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Abstract

This note places into perspective the so-called algebiraie-tlerivative estimation method recently
introduced by Fliess and co-authors with standard resutt flinear state-space theory for control
systems. In particular, it is shown that the algebraic mgtten in a sense be seen as a special case of

deadbeat state estimation based on the reconstructi@ifdynian of the considered system.

I. INTRODUCTION

In the past few years, the algebraic approach to estimatiozontrol systems proposed by
Fliess and co-workers has generated a number of interesggdts for different problems of
estimation of dynamical systems such as state estimatamanpetric identification, and fault
diagnosis, to name but a few (see [10], [8], [6], [5] and refexres therein). Loosely speaking,
this new estimation approach is mainly based on the robuspatation of the time-derivatives
of a noisy signal by using a finite weighted combination ofettimtegrations of this signal. These
results, obtained through the use of differential algelma aperational calculus [17], allow to
obtain an estimate of the time-derivative of a particuladeorin an arbitrary small amount of
time [9].

Questions arise on how to relate the above to more classsalts of automatic control, and
in particular to linear system theory. The present papetrirtes to this discussion by showing
that the algebraic time-derivative estimation method,rasgnted in [18] and references therein,
can be seen, in a sense, as a special case of previously knatgrspace results exhibiting a

deadbeat property.
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After this introduction, we briefly recall in Section Il theam results of the algebraic time-
derivative estimation method. Then, in Section Ill, we teadew results of linear observability
theory and show how in particular the reconstructibilitya@rian can be related to the algebraic
method. We end this paper with a few additional remarks on tworelate further extensions of

the algebraic approach with different areas of controlesyst theory.

[I. ALGEBRAIC TIME-DERIVATIVE ESTIMATION

The algebraic derivative estimation techniques have beesepted in various styles and
frameworks, mostly based on abstract algebra and opeshttaiiculus. Because of its practical
interest, we recall here only the main result for a movingZum version of the approach (see
[18] and [31]). However, note that the results shown in thespnt paper would also be very
easily applicable to earlier expanding-horizon versidreg tan be found in [4] or [10].

Consider a real-valuedy-th degree polynomial function of time
N

v =3 S (1)
where the terms; are unknown constant coefficients. The goal is to obtaimmegés of the
time-derivatives ofy(¢), up to orderN.

In [4], [3], [19], Fliess and co-workers proposed to do so foyghly speaking, resorting to
algebraic combinations of moving-horizon time-integrasi of the available signal(¢). Let us
briefly recall these results in the following theorem [1&1].

Theorem 1:For allt > T, the j-th order time-derivative estimatg’)(t), j = 0,1,2,..., N,

of the polynomial signal(t) as defined in (1) satisfies the convolution
T
:/ H,(T.7m)y({t—7)dr, j=0,1,...,N 2
0
where the convolution kernel

_ (N+j+1)(N+1)! ' (T—r)m+ke (—7
Hj(T7 T> - TN+j+1 Z Z Kilks! (N 7— /{1) (j /{2) (N H1—H2) (/‘fl‘f"'@) (N ’{1+1)

3)

depends on the ordgrof the time derivative to be estimated and on an arbitrarystaon time

)N K1—K2

k1=0 k=0

window length7" > 0. OJ

December 25, 2008 DRAFT



For the interested reader, as well as for the sake of conmasse a way to derive the results
of Theorem 1 is given in Appendix A.

Thus, considering for example the degree-one polynomial
y(t) = ao +ar t (4)

applying Theorem 1 would simply give us the following firstder time-derivative estimate

6

é(t) = /0 ﬁ(T — 27) y(t —7)dr. (5)

The effect of the time-integration is obviously to dampee tmpact of the measurement noise
on the estimate. Note that this feature can also be used&o diltt noise from the signal(t)

itself, as the zero-order time-derivative estimator wolkd

y(t) = /o 7i2(2T — 37‘) y(t —71)dr (6)

as obtained, once again, from Theorem 1.

[11. FROM DEADBEAT RECONSTRUCTION OF THE STATE TO THE ALGEBRAIC MEHOD

As will be seen, the above may be related in several ways tce nraditional results of

classical linear control theory. To do so, consider now thiding linear time-varying system
X(t) = A(t)x(t) ()
y(t) = C()x(t) (8)

wherex(t) € RV*! andy(t) € R. Note that while the form of system (7)-(8) was chosen for the
sake of simplicity and ease of presentation, the discussidhe present section is extendible
to systems with multiple inputs and outputs.

Then let us briefly recall a few elements pertaining to theomodf statereconstructibility[11],
[1], [20]. As noted in Willems and Mitter [30], this propertyas been quite overlooked in the
control literature, possibly because of its equivalencth wbservability for linear continuous-
time systems. Loosely speaking, we say that system (7)(@&constructibleon [ty ;] if x(¢1)
can be obtained from the measuremeyty for ¢ € [y, t1].

A standard way of determining(¢;) can be obtained by first writing the following expression

for the output
y(r) = C(7) ®(7, 1) x(t) (9)
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where®(7,t) is the transition matrix of (7). Then, left-multiply and égrate (9) to get

/ ) ®'(1,t,) CH(r)y(r)dr = ( / ! ®"(1,4,) C (1) C(1) ®(7, 1) dT) x(t;)  (10)

to to
Since in eq. (10x(t;) is a constant term with respect to the integral, it can beated|, and we
finally get, for an estimate(t;) of x(¢;),

(1) = Wt 1) / BT (1, 1) CN(r) () dr (11)

to

where t
W, (to, 1) = / & (7,t,) CT (1) C(1) ®(1,t1) dT (12)

to

is the reconstructibility Gramian

In treatments of observability in textbooks, developmesish as the above are mostly used,
through the observability counterpart of (12), to check tke a system is observable (resp.
reconstructible) or not. However, as noted in [2, p. 158]tfo observability case, expression
(12) can also be used to actually compgie;) as integration will smooth out high-frequency
noise.

The above results are well-known, even if not as much usedthiie estimation as linear
asymptotic observers are. But the former has the interegtiogerty of allowing to give an

estimate ofx(¢;) in a finite time, whose value is decided by the invertibility of (12).

Interestingly, these two features of the above Gramiaedha&stimation — deadbeat property
and time-integration, coincide with those of algebraicetiderivative estimation.
Let us push the comparison a little further in a simple way kst fioticing that the degree-one

polynomial (4) can be put into state-space phase-variata fvith matrices
0 1
A= . c=(10). (13)
00

statex(t) = (y(t),y(t))" and initial conditionsx(0) = (ag, a1)™.
Then, compute an estimate »ft) using (11) and (12). To do so, use the fact that the matrices

in (13) are time-invariant and that? = 0 to obtain

1 or—t
B(r b)) = A T4 (r—t)A= | (14)
0 1
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which implies that

C®(r,t,) = (1 T—t1> : (15)
Letting ¢ty = t — T (with 7" > 0 fixed) andt; = ¢, we then obtain from (12) the following
Gramian
T
2
W.(t-Tt)={ _, . (16)
T2 3
which in turn is used, in combination with (11), to get
j(t 2 5\ 1
T LICA T I / y(r)dr . (17)
y(t) 72 s ) ST \T—t

Hence, similarly to the previous section, an estimate ofiéfrévatives of a degree-one polynomial
can be obtained with time-integrations of the measuredasigibeit this time using tools from
classical control theory.

Note, interestingly, that in this particular example, thex more than a mere similarity. Indeed,
after a simple change of variabde= ¢ — 7 in (17), we find exactly the same expressions as (5)
and (6).

The above second-order case can be generalized to obtaifrtthéime-derivative of any
polynomial simply by specializing\ (¢) and C(¢) in (7)-(8) to get a state-space description of

polynomial (1), which yields, in phase-variable form the+ 1 square matrix

01 00 0

0010 0
A — 00 01 0 (18)

0

00 0O 1

00 0O 0

and theN + 1 row vector

c=(10 - 0 (19)

associated to the state vectaft) = (y(t),5(t), ...,y (t), ..., y™M(t))T.
After several steps in line with the previous second-ordemele, we obtain, similarly to
Section Il, an expression of thgth time-derivative of a polynomial signal (1) based on the

reconstructibility Gramian. This is summarized in the daling theorem.
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Theorem 2:For allt > T, the j-th order time-derivative estimatg’)(t), j = 0,1,2,..., N,

of the polynomial signal(¢) as defined in (1) satisfies the convolution

T
g(j)(t):/ Gi(T,0)y(t—o)do, j=0,1,...,N (20)
0
where the convolution kernel
N+j—|—1 (N +k+1)! o\
(T +) = — 21
Gi(T,7) = Ti+15! 'Z j+k+1 (N —k)!(k!)? (T) (1)

depends on the orderof the time denvatlve to be estimated and on an arbitrarystaort time

window length7" > 0. O

Proof: In the main, the proof is based on obtaining a closed-formesgion corresponding
to equations (11) and (12) for the particular case with roa#i(18) and (19).
Since this system is LTI, the corresponding transition magsults from the matrix exponen-
tial of (18), i.e.

1t /2 /6 --- tN/N!
01 ¢t /2 - NN -=-1)
N-2 — NI
S FE @
00 0 0 t
00 0 0 1

which is then used to obtain the state-transition matrix

®(1,ty) = AT (23)
Consequently, the entries of thé’ + 1) x (N + 1) reconstructibility Gramian matrix (12) read
t i+)—2 i+j—1
L(r=t)™ —(to—ta)"™
Wi, (to, t :/ . —_dr= 24
Welslto )= | GmG—1 "~ G- -D &Y

In view of (11), the inversion of this Gramian is requirec éntries are provided in closed-form
by Lemma 1 in Appendix B, that is

. G -DIG -+ -1 N+ N+j \(i+j—-2\°
Hence, by using eq. (25) regarding the particular form oftthasition matrix (23), thé:+ 1)-th

component ofk(t) follows from eq. (11)

j:i—l-l(tl) = Z [Wr_l] i+1,5+1 (t()v tl) T y(T) dr. (26)
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In other words, theg-th time-derivative estimate af(¢) at timet = t; can be obtained from the

convolution .
y(])(tl):/ Gj(tlat077—)y<7_)d7—a j:0717"'7N (27)
to
where
_ (N+35+1)! Y (—1D)F(N+k+1)! (tl-f)’f
Gi(ti,to,7) = . , , ) 28
it to.7) <t1—to>f+1y!<N—J>!§<J+k+1><N—k>!<k!>2 = (<8)

A receding-horizon version of equation (27) can then beinbthas follows: Letty = ¢ — T
(with T > 0 fixed), andt; = t. Proceed then to the change of variable- ¢ — 7 to obtain (20)

and (21), which completes the proof of the theorem. [ |

As might be expected from the above discussion and the semoled example, it is possible
to show an equivalence between the algebraic estimator cifoBell and the one of Theorem

2, and this for allN. We make this statement precise in the following theorem.

Theorem 3:Let H;(T,7) and G;(T, ) be defined as in (3) and (21), respectively. Then for
T>0,7€[0,7],andN € {0,1,2,...}
H,(T,7)=G;(T,7), j€{0,1,2,...,N}. (29)
0]

Proof: Theorem 3 follows from Riesz’ representation theorem [2djjclv states that for

every continuous linear functiongl on a Hilbert spacé+, a uniquep € H exists such that

fle) ={p,q) VqeH, (30)

where(.,.) denotes the inner product Gr.

In order to prepare the ground for applying this theorem ficge that for parametéf > 0
fixed, the expression#l;(7, ) and G,;(T, 7), given by (3) and (21), are polynomials in of
degreeN. Fort fixed, furthermorey(t — 7) is a polynomial inr of degreeN which in view of
(1) consequently sparid y, i.e. the Hilbert space of degre€ polynomials equipped with the

real-valued inner product

(pq) = / () dr, g€ Hy. (31)
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Hence, forl" > 0 fixed, H;(T,7) € Hy andG,(T, 1) € Hy. Moreover, lettingy(7) := y(t — 1)
with fixed ¢ > T" we have thay € Hy.

In accordance with (2) and (20), let

Ju,;(q) ::/O H;(T,7)q(r)dr (32)
and .
fe (q) = /0 G,(T,7) g(7) dr (33)

forj=0,1,2,..., N.
Consequently, Theorems 1 and 2 imply that for any Hy

ij(Q):ij(Q>J j:071727"'7N' (34)

Since H;(T,7) € Hy and G;(T,7) € Hy, for T" > 0 fixed, the uniqueness qf in Riesz’
theorem shows that
Hj(T? T) = Gj (T7 T) (35)

for j=0,1,2,..., N, under the assumptions of Theorem 3. [ |
Note that other proofs of the previous theorem are also ples$tor example, a somewhat more
component-wise proof, based on modern computer algebia prohniques [29], is presented

in [21] by showing specifically how the terms in (3) relate hmse of (21).

IV. ADDITIONAL REMARKS

In addition to the main result of Section Il, Fliess et al. pyeed several extensions or
modifications, several of which having also connection$wlifferent areas of control systems.
Let us briefly consider some of them in the few following reksar

For instance, note that axpanding-horizorversion of the algebraic method was first intro-
duced in [9], which would correspond to lgt= 0 andt¢; = ¢ in the reconstructibility Gramian
perspective. In this case, an equivalence similar to Thed@ean still be obtained. Furthermore,
note that, interestingly, lettin§(¢) := W,(0,t), and differentiating respectivel§(¢) and the

productS(¢) x(¢) with respect to time using a few standard manipulations, t@io

S(t) = —AT(1)S(t) — S(t)A(t) + CT(H)C(t) (36)
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and
x(t) = (A(t) = STHOCT(1)C(1)) %(t) + S~ (1) C ()y(t) (37)

which draw similarities with the information form of the domuous-time Kalman filter [16],
[12] for system (7)-(8) with additive noise(t) € R of identity covarianceR = I, on the
measurement equation (8). This in turn shows that, thankssionple modification of Theorem
3 for expanding horizons, links with optimal estimation kbie obtained even though the
derivations and motivations for the algebraic method aearty different (see in particular [9]).
As another example, one could also consider identificatroblpms, and parallels to the work
of Fliess and Sira-Rairez [8] on identifying linear systems using the algebra&tmod. Indeed,

replacing (7)-(8) with

o) = 0 (38)
y(t) = w'(t)e (39)

where @ is a constant parameter vector to be estimated, introdum@as to Section I, the

Gramian-based receding-horizon estimator

o) =Wt =T.0) [ aw(r)y(r)ar (40)
with .
W, (to,t1) = /t w(r) wT(r)dr (41)

0

which is reminiscent of the well-known condition for peteist excitation (see for example [13],
[15], [24]).

In an other extension presented in [19], the authors propmderther reduce the impact of
measurement noise on the estimates by using additiongratiens. This is also possible with
the Gramian point-of-view as both sides of (10) can easilyilne-integrated several additional
times with respect te,, as opposed to only once to obtaify,) — in fact, even filter operations
with respect to the variablg can be applied on both sides of (10), so as to generate ayariet
of further estimators. Once again, an equivalence betwasrésult of the algebraic approach
and a particularization of a reconstructibility perspextcan be obtained. More generally, we
can for example insert in (10) another kernét, t,) as follows

%(t) = Wil (to, 1) / AT )@ (1) () y(7) dr (42)

to
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where .
W (to, 1) = / N 10)B" (7, 41) CT(7) C(r) B (. 1) dr, (43)

to

this to obtain the desired response with respect to measmtenoise.

Finally, and although it is clearly beyond the scope of thespnt paper, note that because of
the convolution form of algebraic estimation (2), the lattan also be connected with Finite-
Impulse Response (FIR) differentiators, on which numeroudis$ and results were published
(see [14], [27] and references therein), with the minoredéhce that these differentiators are
usually described in a discrete-time framework, although clear that a comparison similar to
the present paper could also be carried out in discrete-time

In particular, it might be of interest to compare the latedgelsion of the algebraic estimation
approach, where time-delays are considered to improveethdts, together with FIR differen-
tiator designs considering the same issue that have be@og®d over the past few years (see
for example [28] and [23]).
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APPENDIX
A. Proof of Theorem 1

The following proof resorts to standard techniques fromrapenal calculus. To this end, we

rephrase eq. (1) in the Laplace domain as
N .
. Z ZJ(Z)(O)
o gi+l
1=0
where the coefficients; are identified withy®(0). In order to single out a particular term,
y9)(0), first multiply (44) by sV +1,

N+1 Zy (45)

which results in a polynomial form i on the right side of (45). To eliminate the terms
yUt(0),...,y"™M(0), differentiate (45)N — j times with respect tos (see [7] for a first

(44)

presentation of the idea). This yields

dN_ N+1 Z y )' j—i (46)
dsN-i (5 —)! '
In the next step, we proceed to a similar treatment to eliteirtae remaining constant terms

y©(0), y1(0), ..., y¥=(0). But before doing so, premultiply (46) hl/s, that is

ji—1

N—j s ‘ j ‘ o
i‘c;i‘N j(SN—HY(s)): <NS ])!y(J)(()) + Zy(z)(o)%sj—z—l (47)
=0 :

which is done to prevens')(0) from cancelation due to @gfold differentiation with respect to

s. Indeed, the latter operation finaIIy gives

dsi\ s dsN-i s+l

This equation could readily be transformed back into theetdomain. However, the left side

of (48) contains the monomial", i.e. anN-fold differentiation with respect to time in the time
domain, meaning if a high-frequency noise is corruptirig), the former would be amplified
as a result. Note that a similar idea can also be found in [26/-18]. In order to avoid the
explicit use of these time derivatives, premultiply (48}twi/s™+1, thus implying thaty(¢) will

be integrated at least one time. Therefore, we obtain

AR (—1)7j (N=3)!
N g4 <S e o R Y(s))): St y9)(0) (49)
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where it can been seen that the tegf(0) depends only on a finite number of operations on
the signalY(s), as shown in [18], [31].
Before performing the backward transform into the time-dom@earrange the left side terms

of (49) using Leibniz’ formula for the differentiation of @ducts twice. This results in

1odi(1dNT =& (N[ ]
SNH@(gdij ¢ Y(S))):Z Z( K1 )(f‘fz)x

k1=0 ko=0
(N+1)! 1 gh—rm
Y 50
(N—/fl—/fg)! (N—H1+1) strtretl dgN—r1—r2 (S) ( )
which, in view of the right hand side of (49), implies in turn
. N—j j . .
1 : (=1) N—=j\(J
I ) S W
sNtj+z Y (0) JHN—=7)! ,-;:of;)( K1 )(/12 x
| N—K1—kK2
(N+1)! 1 d Y(s). (51)

(N—lil—lig)! (N—/€1+1) gh1tra+1 dSN—nl—mg
Eq. (51) is now transformed back into the time domain. Usimg following inverse Laplace

transform formulae

S SN /m
Liﬂdsjy(s) - il y(r)dr (52)
we obtain .
@@(o):/Hj(t,r)y(T)dn j=01....N (53)
0
with
(N+j+DH(N+1)!(=1)
H,(t, ) = tN+j+1 X
N_
iz]: (t_T)HH-m( T)N—Hl—ﬁz (54)
= oo ml ke (N ==k )1 (=R )/ (N =1 — ko) (1 2 (N —ri +1)

The results obtained above thus give an estinétét) at timet = 0 from the polynomial signal
y, see (1), taken on the intervdl, ¢]. In order to get a moving-horizon and causal version of
these results, first replacewith —7', whereT is a positive constant [4], [3] and simplify using
the fact that

(1) Hy(~T,~7) = (=1 H;(T.7) (55)

Finally, by shifting they-values byt, Theorem 1 is immediate. [ |
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B. Lemma for the Proof of Theorem 2

Lemma 1 (Inverse oW, (to,1)): Let the entries of the matriXV,(¢o,¢;) be given as in (24).
The entries of its inverse are

[erhj(wl):(@'—1)!(j—1)!.(¢.+j—1)( N+ )( N+ )(Hj—z)f (56)

(tl—to)H_J_l N+1—j N+1—1 1—1

O

Proof: In light of equation (24), first, left- and right-multiplyV. (¢, ¢,) with a diagonal
matrix M whose entries are
(i —1)!

M. = 5 57
1] (to —tl)l J ( )

whered;; is the Kronecker delta. Then, proceed with computing théofohg matrix product

in component form as

[(t1—t0) MW, (%o, 1) M];;

N+1 N+1

= (t1—to Z ZMzk W (os t1) M,
k=1 I=1
) k=1 1=1 to_ —DII=D!(k+1-1) (to—t2)"
1
itj—1 (58)

whose result can be recognized as the entries d\an 1) x (N + 1) Hilbert matrix, hereafter

denotedH. The entries of the inverse & are known to be [25]

[H],,= (=1 (i+i-1) ( N]I i])( N]i ?_ Z)(Zti | 2) 2 (59)

and by computing

W;l(to, t1> = (tl—to) 1\/IH71 M (60)
we obtain (25), which completes the proof of the Lemma. [ |
REFERENCES

[1] R. W. Brockett,Finite Dimensional Linear Systemé/iley, 1970.

[2] C.-T. Chen,Linear system theory and desigbxford Univ. Press, 1999.

[3] M. Fliess, C. Join, M. Mboup, and A. Sedoglavic, “Estimation désvées d'un signal multidimensionnel avec applications
aux images et aux vabs,” Actes 20 Coll. GRETS] Louvain-la-Neuve, 2005.

December 25, 2008 DRAFT



(4]

(5]

(6]

(7]

(8]

&l

[10]

[11]
[12]

[13]
[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

[22]
(23]

[24]
[25]

14

M. Fliess, C. Join, M. Mboup, and H. Sira-Raez, “Analyse et re@sentation de signaux transitoires: applicatiota
compression, auébruitage et la cetection de rupturesActes 20 Coll. GRETS] Louvain-la-Neuve, 2005.

M. Fliess, C. Join, and H. Sira-Rarez, “Robust residual generation fo linear fault diagnosis: an adgelsetting with
examples,’Int. Journal of Contro] vol. 77, pp. 1223-1242, 2004.

M. Fliess, C. Join, and H. Sira-Rdmz, “Non-linear estimation is easy,Int. Journal of Modelling, Identification and
Control, vol. 3, 2008.

M. Fliess, M. Mboup, H. Mounier, and H. Sira-Ramz, “Questioning some paradigms of signal processing via concrete
examples,” inAlgebraic Methods in Flatness, Signal Processing and State Estimadio8ira-Ranirez, G. Silva-Navarro
(Eds.), Innovadn Editiorial Lagares, Mexico, pp. 1-21, 2003.

M. Fliess and H. J. Sira-Raimez, “An algebraic framework for linear identificatiorESAIM Control Optim. Calc. Variat.
vol. 9, 2003.

M. Fliess and H. J. Sira-Ramez, “State reconstructors: a possible alternative to asymptotic obsemwe Kalman filters,”
Proceedings of CESA003.

M. Fliess and H. Sira Rairez, “Control via state estimations of some nonlinear systetR8C Symposium on Nonlinear
Control Systems (NOLCOS 200&tuttgart, 2004.

R. E. Kalman, P. L. Falb, and M. A. Arbilfopics in Mathematical System TheokjcGraw-Hill, 1969.

P. G. Kaminski, A. E. Bryson and S. F. Schmidt, “Discrete squar filtering: a survey of current techniquesEZEE
Transactions on Automatic Controlol. 16, no. 6, pp. 727-736, 1971.

H. Khalil, Nonlinear systems (2nd edPrentice-Hall, New York, 1996.

I. R. Khan and R. Ohba, “New design of full band differentiatbesed on Taylor series|EE Proceedings Vision, Image
& Signal Processingvol. 146, pp. 185-189, 1999.

M. Krstic, I. Kanellakopoulos and P. KokotdyiNonlinear and adaptive control desighViley Interscience, New York,
1995.

W. H. Kwon, P. S. Kim and P. G. Park, “A receding horizon Kaln&R filter for linear continuous-time systems$EEE
Transactions on Automatic Controlol. 44, no. 11, pp. 2115-2120, 1995.

M. Mboup, “Parameter estimation via differential algebra and agi@mal calculus,in preparation 2007.

M. Mboup, C. Join, and M. Fliess, “A revised look at numericafatiéntiation with an application to nonlinear feedback
control,” 15th Mediterranean Conference on Control and Automation (MED'@fhens, Greece, 2007.

A. Neves, M. Mboup, and M. Fliess, “An algebraic identification noettior the demodulation of QPSK signal through a
convolutive channel European Signal Proc. Conf. (EUSIPCQJustria, Vienna, 2004.

J. O'Reilly, Observers for Linear System&cademic Press, 1983.

J. Reger, J. Jouffroy, “Algebraic Time-Derivative Estimatiorddeadbeat State Reconstructiorfgchnical Report CGR-
07-09 University of Michigan, USA, http:/arxiv.org/abs/0710.0010

F. Riesz and B. Sz.-Nag¥unctional AnalysisFredrick Ungar, New York, 1955.

S. Samadi and A. Nishihara, “Explicit formula for predictive FfiRers and differentiators using Hahn polynomials,”
IEICE Transactionsvol. E9QO-A, no. 8, pp. 1511-1518, 2007.

S. SastryNonlinear systemsSpringer, 1999.

L. R. Savage and E. Lukas, “Tables of inverses of finite segeneinthe Hilbert matrix ” inContributions to the Solutions
of Systems of Linear Equations and the Determination of Eigenvaluetaussky (Editor), National Bureau of Standards
Applied Mathematics Series, vol. 39, pp. 105-108, 1954.

December 25, 2008 DRAFT



15

[26] E. D. SontagMathematical Control Theory (2nd ed.$pringer, 1998.

[27] C.-C. Tseng, “Digital differentiator design using fractional defdier and limit computation,”IEEE Transactions on
Circuits and Systems—I:Regular Papew®l. 52, no. 10, pp. 2248-2259, 2002.

[28] S. Valiviita and O. Vainio, “Delayless differentiation algorithm and itdicént implementation for motion control
applications,”IEEE Transactions on Instrumentation and Measuremeolt 48, no. 5, pp. 967-971, 1999.

[29] H. Wilf and D. Zeilberger, “An algebraic proof theory for hypemmetric (ordinary and “q") multisum/integral identities,”
Inventiones Mathematicagol. 108, pp. 575-633, 1992.

[30] J. C. Willems and S. K. Mitter, “Controllability, observability, pole allocati@nd state reconstructionEEE Transactions
on Automatic Contrglvol. 16, no. 6, pp. 582-595, 1971.

[31] J. Zehetner, J. Reger, and M. Horn, “A Derivative Estimationllox based on Algebraic Methods — Theory and Practice,

" IEEE Int. Conf. on Control ApplicationsSingapore, 2007.

December 25, 2008 DRAFT



