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On algebraic time-derivative estimation

and deadbeat state reconstruction

Johann Reger†

Abstract

This note places into perspective the so-called algebraic time-derivative estimation method recently

introduced by Fliess and co-authors with standard results from linear state-space theory for control

systems. In particular, it is shown that the algebraic method can in a sense be seen as a special case of

deadbeat state estimation based on the reconstructibilityGramian of the considered system.

I. I NTRODUCTION

In the past few years, the algebraic approach to estimation in control systems proposed by

Fliess and co-workers has generated a number of interestingresults for different problems of

estimation of dynamical systems such as state estimation, parametric identification, and fault

diagnosis, to name but a few (see [10], [8], [6], [5] and references therein). Loosely speaking,

this new estimation approach is mainly based on the robust computation of the time-derivatives

of a noisy signal by using a finite weighted combination of time-integrations of this signal. These

results, obtained through the use of differential algebra and operational calculus [17], allow to

obtain an estimate of the time-derivative of a particular order in an arbitrary small amount of

time [9].

Questions arise on how to relate the above to more classical results of automatic control, and

in particular to linear system theory. The present paper contributes to this discussion by showing

that the algebraic time-derivative estimation method, as presented in [18] and references therein,

can be seen, in a sense, as a special case of previously known state-space results exhibiting a

deadbeat property.
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After this introduction, we briefly recall in Section II the main results of the algebraic time-

derivative estimation method. Then, in Section III, we recall a few results of linear observability

theory and show how in particular the reconstructibility Gramian can be related to the algebraic

method. We end this paper with a few additional remarks on howto relate further extensions of

the algebraic approach with different areas of control systems theory.

II. A LGEBRAIC TIME-DERIVATIVE ESTIMATION

The algebraic derivative estimation techniques have been presented in various styles and

frameworks, mostly based on abstract algebra and operational calculus. Because of its practical

interest, we recall here only the main result for a moving-horizon version of the approach (see

[18] and [31]). However, note that the results shown in the present paper would also be very

easily applicable to earlier expanding-horizon versions that can be found in [4] or [10].

Consider a real-valued,N -th degree polynomial function of time

y(t) =
N

∑

i=0

ai

i!
ti (1)

where the termsai are unknown constant coefficients. The goal is to obtain estimates of the

time-derivatives ofy(t), up to orderN .

In [4], [3], [19], Fliess and co-workers proposed to do so by,roughly speaking, resorting to

algebraic combinations of moving-horizon time-integrations of the available signaly(t). Let us

briefly recall these results in the following theorem [18], [31].

Theorem 1:For all t ≥ T , the j-th order time-derivative estimatêy(j)(t), j = 0, 1, 2, . . . , N ,

of the polynomial signaly(t) as defined in (1) satisfies the convolution

ŷ(j)(t) =

∫ T

0

Hj(T, τ) y(t − τ) dτ , j = 0, 1, . . . , N (2)

where the convolution kernel

Hj(T, τ) =
(N+j+1)! (N+1)!

TN+j+1

N−j
∑

κ1=0

j
∑

κ2=0

(T−τ)κ1+κ2 (−τ)N−κ1−κ2

κ1!κ2!(N−j−κ1)!(j−κ2)!(N−κ1−κ2)!(κ1+κ2)!(N−κ1+1)

(3)

depends on the orderj of the time derivative to be estimated and on an arbitrary constant time

window lengthT > 0. �
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For the interested reader, as well as for the sake of completeness, a way to derive the results

of Theorem 1 is given in Appendix A.

Thus, considering for example the degree-one polynomial

y(t) = a0 + a1 t (4)

applying Theorem 1 would simply give us the following first-order time-derivative estimate

ˆ̇y(t) =

∫ T

0

6

T 3

(

T − 2τ
)

y(t − τ) dτ . (5)

The effect of the time-integration is obviously to dampen the impact of the measurement noise

on the estimate. Note that this feature can also be used to filter out noise from the signaly(t)

itself, as the zero-order time-derivative estimator wouldbe

ŷ(t) =

∫ T

0

2

T 2

(

2T − 3τ
)

y(t − τ) dτ (6)

as obtained, once again, from Theorem 1.

III. F ROM DEADBEAT RECONSTRUCTION OF THE STATE TO THE ALGEBRAIC METHOD

As will be seen, the above may be related in several ways to more traditional results of

classical linear control theory. To do so, consider now the following linear time-varying system

ẋ(t) = A(t)x(t) (7)

y(t) = C(t)x(t) (8)

wherex(t) ∈ R
N+1 andy(t) ∈ R. Note that while the form of system (7)-(8) was chosen for the

sake of simplicity and ease of presentation, the discussionof the present section is extendible

to systems with multiple inputs and outputs.

Then let us briefly recall a few elements pertaining to the notion of statereconstructibility[11],

[1], [20]. As noted in Willems and Mitter [30], this propertyhas been quite overlooked in the

control literature, possibly because of its equivalence with observability for linear continuous-

time systems. Loosely speaking, we say that system (7)-(8) is reconstructibleon [t0, t1] if x(t1)

can be obtained from the measurementsy(t) for t ∈ [t0, t1].

A standard way of determiningx(t1) can be obtained by first writing the following expression

for the output

y(τ) = C(τ)Φ(τ, t1)x(t1) (9)
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whereΦ(τ, t) is the transition matrix of (7). Then, left-multiply and integrate (9) to get
∫ t1

t0

Φ
T(τ, t1)C

T(τ) y(τ) dτ =

(∫ t1

t0

Φ
T(τ, t1)C

T(τ)C(τ)Φ(τ, t1) dτ

)

x(t1) (10)

Since in eq. (10)x(t1) is a constant term with respect to the integral, it can be isolated, and we

finally get, for an estimatêx(t1) of x(t1),

x̂(t1) := W
−1
r (t0, t1)

∫ t1

t0

Φ
T(τ, t1)C

T(τ) y(τ) dτ (11)

where

Wr(t0, t1) =

∫ t1

t0

Φ
T(τ, t1)C

T(τ)C(τ)Φ(τ, t1) dτ (12)

is the reconstructibility Gramian.

In treatments of observability in textbooks, developmentssuch as the above are mostly used,

through the observability counterpart of (12), to check whether a system is observable (resp.

reconstructible) or not. However, as noted in [2, p. 158] forthe observability case, expression

(12) can also be used to actually computex̂(t1) as integration will smooth out high-frequency

noise.

The above results are well-known, even if not as much used forstate estimation as linear

asymptotic observers are. But the former has the interestingproperty of allowing to give an

estimate ofx(t1) in a finite time, whose value is decided by the invertibility of (12).

Interestingly, these two features of the above Gramian-based estimation – deadbeat property

and time-integration, coincide with those of algebraic time-derivative estimation.

Let us push the comparison a little further in a simple way by first noticing that the degree-one

polynomial (4) can be put into state-space phase-variable form with matrices

A =





0 1

0 0



 , C =
(

1 0
)

, (13)

statex(t) = (y(t), ẏ(t))T and initial conditionsx(0) = (a0, a1)
T.

Then, compute an estimate ofx(t) using (11) and (12). To do so, use the fact that the matrices

in (13) are time-invariant and thatA2 = 0 to obtain

Φ(τ, t1) = eA(τ−t1) = I + (τ − t1)A =





1 τ − t1

0 1



 (14)
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which implies that

CΦ(τ, t1) =
(

1 τ − t1

)

. (15)

Letting t0 = t − T (with T > 0 fixed) andt1 = t, we then obtain from (12) the following

Gramian

Wr(t − T, t) =





T −T 2

2

−T 2

2
T 3

3



 (16)

which in turn is used, in combination with (11), to get

x̂(t) =





ŷ(t)

ˆ̇y(t)



 =





4
T

6
T 2

6
T 2

12
T 3





∫ t

t−T





1

τ − t



 y(τ) dτ . (17)

Hence, similarly to the previous section, an estimate of thederivatives of a degree-one polynomial

can be obtained with time-integrations of the measured signal, albeit this time using tools from

classical control theory.

Note, interestingly, that in this particular example, there is more than a mere similarity. Indeed,

after a simple change of variableσ = t− τ in (17), we find exactly the same expressions as (5)

and (6).

The above second-order case can be generalized to obtain thej-th time-derivative of any

polynomial simply by specializingA(t) andC(t) in (7)-(8) to get a state-space description of

polynomial (1), which yields, in phase-variable form theN + 1 square matrix

A =



























0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
...

...
. . . 0

0 0 0 0 · · · 1

0 0 0 0 · · · 0



























(18)

and theN + 1 row vector

C =
(

1 0 · · · 0
)

(19)

associated to the state vectorx(t) = (y(t), ẏ(t), ..., y(j)(t), ..., y(N)(t))T.

After several steps in line with the previous second-order example, we obtain, similarly to

Section II, an expression of thej-th time-derivative of a polynomial signal (1) based on the

reconstructibility Gramian. This is summarized in the following theorem.
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Theorem 2:For all t ≥ T , the j-th order time-derivative estimatêy(j)(t), j = 0, 1, 2, . . . , N ,

of the polynomial signaly(t) as defined in (1) satisfies the convolution

ŷ(j)(t) =

∫ T

0

Gj(T, σ) y(t − σ) dσ , j = 0, 1, . . . , N (20)

where the convolution kernel

Gj(T, τ) =
(N+j+1)!

T j+1j!(N−j)!

N
∑

k=0

(−1)k(N+k+1)!

(j+k+1)(N−k)!(k!)2

(σ

T

)k

(21)

depends on the orderj of the time derivative to be estimated and on an arbitrary constant time

window lengthT > 0. �

Proof: In the main, the proof is based on obtaining a closed-form expression corresponding

to equations (11) and (12) for the particular case with matrices (18) and (19).

Since this system is LTI, the corresponding transition matrix results from the matrix exponen-

tial of (18), i.e.

eA t =



























1 t t2/2 t3/6 · · · tN/N !

0 1 t t2/2 · · · tN−1/(N − 1)!

0 0 1 t · · · tN−2/(N − 2)!
...

...
...

...
.. .

...

0 0 0 0 · · · t

0 0 0 0 · · · 1



























(22)

which is then used to obtain the state-transition matrix

Φ(τ, t1) = eA (τ−t1) . (23)

Consequently, the entries of the(N + 1)× (N + 1) reconstructibility Gramian matrix (12) read

[Wr]ij(t0, t1)=

∫ t1

t0

(τ−t1)
i+j−2

(i−1)!(j−1)!
dτ =

−(t0−t1)
i+j−1

(i−1)!(j−1)!(i+j−1)
. (24)

In view of (11), the inversion of this Gramian is required. Its entries are provided in closed-form

by Lemma 1 in Appendix B, that is

[

W−1
r

]

ij
(t0, t1) =

(i − 1)! (j − 1)! (i + j − 1)

(t1 − t0)i+j−1

(

N + i

N + 1 − j

)(

N + j

N + 1 − i

)(

i + j − 2

i − 1

)2

. (25)

Hence, by using eq. (25) regarding the particular form of thetransition matrix (23), the(i+1)-th

component of̂x(t) follows from eq. (11)

x̂i+1(t1) =

∫ t1

t0

N
∑

j=0

[

W−1
r

]

i+1,j+1
(t0, t1)

(τ − t1)
j

j!
y(τ) dτ . (26)
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In other words, thej-th time-derivative estimate ofy(t) at timet = t1 can be obtained from the

convolution

y(j)(t1) =

∫ t1

t0

Ḡj(t1, t0, τ) y(τ) dτ , j = 0, 1, . . . , N (27)

where

Ḡj(t1, t0, τ) =
(N+j+1)!

(t1−t0)j+1j!(N−j)!

N
∑

k=0

(−1)k(N+k+1)!

(j+k+1)(N−k)!(k!)2

(

t1−τ

t1−t0

)k

. (28)

A receding-horizon version of equation (27) can then be obtained as follows: Lett0 = t − T

(with T > 0 fixed), andt1 = t. Proceed then to the change of variableσ = t− τ to obtain (20)

and (21), which completes the proof of the theorem.

As might be expected from the above discussion and the second-order example, it is possible

to show an equivalence between the algebraic estimator of Section II and the one of Theorem

2, and this for allN . We make this statement precise in the following theorem.

Theorem 3:Let Hj(T, τ) andGj(T, τ) be defined as in (3) and (21), respectively. Then for

T > 0, τ ∈ [0, T ], andN ∈ {0, 1, 2, . . .}

Hj(T, τ) = Gj(T, τ), j ∈ {0, 1, 2, . . . , N} . (29)

�

Proof: Theorem 3 follows from Riesz’ representation theorem [22], which states that for

every continuous linear functionalf on a Hilbert spaceH, a uniquep ∈ H exists such that

f(q) = 〈p, q〉 ∀q ∈ H , (30)

where〈. , .〉 denotes the inner product onH.

In order to prepare the ground for applying this theorem, first note that for parameterT > 0

fixed, the expressionsHj(T, τ) and Gj(T, τ), given by (3) and (21), are polynomials inτ of

degreeN . For t fixed, furthermorey(t− τ) is a polynomial inτ of degreeN which in view of

(1) consequently spansHN , i.e. the Hilbert space of degreeN polynomials equipped with the

real-valued inner product

〈p, q〉 :=

∫ T

0

p(τ)q(τ) dτ , p, q ∈ HN . (31)
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Hence, forT > 0 fixed, Hj(T, τ) ∈ HN andGj(T, τ) ∈ HN . Moreover, lettingq(τ) := y(t− τ)

with fixed t ≥ T we have thatq ∈ HN .

In accordance with (2) and (20), let

fHj
(q) :=

∫ T

0

Hj(T, τ) q(τ) dτ (32)

and

fGj
(q) :=

∫ T

0

Gj(T, τ) q(τ) dτ (33)

for j = 0, 1, 2, . . . , N .

Consequently, Theorems 1 and 2 imply that for anyq ∈ HN

fHj
(q) = fGj

(q) , j = 0, 1, 2, . . . , N . (34)

Since Hj(T, τ) ∈ HN and Gj(T, τ) ∈ HN , for T > 0 fixed, the uniqueness ofp in Riesz’

theorem shows that

Hj(T, τ) ≡ Gj(T, τ) (35)

for j = 0, 1, 2, . . . , N , under the assumptions of Theorem 3.

Note that other proofs of the previous theorem are also possible. For example, a somewhat more

component-wise proof, based on modern computer algebra proof techniques [29], is presented

in [21] by showing specifically how the terms in (3) relate to those of (21).

IV. A DDITIONAL REMARKS

In addition to the main result of Section II, Fliess et al. proposed several extensions or

modifications, several of which having also connections with different areas of control systems.

Let us briefly consider some of them in the few following remarks.

For instance, note that anexpanding-horizonversion of the algebraic method was first intro-

duced in [9], which would correspond to lett0 = 0 and t1 = t in the reconstructibility Gramian

perspective. In this case, an equivalence similar to Theorem 3 can still be obtained. Furthermore,

note that, interestingly, lettingS(t) := Wr(0, t), and differentiating respectivelyS(t) and the

productS(t) x̂(t) with respect to time using a few standard manipulations, we obtain

Ṡ(t) = −A
T(t)S(t) − S(t)A(t) + C

T(t)C(t) (36)
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and

˙̂x(t) =
(

A(t) − S
−1(t)CT(t)C(t)

)

x̂(t) + S
−1(t)CT(t)y(t) (37)

which draw similarities with the information form of the continuous-time Kalman filter [16],

[12] for system (7)-(8) with additive noisev(t) ∈ R of identity covariance,R = I, on the

measurement equation (8). This in turn shows that, thanks toa simple modification of Theorem

3 for expanding horizons, links with optimal estimation could be obtained even though the

derivations and motivations for the algebraic method are clearly different (see in particular [9]).

As another example, one could also consider identification problems, and parallels to the work

of Fliess and Sira-Raḿırez [8] on identifying linear systems using the algebraic method. Indeed,

replacing (7)-(8) with

ϕ̇(t) = 0 (38)

y(t) = ω
T(t) ϕ (39)

whereϕ is a constant parameter vector to be estimated, introduce, similar to Section III, the

Gramian-based receding-horizon estimator

ϕ̂(t) = W
−1
r (t − T, t)

∫ t

t−T

ω(τ) y(τ)dτ (40)

with

Wr(t0, t1) =

∫ t1

t0

ω(τ) ω
T(τ)dτ (41)

which is reminiscent of the well-known condition for persistent excitation (see for example [13],

[15], [24]).

In an other extension presented in [19], the authors proposeto further reduce the impact of

measurement noise on the estimates by using additional integrations. This is also possible with

the Gramian point-of-view as both sides of (10) can easily betime-integrated several additional

times with respect tot0, as opposed to only once to obtainx(t1) – in fact, even filter operations

with respect to the variablet0 can be applied on both sides of (10), so as to generate a variety

of further estimators. Once again, an equivalence between this result of the algebraic approach

and a particularization of a reconstructibility perspective can be obtained. More generally, we

can for example insert in (10) another kernelλ(τ, t0) as follows

x̂(t1) := W
−1
λ (t0, t1)

∫ t1

t0

λ(τ, t0)Φ
T(τ, t1)C

T(τ) y(τ) dτ (42)
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where

Wλ(t0, t1)=

∫ t1

t0

λ(τ, t0)Φ
T(τ, t1)C

T(τ)C(τ)Φ(τ, t1) dτ, (43)

this to obtain the desired response with respect to measurement noise.

Finally, and although it is clearly beyond the scope of the present paper, note that because of

the convolution form of algebraic estimation (2), the latter can also be connected with Finite-

Impulse Response (FIR) differentiators, on which numerous studies and results were published

(see [14], [27] and references therein), with the minor difference that these differentiators are

usually described in a discrete-time framework, although it is clear that a comparison similar to

the present paper could also be carried out in discrete-time.

In particular, it might be of interest to compare the latest extension of the algebraic estimation

approach, where time-delays are considered to improve the results, together with FIR differen-

tiator designs considering the same issue that have been proposed over the past few years (see

for example [28] and [23]).
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APPENDIX

A. Proof of Theorem 1

The following proof resorts to standard techniques from operational calculus. To this end, we

rephrase eq. (1) in the Laplace domain as

Y (s) =
N

∑

i=0

y(i)(0)

si+1
, (44)

where the coefficientsai are identified withy(i)(0). In order to single out a particular term,

y(j)(0), first multiply (44) bysN+1,

sN+1 Y (s) =
N

∑

i=0

y(i)(0) sN−i , (45)

which results in a polynomial form ins on the right side of (45). To eliminate the terms

y(j+1)(0), . . . , y(N)(0), differentiate (45)N − j times with respect tos (see [7] for a first

presentation of the idea). This yields

dN−j

dsN−j

(

sN+1Y (s)
)

=

j
∑

i=0

y(i)(0)
(N − i)!

(j − i)!
sj−i . (46)

In the next step, we proceed to a similar treatment to eliminate the remaining constant terms

y(0)(0), y(1)(0), . . ., y(j−1)(0). But before doing so, premultiply (46) by1/s, that is

1

s

dN−j

dsN−j

(

sN+1Y (s)
)

=
(N−j)!

s
y(j)(0) +

j−1
∑

i=0

y(i)(0)
(N−i)!

(j−i)!
sj−i−1 (47)

which is done to preventy(j)(0) from cancelation due to aj-fold differentiation with respect to

s. Indeed, the latter operation finally gives

dj

dsj

(

1

s

dN−j

dsN−j

(

sN+1Y (s)
)

)

=
(−1)j j! (N−j)!

sj+1
y(j)(0). (48)

This equation could readily be transformed back into the time domain. However, the left side

of (48) contains the monomialsN , i.e. anN -fold differentiation with respect to time in the time

domain, meaning if a high-frequency noise is corruptingy(t), the former would be amplified

as a result. Note that a similar idea can also be found in [26, p.17–18]. In order to avoid the

explicit use of these time derivatives, premultiply (48) with 1/sN+1, thus implying thaty(t) will

be integrated at least one time. Therefore, we obtain

1

sN+1

dj

dsj

(

1

s

dN−j

dsN−j

(

sN+1Y (s)
)

)

=
(−1)jj! (N−j)!

sN+j+2
y(j)(0) (49)
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where it can been seen that the termy(j)(0) depends only on a finite number of operations on

the signalY (s), as shown in [18], [31].

Before performing the backward transform into the time-domain, rearrange the left side terms

of (49) using Leibniz’ formula for the differentiation of products twice. This results in

1

sN+1

dj

dsj

(

1

s

dN−j

dsN−j

(

sN+1Y (s)
)

)

=

N−j
∑

κ1=0

j
∑

κ2=0

(

N−j

κ1

)(

j

κ2

)

×

(N+1)!

(N−κ1−κ2)! (N−κ1+1)

1

sκ1+κ2+1

dN−κ1−κ2

dsN−κ1−κ2

Y (s) (50)

which, in view of the right hand side of (49), implies in turn

1

sN+j+2
y(j)(0) =

(−1)j

j! (N−j)!

N−j
∑

κ1=0

j
∑

κ2=0

(

N−j

κ1

)(

j

κ2

)

×

(N+1)!

(N−κ1−κ2)! (N−κ1+1)

1

sκ1+κ2+1

dN−κ1−κ2

dsN−κ1−κ2

Y (s) . (51)

Eq. (51) is now transformed back into the time domain. Using the following inverse Laplace

transform formulae

£
−1

[

1

si+1

dj

dsj
Y (s)

]

=

∫ t

0

(t − τ)i(−τ)j

i!
y(τ) dτ (52)

we obtain

ŷ(j)(0) =

∫ t

0

Hj(t, τ) y(τ) dτ , j = 0, 1, . . . , N (53)

with

Hj(t, τ) =
(N+j +1)! (N+1)! (−1)j

tN+j+1
×

N−j
∑

κ1=0

j
∑

κ2=0

(t−τ)κ1+κ2 (−τ)N−κ1−κ2

κ1!κ2!(N−j−κ1)!(j−κ2)!(N−κ1−κ2)!(κ1+κ2)!(N−κ1+1)
(54)

The results obtained above thus give an estimateŷ(j)(t) at timet = 0 from the polynomial signal

y, see (1), taken on the interval[0, t]. In order to get a moving-horizon and causal version of

these results, first replacet with −T , whereT is a positive constant [4], [3] and simplify using

the fact that

(−1) Hj(−T,−τ) = (−1)j Hj(T, τ) (55)

Finally, by shifting they-values byt, Theorem 1 is immediate. �

December 25, 2008 DRAFT



13

B. Lemma for the Proof of Theorem 2

Lemma 1 (Inverse ofWr(t0, t1)): Let the entries of the matrixWr(t0, t1) be given as in (24).

The entries of its inverse are

[

W−1
r

]

ij
(t0, t1) =

(i − 1)! (j − 1)! (i + j − 1)

(t1 − t0)i+j−1

(

N + i

N + 1 − j

)(

N + j

N + 1 − i

)(

i + j − 2

i − 1

)2

. (56)

�

Proof: In light of equation (24), first, left- and right-multiplyWr(t0, t1) with a diagonal

matrix M whose entries are

Mij =
(i − 1)!

(t0 − t1)i
δij (57)

whereδij is the Kronecker delta. Then, proceed with computing the following matrix product

in component form as

[(t1−t0)MWr(t0, t1)M]ij

= (t1−t0)
N+1
∑

k=1

N+1
∑

l=1

Mik [Wr]kl (t0, t1)Mlj

= (t1−t0)
N+1
∑

k=1

N+1
∑

l=1

(i−1)!

(t0−t1)i
δik

−(t0−t1)
k+l−1

(k−1)!(l−1)!(k+l−1)

(l−1)!

(t0−t1)l
δlj

=
1

i+j−1
(58)

whose result can be recognized as the entries of an(N + 1)× (N + 1) Hilbert matrix, hereafter

denotedH. The entries of the inverse ofH are known to be [25]

[

H−1
]

ij
=(−1)i+j (i+j−1)

(

N+i

N+1−j

)(

N+j

N+1−i

)(

i+j−2

i−1

)2

(59)

and by computing

W
−1
r (t0, t1) = (t1−t0)MH

−1
M (60)

we obtain (25), which completes the proof of the Lemma.
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[15] M. Krstić, I. Kanellakopoulos and P. Kokotović, Nonlinear and adaptive control design. Wiley Interscience, New York,

1995.

[16] W. H. Kwon, P. S. Kim and P. G. Park, “A receding horizon KalmanFIR filter for linear continuous-time systems,”IEEE

Transactions on Automatic Control, vol. 44, no. 11, pp. 2115–2120, 1995.

[17] M. Mboup, “Parameter estimation via differential algebra and operational calculus,”in preparation, 2007.

[18] M. Mboup, C. Join, and M. Fliess, “A revised look at numerical differentiation with an application to nonlinear feedback

control,” 15th Mediterranean Conference on Control and Automation (MED’07), Athens, Greece, 2007.

[19] A. Neves, M. Mboup, and M. Fliess, “An algebraic identification method for the demodulation of QPSK signal through a

convolutive channel,”European Signal Proc. Conf. (EUSIPCO), Austria, Vienna, 2004.

[20] J. O’Reilly, Observers for Linear Systems, Academic Press, 1983.

[21] J. Reger, J. Jouffroy, “Algebraic Time-Derivative Estimation and Deadbeat State Reconstruction, ”Technical Report CGR-

07-09, University of Michigan, USA, http://arxiv.org/abs/0710.0010

[22] F. Riesz and B. Sz.-Nagy,Functional Analysis. Fredrick Ungar, New York, 1955.

[23] S. Samadi and A. Nishihara, “Explicit formula for predictive FIRfilters and differentiators using Hahn polynomials,”

IEICE Transactions, vol. E90-A, no. 8, pp. 1511–1518, 2007.

[24] S. Sastry,Nonlinear systems. Springer, 1999.

[25] L. R. Savage and E. Lukas, “Tables of inverses of finite segments of the Hilbert matrix ” inContributions to the Solutions

of Systems of Linear Equations and the Determination of Eigenvalues, O. Taussky (Editor), National Bureau of Standards

Applied Mathematics Series, vol. 39, pp. 105–108, 1954.

December 25, 2008 DRAFT



15

[26] E. D. Sontag,Mathematical Control Theory (2nd ed.). Springer, 1998.

[27] C.-C. Tseng, “Digital differentiator design using fractional delayfilter and limit computation,”IEEE Transactions on

Circuits and Systems–I:Regular Papers, vol. 52, no. 10, pp. 2248–2259, 2002.

[28] S. Valiviita and O. Vainio, “Delayless differentiation algorithm and its efficient implementation for motion control

applications,”IEEE Transactions on Instrumentation and Measurement, vol. 48, no. 5, pp. 967–971, 1999.

[29] H. Wilf and D. Zeilberger, “An algebraic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities,”

Inventiones Mathematicae, vol. 108, pp. 575–633, 1992.

[30] J. C. Willems and S. K. Mitter, “Controllability, observability, pole allocation, and state reconstruction,”IEEE Transactions

on Automatic Control, vol. 16, no. 6, pp. 582–595, 1971.

[31] J. Zehetner, J. Reger, and M. Horn, “A Derivative Estimation Toolbox based on Algebraic Methods — Theory and Practice,

” IEEE Int. Conf. on Control Applications, Singapore, 2007.

December 25, 2008 DRAFT


