plus SAOC parameters
- SAOC decoder: Use SAOC parameters to transform downmix into audio objects
- Rendering to loudspeaker configuration (Rendering matrix)

TECHNISCHE UNIVERSITÄT

ILMENAU

SAOC - Audio Objects

Advantages of object-based processing

- Coding efficiency: SOAC parameters only a few kbit/s per audio object
- Coding and transmission independent of reproduction setup
- Rendering on arbitrary loudspeaker setups
 - 5.1, 7.1, 10.2, 22.2, Binaural reproduction, Wave field synthesis,
 - Rendering controllable (real-time user interaction)
 - Control over individual audio objects
 - Change gain, equalization, effects, …

IDMT

SAOC Decoding Modes

Decoder Processing Mode

- Rendering integrated into decoding (efficient)
- For mono and stereo output, incl. binaural reproduction
- Rendering matrix: realtime control of rendering
- HRTF parameters for binaural
 - Open SAOC interface
 - Enables use of individual HRTFs
 - Efficient parametric representation

SAOC Decoding Modes

Transcoder Processing Mode

- For multichannel output (MPEG Surround - MPS)
- SAOC encoder works as transcoder
 - Transcoding of SAOC parameters to MPS bitstream
 - Adjustment of downmix panning (only for stereo downmix)
 - Highly Efficient
 - Operates in transform domain
 - Avoid unnecessary (de)quantization and decoding

SAOC Bitstream

- Contains parametric description of audio objects: SAOC parameters
- Typical: 2-3 kbit/s per audio object (plus 3 kbit/s per audio scene)
- SAOC bitstream embedded in ancillary data of core audio coder
 - Enables backward compatibility
- Parameters transmitted in flexible time/frequency grid
 - Adaptation to bitrate demands and/or signal characteristics
 - Same time/frequency grid as in MPEG Surround
 - Lossless, efficient transcoding

SAOC Parameters

- Object Level Differences (OLD): Level relative to loudest object
- Inter-Object Cross Correlations (IOC): Similarity between pairs of objects
- Downmix Gain (DMG): Gains used in the downmix of individual objects
- Object Energies (NRG): Absolute energy of loudest object. Optional, enables merging of multiple SAOC streams

SAOC - Enhanced Audio Objects

- Allow arbitrary attenuation or amplification of objects
 - Karaoke
 - Solo voices,...
 - SAOC bitstream contains residual signal
 - Reconstruction from downmix and residual
 - Efficient transmission of residual signal (AAC)

SAOC - Applications

Interactive Remix / Karaoke

- Interactive remixes
- Equalization, room simulation,... for individual objects
 - For channel-based formats, only applicable to whole scene
- Modification of specific audio objects (instruments, voices,...)
- Karaoke, vocal solo
 - Suppress main voice or background music
 - Advantageous: Enhanced Audio Objects
- Future extensions of digital broadcasting
 - Clean-audio dialogs
 - Additional objects for interactivity

SAOC - Applications

Teleconferencing

- Today: Mainly monophonic reproduction
 - Suboptimal for multi-user scenarios
- Key benefits of SAOC
 - Adjustment of individual speaker signals
 - Spatial representation of audio scene
 - Improved intelligibility and listening comfort
 - Match between visual and audio scene
 - Transmission efficiency
 - Backward compatibility

IDMT

SAOC - Applications

Rich Media / Gaming

- Applications of Rich Media
 - Interactive audio-visual interfaces
 - Games
 - Platforms
 - Mobile
 - Flash- or Java-Based
 - Limited audio rendering capabilities (audio scene size)
- Key advantages
 - Low complexity (number of output channels instead of scene size)
 - Interactivity (adjust level of objects and background music)
 - Efficient transmission, backward compatibility

Listening Test – Remix scenario

- Part of MPEG verification tests (5 sites, 125 participants)
- MUSHRA test (ITU BS.1534-1)
- Simulate adjustments to a mix of audio objects
- Core coder: High Efficiency AAC (HE-AAC)

🗾 Fraunhofer

IDMT

TECHNISCHE UNIVERSITÄT

ILMENAU

Listening Test – Teleconferencing

- Part of MPEG verification tests
- Teleconferencing application: Simulate adjustments of a participant
- Core coder: MPEG-4 Enhanced Low Delay AAC (AAC-ELD)

💹 Fraunhofer

IDMT

TECHNISCHE UNIVERSITÄT

ILMENAU

SAOC - Summary

- Highly efficient transport/storage of audio objects and flexible/interactive audio scene rendering
- Backwards compatible downmix for reproduction on legacy devices
- Flexible rendering configurations (loudspeaker setups)
- ISO/MPEG standard
- Very interesting applications, e.g.:
 - Remixing / Karaoke
 - Gaming / Rich media
 - Teleconferencing
 - Interactivity for broadcast applications

USAC - Unified Speech and Audio Coding

Outline

- Introduction
- Differences between speech and audio coding
- Codec structure
- Improvements to coding
- Performance Evaluation
- Applications
- Summary

Gerald.schuller@tu-ilmenau.de

USAC - Introduction

Status quo:

 General audio coding and speech coding are largely separate worlds

Problem:

- Increased demand for audio coders that handle all types of inputs
 - Broadcasting
 - Audio books, multimedia
 - Mobile devices for all types of content (often low bandwidths)
 - Objective (initiated by MPEG)
 - Universal codec that handles all types of content at least as well
 - as the best current speech or audio codec

USAC – Differences Between Speech and Audio Coding

Audio Coding

- "Information sink model"
 - Characteristics of human hearing
 - Typically transform- or subband-based approaches
 - Divide signal in multiple bands and apply psychoacoustics
- Not well-suited for speech (at bit rates typically used by speech coders ...)

Speech Coding

- "Information source model"
 - Characteristics of vocal tract
 - Typically based based on prediction coding
 - Predicted filter for the vocal tract and an excitation signal
- Poor quality for music

USAC - Hybrid coding approach

- Combine state-of the art speech and audio coder
 - HE-AACv2
 - AMR-WB+
- Switch between coders based on content
 - Signal classification
- Share common functionality
- Take care of artifacts due to switches ...

Figure: Neuendorf et.al: MPEG Unified Speech and Audio Coding, J. Audio Eng. Soc., 61:12, Dec. 2013 Gerald.schuller@tu-ilmenau.de

USAC - AMR-WB+ (1)

Adaptive Multi-Rate Wideband

- State-of-the-art speech coder
- Based on ACELP (Algebraic codeexcited linear prediction)
- CELP: Encode signal by
 - LPC coefficients
 - LTP coefficients: "long term prediction" (delay and gain)
 - "Innovation codebook": excitation signal, sparse pulses
 - ACELP: Algebraic representation of innovation codebook

CELP encoder

Figure: A. Valin: Speex: A Free Coder for Free Speech, 2006

USAC - AMR-WB+ (2)

Extended Adaptive Multi-Rate Wideband

- The "+" in AMR-WB+
 - Additional transform-domain coder for music signals
 - Parametric high frequency extension
 - Parametric stereo extensions
- But: For music, still inferior to good audio coders

CELP encoder

Figure: A. Valin: Speex: A Free Coder for Free Speech, 2006

USAC - Coder/Encoder Structure

General structure of modern audio codecs

Uncompressed PCM Audio Bitstream De - Multi plex Encoder R Spatial coding Spatial / Stereo Encoder Core Parametric and Do wnmix Decoder bandwidth LP HP extension Bandwidth Extension high low Core coding Decoder frea. frea. Decoder high low freq. frea. Bandwidt h In opposite order Extension Encoder Combine Core Spatial / Ste reo Decoding Encoder and Upmix R **Bitstream Multiplex Uncompressed PCM Audio** Figure: Neuendorf et.al: MPEG Unified Speech and Audio Coding, J. Audio Eng. Soc., 61:12, Dec. Encoder Decoder 2013 Gerald.schuller@tu-ilmenau.de

TECHNISCHE UNIVERSITÄT

USAC - Decoder Structure

- Here: Focus on decoder
 - Only decoder is standardized
 - Follows general codec structure
 - Left part: audio coder
 - (HE-AACv2)
 - Right part: speech coder
 - (AMR-WB+)
 - Some tools shared (LPC) decoding)
 - Challenge: Switching between modes

Figure: Neuendorf et.al: MPEG Unified Speech and Audio Coding, J. Audio Eng. Soc., 61:12, Dec. 2013 Gerald.schuller@tu-ilmenau.de

USAC - Transition Handling

- Encoder switches between two modes
 - Signal classifier (speech or music)
 - Transition handling without audible errors or loss of coding efficiency
 - HE-AAC: MDCT:
 - Transform (frequency) domain, overlapping windows, timedomain alias cancellation (TDAC)
 - AMR-WB+
 - Time-domain, no overlap
 - Solution: Forward Aliasing Cancellation (FAC
 - In case of transitions, transmit the
 - "alias cancellation" information for TDA

TECHNISCHE UNIVERSITÄT

ILMENAU

🗾 Fraunhofer

IDMT

USAC - Improvements to Coding Tools

- USAC is not just a combination of HE-AAC and AMR-WB+
- Multiple improvements to both parts
 - Context-adaptive arithmetic coder for transform coding
 - Additional quantization modes
 - Alternate LPC-based noise shaping
 - Additional MDCT window sizes
 - Time-Warped MDCT
 - Enhanced Spectral Bandwidth Replication
 - Unified Stereo Coding

USAC - Time-Warped MDCT (1)

- Transform coding good for stationary tonal signals
 - Sparse spectrum, few nonzero spectral coefficients to code
 - High coding gain
 - Problematic: Pitch changes within signal
 - Typical signal: Voiced speech
 - Smearing of energy over many spectral coefficients
 - Decreased coding efficiency

🗾 Fraunhofer TECHNISCHE UNIVERSITÄT ILMENAU

USAC - Time-Warped MDCT (2)

- Solution: Time-Warped MDCT
 - Reduce variations of fundamental frequency
- Basic algorithm (encoder side)
 - Apply a time-variant resampling prior to the MDCT
 - Adjust MDCT windows to preserve TDAC
 - Transmit resampling ratio as side information

20 mag/dB -60-801000 2000 5000 0 3000 4000 6000 f/Hz Original spectrum 40 20 mag/dB -60-800 1000 2000 3000 4000 5000 6000 f/Hz Time-warped spectrum

40

Figure: Edler et.al: A time-warped MDCT approach to speech transform coding, AES 126th Convention, May 2009 Gerald.schuller@tu-ilmenau.de

USAC - Enhanced Spectral Band Replication (1)

State of the Art – Spectral Band Replication

- Basis: SBR of HE-AAC
 - Operates in QMF domain
 - Copy low-frequency spectrum to higher frequencies
 - Adjust HF copies based on
 - parameters (side info)
 - Tonality
 - Envelope
 - Additional noise, sinusoids

Figure: Neuendorf et.al: MPEG Unified Speech and Audio Coding, J. Audio Eng. Soc., 61:12, Dec. Gezograghuller@tu-ilmenau.de

USAC - Enhanced Spectral Band Replication (2)

Alternative Sampling Rate Ratios

- HE-AAC SBR performs a 2:1 upsampling in QMF domain
 - Bandwidth doubled
 - USAC: Additional ratios
 - 4:1 (16 QMF analysis bands)
 - Four times the core bandwidth
 - Good for very low bit rates
 - 8:3 (24 QMF analysis bands)
 - Halfway between 2:1 and 4:1
 - Best tradeoff for medium bit rates (~ 24 kbit/s)

USAC - Enhanced Spectral Band Replication (3)

Harmonic Transposition

- HE-AAC SBR: Spectral copies
 - Frequency shifts
 - Bad match for harmonics of tonal signals (integer multiples)
 - USAC eSBR: Harmonic transposer
 - Map sinusoid with frequency to sinusoid with frequency , integer
 - Supported orders
 - Frequency shifts for higher orders
 - Other improvements in eSBR (not covered here)
 - Predictive vector coding for SBR spectral envelopes

IDMT

Stereo Coding in USAC - Unified Stereo Coding (1)

Discrete Stereo Coding

- Strives to preserve waveforms
- Joint coding techniques (e.g., M/S)
- Used with higher bit rates

Unified Stereo Coding

- Extends and combines discrete and parametric stereo coding
- Additional parameter: IPD (inter-channel phase difference)
- Transmit parameters and residual signal
- Use parameters to minimize residual

Parametric Stereo Coding

- Mono downmix and side info (parameters)
- Typically used with low bit rates

Stereo Coding in USAC - Unified Stereo Coding (2)

- Prediction factor α (complex-valued)
- Gain normalization c
- c and α determined from parametric stereo parameters

Figure: Neuendorf et.al: MPEG Unified Speech and Audio Coding, J. Audio Eng. Soc., 61:12, Dec. 2013 Gerald.schuller@tu-ilmenau.de

Verification Test Results

- Question: Whether USAC performs as least as good as the better of the best speech or audio coder
- Part of verification tests for approval by ISO/IEC
- 3 tests, 13 test sites, 60-25 participants
- MUSHRA methodology
- Test subjects
 - USAC
 - HE-AACv2
 - AMR-WB+
 - Virtual coder (VC): The better of HE-AACv2 and AMR-WB+
 - Determined separately for each test item and bit rate

TECHNISCHE UNIVERSITÄT ILMENAU

USAC - Applications

- Multimedia streaming
 - Mobile devices
 - Scalability is key feature
 - Significant quality improvements for low bit rates
- Broadcasting applications
 - Coding efficiency saves bandwidth
- Audio books
 - Mainly speech
 - Guarantees good quality for music and effects

USAC - Unified Speech and Audio Coding

Summary

- First audio codec that successfully merges general audio and speech coding
- For music signals, improved quality especially at low to very low bit rates
- Moderately increased computational complexity
- Standardized as ISO/IEC 23003-3:2012 MPEG-D Unified Speech and Audio Coding
- Applicable as general-purpose codec at bit rates

